首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system   总被引:14,自引:0,他引:14  
In addition to its role in calcium and skeletal homeostasis, there is increasing evidence that the hormonal form of vitamin D, 1, 25-dihydroxyvitamin D(3), appears to serve as a modulator of the immune system. We have determined the level of the 1, 25-dihydroxyvitamin D(3) receptor (VDR) in resting and activated lymphocytes by immuno- and ligand-binding assays. As expected from previous work, the total T lymphocyte population contains VDR whose levels are increased when activated and treated with 1, 25-dihydroxyvitamin D(3). Surprisingly, the highest concentrations of VDR are found in CD8 lymphocytes, although significant amounts are also present in CD4 lymphocytes. Furthermore, B lymphocytes do not contain detectable amounts of VDR. Cells of the monocyte/macrophage lineage possess small amounts of VDR that are not affected by activation but are increased by treatment with 1, 25-dihydroxyvitamin D(3). These results suggest that CD8 lymphocytes may be a major site of 1,25-dihydroxyvitamin D(3) action, while B lymphocytes are likely not directly regulated by 1, 25-dihydroxyvitamin D(3).  相似文献   

2.
3.
The growing interest in1α,25(OH)(2)D(3), the hormonally active form of vitamin D(3), has prompted numerous efforts to synthesize vitamin D analogs as potential therapeutic agents, and some of these are already on the market and in clinical development. Although most vitamin D preparations developed thus far have focused on side-chain modifications, providing many useful analogues with high potency and selectivity, in recent years, modifications of the A-ring has attracted much attention because it can afford useful analogues exhibiting unique activity profiles as well. In this review we will focus on the current understanding of the relationship between selected modifications in the A-ring of the 1α,25(OH)(2)D(3) molecule, such as epimerization and/or substitution at C-1 and C-3, substitution at C-2, and removal of the 10,19-exocyclic methylene group, and their effect on biological potency and selectivity. Finally, suggestions for the structure-based design of therapeutically valuable A-ring vitamin D analogs will conclude the review.  相似文献   

4.
An immunoradiometric assay for 1,25-dihydroxyvitamin D3 receptor   总被引:8,自引:0,他引:8  
A ligand-independent, quantitative assay has been developed for the measurement of 1,25-dihydroxyvitamin D receptor utilizing purified receptor from pig intestine as a standard and two high affinity monoclonal antibodies directed to two different epitopes on the receptor. In this assay a fixed amount of 125I-labeled antibody is incubated with a fixed amount of a second antireceptor antibody linked to biotin and increasing amounts of purified receptor protein or sample. Antibody-receptor complexes can then be immunoprecipitated with avidin-Sepharose beads and counted. This method is highly reproducible and can detect 150 pg of 1,25-dihydroxyvitamin D3 receptor in crude extracts with intra- and interassay coefficients of variation of 8.6 and 18.2%. The monoclonal antibodies used recognize both native and denatured receptors from several different species, including human. This immunoradiometric assay should prove useful for studies of receptor regulation, occupancy, distribution, and turnover.  相似文献   

5.
Ketoconazole (an inhibitor of vitamin D-24 hydroxylase) was used to study the role of self-induced 1,25-dihydroxyvitamin D3 (1,25-D3) metabolism on cellular responsiveness to 1,25-D3. Eighteen hours of treatment with 1,25-dihydroxy-[26,27-methyl-3H]vitamin D3 (1,25-[3H]D3) increased total 1,25-D3 receptors (VDR) from 60 to 170 fmol mg/protein. In cells treated with both 1,25-[3H]D3 and ketoconazole, up-regulation of VDR was increased by 40% over that observed with cells receiving 1,25-[3H]D3 alone. Ketoconazole alone had no agonistic activity. Treatment of cells with 1 nM 1,25-[3H]D3 plus increasing doses of ketoconazole (0-30 microM) resulted in a dose-dependent increase in occupied VDR and total VDR. This up-regulation was associated with reduced 1,25-[3H]D3 catabolism. 1,25-[3H]D3-induced up-regulation of VDR typically peaked at 14 h and declined thereafter. Ketoconazole lengthened the time to reach peak VDR up-regulation to 20 h. The ability of ketoconazole to increase cell responsiveness (VDR up-regulation) was the result of both increased and prolonged occupancy of VDR by 1,25-[3H]D3. The t1/2 of occupied VDR was 2 h in the absence of ketoconazole and greater than 7 h when ketoconazole was present. Collectively, these results suggested that self-induced catabolism of 1,25-D3 is an important regulator of VDR occupancy and therefore cellular responsiveness to hormone. These data also demonstrate the usefulness of ketoconazole as an inhibitor of vitamin D hydroxylases in intact cells.  相似文献   

6.
To investigate the effects of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on pancreatic B and D cell function in normal rats, 1 microgram of 1,25(OH)2D3 was administered intravenously 20 hours before the experiment. The plasma 1,25(OH)2D3 and calcium concentrations were significantly elevated, and plasma insulin levels also increased in 1,25(OH)2D3-administered rats compared with controls. Glucose-induced insulin and somatostatin release from the isolated pancreas perfused with lower calcium, however, was the same between the 1,25(OH)2D3-administered group and the controls. On the other hand, when the isolated pancreas was perfused with higher calcium, the glucose-induced insulin release was significantly increased in the 1,25(OH)2D3-administered group, while no significant difference in somatostatin release was observed in any group. These results suggest that the sensitivity of pancreatic B cells to glucose perfused with more calcium may increase when 1,25(OH)2D3 has been previously administered. In addition, 1,25(OH)2D3 does not seem to affect the somatostatin release from the pancreatic D cells.  相似文献   

7.
8.
9.
Exposure of the 60 kDa chick intestinal 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) receptor to carboxypeptidase A resulted in a time dependent decrease in receptor hormone-binding; after 2 h, there was no detectable macro-molecular-bound 1,25(OH)2[3H]D3. Upon DNA-cellulose chromatography of this preparation, a 56 kDa protein adsorbed to the column and eluted as a function of para-chloromercuribenzene sulfonate (a sulfhydryl blocking reagent). The 56 kDa fragment was detected by anti-receptor monoclonal antibodies via immunoblot technology. The 1,25(OH)2[3H]D3 eluted in the fall through fractions of the column. Thus, cleavage of up to 40 amino acids from the carboxy-terminus of the 1,25(OH)2D3 receptor results in a protein which no longer binds to hormone, but retains its capacity to interact with DNA-cellulose and monoclonal antibody. These results represent novel biochemical evidence that allows us to orient the 1,25(OH)2D3 binding domain near the C-terminus of the receptor.  相似文献   

10.
Sucrose density gradient analysis was utilized to determine whether 1,25-dihydroxyvitamin D3 receptors are present in the rat uterus. A distinct 3.6S [3H]1,25-dihydroxyvitamin D3 binding component was observed in chromatin extracts of estrogen-primed, ovariectomized rat uteri. Binding to this putative 1,25-dihydroxyvitamin D3 receptor was inhibited by excess 1,25-dihydroxyvitamin D3, but not by 25-hydroxyvitamin D3, estradiol-17β, promegestone, or cortisol. Low levels of the receptor seemed to be present in the unprimed uterus. Estrogen injection significantly increased the number of 1,25-dihydroxyvitamin D3 receptors and progesterone co-administration reduced, but did not abolish, this effect.  相似文献   

11.
The nature of the 1,25-dihydroxyvitamin D3 receptor from chick intestine was examined in regard to its response to sodium molybdate. Sodium molybdate (10 mM) stabilized the receptor from crude nuclear extract but not that from the supernatant or cytoplasmic fraction, suggesting the molybdate may act by binding to the DNA binding region of the receptor. At a concentration of 50 mM, sodium molybdate prevented aggregation of the nuclear receptor. This concentration of sodium molybdate also inhibited the receptor from binding to DNA cellulose while the same ionic strength KCl (90 mM) did not. These properties also suggest that molybdate interacts with the DNA binding region. Purification of the receptor using DNA cellulose chromatography has also been improved by using a sodium molybdate gradient (0-0.2 M) instead of the KCl gradient used previously.  相似文献   

12.
In the present study we have examined the developmental changes in the concentration of receptors for calcitriol in high-salt cytosol from the rat testis. Receptors for calcitriol were undetectable (less than 0.4 fmol/mg protein) until day 24, after which there was a rapid increase to reach adult levels (6-8 fmol/mg protein) between day 50-60. The lack of receptors in high-salt cytosol from the immature rat testis is not due to degrading enzymes, since cytosols prepared from the combination of equal volumes of testis homogenates from immature and adult rats had binding levels exactly half of that found in "adult controls". Furthermore, the increase in specific binding of [3H]calcitriol during development is due to an increase in the number of receptor sites, and is not due to a change in the apparent affinity of the receptors (Kd approximately equal to 1 X 10(-11) M at 0 degrees C). These results may explain why we previously were unable to demonstrate calcitriol receptors in cultured Sertoli cells and peritubular cells isolated from 19-day old rats. Furthermore, they indicate that calcitriol may be of minor importance for testicular function in the immature rat. The role of calcitriol in the pubertal and adult testis remains to be established.  相似文献   

13.
It has been reported that vitamin K deficiency in the rat markedly increases the 1,25-dihydroxyvitamin D3 receptor (VDR) binding to DNA and that vitamin K-dependent gamma-carboxylation of endogenous substrates of the intestinal and renal cytosol, also containing VDR, sharply reduced that binding (Sergeev, I.N., and Spirichev, V.B. (1989) Nutr. Res. 9, 725-733). In the present study we have evaluated vitamin K-dependent 14CO2 incorporation to VDR quantitated by immunoprecipitation with anti-VDR monoclonal antibodies. The results obtained strongly suggest that VDR in vitro can undergo gamma-carboxylation in the presence of vitamin K1 and that 15-25% of Glu residues in the VDR are carboxylated in vivo. Taking into account our earlier findings, it is likely that the VDR gamma-carboxylation modulates its binding to DNA.  相似文献   

14.
The structural relationship between several lipids and their respective capacities to inhibit the specific binding of [3H]-1,25 (OH)2 vitamin D3 to chick intestinal cytosol preparations was investigated. The lipids investigated were: synthetic 3-sn-phosphatidylcholine and 3-sn-phosphatidic acid, egg yolk 3-sn-phosphatidylcholine and its corresponding phosphatidic acid, and free unsaturated fatty acids and their esters. The results indicate that at least three structural elements in the phospholipid molecule appear to be important; these are: 1) the structure of the fatty acid, 2) the anionic properties of the phospholipid phosphate group, and 3) the glycerol phosphate portion of the molecule. Our data also demonstrate that the position (1 or 2) and the amount (single vs. double) of unsaturated fatty acids in the phospholipid molecule do not play a major role in the receptor-1,25 (OH)2 vitamin D3 interaction. Furthermore, under equilibrium conditions, kinetic and Scatchard analysis suggest that phospholipids or free fatty acids may bind at a site different from the 1,25 (OH)2 vitamin D3 binding site, and therefore inhibit the hormone binding via a noncompetitive conformational change in the receptor molecule. A model for this phospholipid/free fatty acid binding site is proposed.  相似文献   

15.
Serum 1,25-dihydroxyvitamin D3 concentration and renal 25-hydroxyvitamin D 1 alpha-hydroxylase activity were measured in rats fed various levels of calcium, phosphorus and vitamin D3. Both calcium deprivation and phosphorus deprivation greatly increased circulating levels of 1,25-dihydroxyvitamin D3. The circulating level of 1,25-dihydroxyvitamin D3 in rats on a low-calcium diet increased with increasing doses of vitamin D3, whereas it did not change in rats on a low-phosphorus diet given increasing doses of vitamin D3. In concert with these results, the 25-hydroxyvitamin D 1 alpha-hydroxylase activity was markedly increased by vitamin D3 administration to rats on a low-calcium diet, whereas the same treatment of rats on a low-phosphorus diet had no effect and actually suppressed the 1 alpha-hydroxylase in rats fed an adequate-calcium/adequate-phosphorus diet. The administration of 1,25-dihydroxyvitamin D3 to vitamin D-deficient rats on a low-calcium diet also increased the renal 25-hydroxy-vitamin D 1 alpha-hydroxylase activity. These results demonstrate that the regulatory action of 1,25-dihydroxyvitamin D3 on the renal 25-hydroxyvitamin D3 1 alpha-hydroxylase is complex and not simply a suppressant of this system.  相似文献   

16.
Adult rat testis contains a specific, high-affinity, low-capacity binding protein for 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) with properties similar to 1,25-(OH)2D3 receptors in other tissues. The receptor sediments at 3.5 +/- 0.2 S20,w in high-salt sucrose density gradients, but aggregates in low-salt gradients. Binding of 1,25-(OH)2D3 was abolished by trypsin, but not by DNase or RNase. Binding was also heavily reduced by the sulfhydryl alkylating agent, N-ethylmaleimide, and by the mercurial reagent, mersalyl, showing that free, reduced SH-groups are necessary for hormone-binding activity. The receptor shows high affinity for 1,25-(OH)2D3 (Kd = 3 X 10(-11) M), but low capacity (Nmax = 8 fmol/mg protein) and is specific for 1,25-(OH)2D3 (Affinity: 1,25-(OH)2D3 greater than 1,24(R),25-(OH)3D3 greater than 25-OH-D3 greater than 1 alpha-OH-D3 greater than 24(R),25-(OH)2D3 much greater than 17 beta-estradiol, testosterone, dexamethasone, R5020, progesterone). With 0.6 nM [3H]1,25-(OH)2D3 and at 0 degrees C, maximum specific binding was achieved after 4 h, and the occupied receptors were stable for more than 24 h. The dissociation of hormone-receptor complexes was temperature-dependent and very slow at low temperature (t1/2 (0 degrees C) much greater than 48 h). At 0 degrees C, the second order association rate constant and the pseudo-first order dissociation rate constant were 2.7 X 10(7) M-1 min-1 and 2 X 10(-5) min-1, respectively. Receptors for 1,25-(OH)2D3 are present in similar amounts in isolated seminiferous tubules and interstitial tissue of adult rats. No specific binding of [3H]1,25-(OH)2D3 could be detected in cultured immature Sertoli cells, cultured immature peritubular (myoid) cells or crude germ cells.  相似文献   

17.
We have studied the binding of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] to its crude chromatin chick intestinal receptor in the absence or presence of a ten-fold excess of 24R,25-dihydroxyvitamin D3 [24R,25(OH)2D3] for each concentration of [3H]-1,25(OH)2D3 studied. We have found a significant shift to the right in the binding of 1,25(OH)2D3 to its receptor in the presence of this excess of 24R,25(OH)2D3. As a result, the affinity was found to be significantly reduced, the apparent dissociation constants varied from 0.97 +/- 0.09 (n = 5) to 1.36 +/- 0.04 nM (p less than 0.01). This reduction was related to a significant decrease in the positive cooperativity for the apparent Hill coefficient from nH = 1.49 +/- 0.06 to nH = 1.26 +/- 0.06 (p less than 0.03) in the binding of 1,25(OH)2D3 to its receptor. There was no significant change in the capacity of the receptor (189 +/- 11 compared to 200 +/- 9 fmoles/mg protein). These results suggest that the intestinal 1,25(OH)2D3 receptor must also have a binding recognition site for 24R,25(OH)2D3 which is postulated to play a regulatory role in the 1,25(OH)2D3 receptor's ligand binding properties.  相似文献   

18.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) from its precursor, 25-dihydroxyvitamin D(3) (25(OH)D(3)), is catalyzed by the mitochondrial cytochrome P450 enzyme 25-hydroxyvitamin D(3)-1alpha-hydroxylase (1alpha-hydroxylase). It has been generally assumed that 1,25(OH)(2)D(3) inhibits the activity of this enzyme by regulating its expression at the genomic level. We confirmed that 1,25(OH)(2)D(3) reduced the apparent conversion of 25(OH)D(3) to 1,25(OH)(2)D(3) while stimulating the conversion of 1,25(OH)(2)D(3) and 25(OH)D(3) to 1,24,25(OH)(3)D(3) and 24,25(OH)(2)D(3), respectively. However, 1,25(OH)(2)D(3) failed to reduce the abundance of its mRNA or its encoded protein in human keratinocytes. Instead, when catabolism of 1,25(OH)(2)D(3) was blocked with a specific inhibitor of the 25-hydroxyvitamin D(3)-24-hydroxylase (24-hydroxylase) all apparent inhibition of 1alpha-hydroxylase activity by 1,25(OH)(2)D(3) was reversed. Thus, the apparent reduction in 1alpha-hydroxylase activity induced by 1,25(OH)(2)D(3) is due to increased catabolism of both substrate and product by the 24-hydroxylase. We believe this to be a unique mechanism for autoregulation of steroid hormone synthesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号