首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
N W Bruce 《Teratology》1977,16(3):327-331
The uterine artery of one horn of 13 rats was ligated on day 18 of gestation; the remaining horn was used as a control. The effect, four days later, on blood flow to the reproductive tract, was measured with radioactive microspheres and compared to the effect on fetal and placental weights. Fetal survival in the ligated horns, 41 percent, was significantly lower (P less than 0.05) than that in the control horns, 98 percent. Fetal and placental weights of the survivors in the ligated horns, 3.159 +/- 0.133 g (SE) and 450 +/- 18 mg respectively, were similarly lower than those in the control horns, 3.814 +/- 0.111 g and 529 +/- 27 mg respectively. Maternal placental blood flow closely reflected the weight of tissue being supplied and was similar in the ligated and control horns, 129 +/- 21 and 130 +/- 18 ml.min(-1). 100g(-1), respectively. Myometrial blood flow was again similar in the ligated and control horns, 34 +/- 5 and 37 +/- 4 ml.min(-1). 100 g(-1), respectively, and in the ovarian, middle and cervical sections of each horn. These results are compatible with the view that ligation causes only a temporary reduction in uterine blood flow which permanently checks placental and fetal, or placental thus fetal, growth. Blood flow then returns to normal levels compatible with the reduced weights of tissues being supplied.  相似文献   

2.
To determine the critical level of maternal exercise which produces effects on fetal weight and placental diffusing capacity, we measured the relationship between increasing levels of exercise and its effect on the fetus. Hartley guinea pigs with dated pregnancies were exercised on a treadmill (9.7 m/min at a 6.5% gradient) at one of five exercise levels (0, 15, 30, 45, and 60 min/day). We measured placental diffusing capacity for carbon monoxide (DPCO) fetal body and organ weights, placental weight, and maternal body and heart weights near term (63-64 days). Fetal body weight, kidney weight, and placental weight decreased as a function of increasing exercise level, decreasing 13, 13, and 21% respectively at 60 min/day exercise. DPCO1 decreased from a control value of 2.92 +/- 0.23 to 2.33 +/- 0.10 ml. min-1 torr-1 kg fetal wt in the 15 min/day exercise group, 2.17 +/- 0.08 in the 30 min/day group 2.16 +/- 0.11 in the 45 min/day group, and 2.65 +/- 0.31 in the 60 min/day exercise group. The decrease in placental weight along with the decrease in DPCO per kg of fetal weight suggests that with progressive maternal exercise the fetus is compromised by a smaller than normal placenta with less diffusing capacity.  相似文献   

3.
Reductions in fetal plasma concentrations of certain amino acids and reduced amino acid transport in vesicle studies suggest impaired placental amino acid transport in human fetal growth restriction (FGR). In the present study, we tested the hypothesis of an impairment in amino acid transport in the ovine model of hyperthermia-induced FGR by determining transplacental and placental retention and total placental clearance of a branched-chain amino acid (BCAA) analog, the nonmetabolizable neutral amino acid aminocyclopentane-1-carboxylic acid (ACP), in singleton control (C) and FGR pregnancies at 135 days gestation age (dGA; term 147 dGA). At study, based on the severity of the placental dysfunction, FGR fetuses were allocated to severe (sFGR, n = 6) and moderate FGR (mFGR, n = 4) groups. Fetal (C, 3,801.91 +/- 156.83; mFGR, 2,911.33 +/- 181.35; sFGR, 1,795.99 +/- 238.85 g; P < 0.05) and placental weights (C, 414.38 +/- 38.35; mFGR, 306.23 +/- 32.41; sFGR, 165.64 +/- 28.25 g; P < 0.05) were reduced. Transplacental and total placental clearances of ACP per 100 g placenta were significantly reduced in the sFGR but not in the mFGR group, whereas placental retention clearances were unaltered. These data indicate that both entry of ACP into the placenta and movement from the placenta into fetal circulation are impaired in severe ovine FGR and support the hypothesis of impaired placental BCAA transport in severe human FGR.  相似文献   

4.
PGE2 (2 micrograms/min) has been infused for 1h into the fetal jugular vein of 8 chronically catheterized fetuses on 13 occasions from 112 to 138 days gestation. Infusion of ethanol vehicle alone was conducted in fetuses from 111-139 days gestation. PGE2 administration produced a significant increase in fetal plasma cortisol after 30 min. No significant change was observed in fetal plasma prolactin concentration. Fetal plasma ACTH concentration was significantly elevated above resting concentration after 30 min. of PGE2 infusion. Metabolic clearance rate of PGE2 was 860 ml/min or 350 ml/kg/min. Intrauterine pressure was not changes during the infusion at any gestational age.  相似文献   

5.
During depopulation of a breeding unit within Swine Graphics Enterprises, extensive data were collected and used to examine relationships among ovulation rate, the pattern of prenatal loss, and placental and fetal development. Groups of Large White x Landrace females (n=447) were slaughtered between day 20-30, 50-55 or 85-90 of gestation, with approximately equal numbers of animals representing gilts and parity 1 (G/P1), parity 2-3 (P2/3), and parity >4 (P4+). Ovulation rate and embryo number were recorded for all animals. With the exception of the G/P1 animals, embryonic and placental weight were recorded for four conceptuses per sow on day 20-30; on day 85-90 two conceptuses per sow were dissected to determine placental and fetal development. Ovulation rate (22.7 +/- 0.2 overall) was higher (P <0.05) in P2/3 (23.6 +/- 0.4) and P4+ (24.7 +/- 0.4) than in G/P1 (20.2 +/- 0.5). Embryonic/fetal survival was 61.8 +/- 2.1% at day 20-30, 50.2 +/- 2.2% at day 50-55 and 48.7 +/- 1.9% at day 85-90 and the number of surviving conceptuses was higher (P <0.05) in the P2/3 sows than in other parity groups. There was no relationship between ovulation rate and number of live embryos at day 20-30 or 85-90. At day 20-30 and 85-90, embryo weight was positively correlated with placental weight, but neither placental weight nor embryonic/fetal weight was correlated with number of viable embryos. A parity by gestation day interaction existed; placental weight for P4+ (3.42 +/- 0.43 g) was less than for P2/3 (7.55 +/- 0.40 g) at day 20-30 (P <0.0001), whereas at day 85-90, placental weight of P2/3 (209.5 +/- 8.5 g) was less (P=0.05) than both G/P1 (235.7 +/- 7.3g) and P4+ (235.4 +/- 7.1 g). At day 85-90, fetal brain weight, relative to body weight (R2=0.61, P <0.0001), and fetal brain:liver weight ratio (R2=0.35; P <0.0001) were negatively related to mean fetal weight, and brain:liver weight ratio showed a trend towards a relationship with number of viable fetuses (P=0.08). Parity also affected brain:liver weight ratio (P=0.01). Clearly, high ovulation rates in the higher parity sows have the potential to cause excessive in utero crowding of conceptuses in the post-implantation period. Even with moderate crowding, increased brain:liver weight ratios in smaller fetuses in late gestation indicate that uterine capacity impacts fetal development as well as the number of surviving fetuses.  相似文献   

6.
Mean fetal and placental weights were, respectively, 0.018 and 0.051 g on Day 13 and 0.376 and 0.250 g on Day 17. Fetal and placental weights within litters were weakly correlated on Day 13 (r = 0.322) but not on Day 17. Litter size was negatively correlated with placental weight on Day 17 (r = -0.485) but not with fetal weight. Male fetuses were heavier than female fetuses on Day 17 but their placentas were not significantly different. Fetuses and placentas were lighter at the ovarian end of the uterine horn on both days examined, revealing an early influence of local environmental factors on their growth.  相似文献   

7.
Fetuses from gilts with estrogen receptor (ESR) genotype AA (AA-AA and AA-AB) and BB (BB-AB and BB-BB) were compared at Day 35/36 of pregnancy, to examine whether fetal ESR genotype nested within maternal ESR genotype would affect fetal traits. Furthermore the relation of fetal body weight and fetal heart weight to various placental traits were evaluated relative to ESR genotype. Fetal and placental weight and length, and implantation surface area were not affected by fetal ESR genotype nested within maternal ESR genotype. Fetal weight was related similarly to placental length, placental weight, and implantation surface area: up to a certain threshold value (40 cm, 40 g and 250 cm2, respectively), an increase in the trait was associated with an increase of fetal weight. Thereafter, fetal weight did not change anymore. Thus, at Day 35/36 of pregnancy porcine fetuses seem to have a maximum growth potential. The percentage of AA-AA fetuses that had not reached this maximum growth potential was larger than of the other three genotype combinations studied, and therefore a higher subsequent fetal mortality may be expected in this group. Hearts of AA-AB fetuses were significantly heavier than those of BB-AB and BB-BB fetuses and tended to be heavier than those of AA-AA fetuses. The reason for this hypertrophy is unclear, but might be related to a difference in placental vascularity. Heart weight of fetuses from BB gilts increased with fetal weight, while heart weights of fetuses from AA gilts did not. Heart weight increased with an increase of placental length and implantation surface area up to 51 cm and 437 cm2, respectively, and thereafter decreased again. For BB-AB fetuses a similar relation was found between heart weight and placental weight, while heart weight of the other three genotype combinations remained unaffected as placental weight increased. The fetus and placenta are continuously changing during early pregnancy, therefore different mechanisms may change the demands for cardiac output. However, keeping in mind that placental size and blood volume are relatively large, placental vascularity and vascular development may play a major role. Therefore, further research on heart size, placental size and vascularity, relative to ESR genotype, is recommended.  相似文献   

8.
PGE2 (2 μg/min) has been infused for 1h into the fetal jugular vein of 8 chronically catheterized fetuses on 13 occasions from 112 to 138 days gestation. Infusion of ethanol vehicle alone was conducted in fetuses from 111 – 139 days gestation. PGE2 administration produced a significant increase in fetal plasma cortisol after 30 min. No significant change was observed in fetal plasma prolactin concentration. Fetal plasma ACTH concentration was significantly elevated above resting concentration after 30 min. of PGE2 infusion. Metabolic clearance rate of PGE2 was 860 ml/min or 350 ml/kg/min. Intrauterine pressure was not changed during the infusion at any gestational age.  相似文献   

9.
The development of secondary wool follicles in single fetal sheep subjected to hypobaric hypoxaemia was studied. One group of pregnant ewes were exposed to 57.1 kPa from 30 to 135 days gestation. Fetal weights (mean +/- s.d.) for the hypoxaemic group (3.35 +/- 0.53 kg; n = 4) were significantly lower than for the controls (4.19 +/- 0.31 kg; n = 3, P less than 0.05). At 110 days gestation, a second group had arterial and venous catheters surgically implanted into the ewe and fetus and skin samples were taken from the fetus. At 120 days gestation (10 days after surgery) these animals were subjected to hypoxia for 20 days, at a level to maintain fetal carotid pO2 between 1.47 and 1.87 kPa (mean carotid pO2 for the control fetuses was 2.84 +/- 0.28 kPa). Fetal weight at 140 days was not significantly different in the hypoxaemic and control groups. Morphometric analysis revealed that the secondary to primary follicle ratio (S:P) was less in both groups of hypoxaemic fetuses than in their respective controls. Although hypoxia for 20 days did not significantly alter fetal weight, it produced a low S:P ratio similar to the longer-term hypoxaemic animals. It is concluded that hypoxia has a marked effect in reducing the initiation of secondary follicles in the last third of gestation.  相似文献   

10.
The effect of prolonged hypobaric hypoxia on growth of fetal sheep   总被引:1,自引:0,他引:1  
The effect of prolonged hypobaric hypoxia on fetal sheep was studied. Pregnant ewes were subjected to an atmospheric pressure of 429 torr from 30 days to 135 days gestation (long-term study). Average fetal weight for the hypoxaemic group (3.35 +/- 0.53 kg; n = 4; mean +/- SD) was significantly lower than for the controls (4.23 +/- 0.29 kg; n = 7; P less than 0.05). A short-term study was undertaken with fetuses (n = 8) which were catheterized at 110 days gestation and whose dams were subjected to hypobaric hypoxia from 120 to 141 days gestation. The mean carotid PO2 of fetuses in the hypoxic group was 12.7 +/- 0.7 torr compared to 22.7 +/- 0.7 torr for the control group (n = 9; P less than 0.001) throughout the period of treatment. Fetal arterial oxygen content fell from 6.5 +/- 1.7 to 4.9 +/- 0.4 ml/dl (P less than 0.05), but rose to control values after 7 days due to an increase in fetal haemoglobin concentration (9.6 +/- 1.1 to 13.0 +/- 1.9 g/dl, P less than 0.001) and packed cell volume (33 +/- 3 to 45 +/- 4%, P less than 0.001). In the hypoxaemic fetuses, pH fell initially from 7.34 +/- 0.02 to 7.28 +/- 0.03 (P less than 0.05) and then recovered to 7.32 +/- 0.03 within 24 h. Mean fetal weight of the short-term hypoxic group was 3.46 +/- 0.72 kg compared to 4.15 +/- 0.51 for the control group (P less than 0.05). Both long- and short-term hypoxia produced a similar reduction in fetal body weight. The adrenal glands were significantly heavier in the hypoxic fetuses than in controls. Placental weight was not effected by hypoxia, but exposure from 30 days gestation reduced the average size of cotyledons (P less than 0.05). It is concluded that the fetal sheep increases its ability to acquire and transport oxygen in response to chronic hypoxia, but this compensation is not sufficient to prevent growth retardation or changes to the pattern of tissue growth.  相似文献   

11.
Placental transfer of dexamethasone in near-term sheep   总被引:2,自引:0,他引:2  
The placental transfer of 3H-dexamethasone was studied in six near-term sheep. The placental clearance of 3H-dexamethasone was 18.8 +/- 3.5 ml/min per kg of fetal weight. The clearance of dexamethasone by the fetal tissues was 9.3 +/- w.5 ml/min per kg. The maximum placental clearance was 285 +/- 24 ml/min and the degree of diffusion limitation to the placental transfer of dexamethasone was 78 +/- 4%. The placental transfer of dexamethasone is therefore limited primarily by the nature of the placental barrier.  相似文献   

12.
Fetal sensitivity to insulin and glucose was investigated during fetal hyperinsulinemic-euglycemic (HI-euG, n = 18) and hyperglycemic-euinsulinemic (HG-euI, n = 12) clamps. Singleton bearing adolescent ewes were fed high (H) or control (C) nutrient intakes to induce compromised or normal placental/fetal size, respectively. Catheters were inserted in the umbilical vein (v), fetal artery, (a) and veins, and studies were conducted between day 126 and 133 of gestation. Umbilical blood flow (UmBF) was determined by the steady-state transplacental diffusion technique using (3)H(2)O, and glucose fluxes were quantified by the Fick principle. For the HI-euG study, fetal glucose utilization was measured at spontaneously occurring fetal insulin concentrations and two additional higher levels, whereas fetal glucose was clamped at the initial baseline level. For the HG-euI study, fetal insulin was suppressed by somatostatin infusion, and fetal glucose utilization was determined at baseline (before somatostatin) glucose concentrations, and at 150 and 200% of this value. Placentome weight (219 vs. 395 g), fetal weight (2,965 vs. 4,373 g), and UmBF (519 vs. 794 ml/min) were lower (P < 0.001) in H than in C groups. Relative to control fetuses, glucose extraction (G[v - a]/G[v] x 100) in the nonperturbed state was higher (21.7 vs. 15.9%) in growth-restricted fetuses despite lower glucose (0.78 vs. 1.05 micromol/ml) and insulin (8.5 vs. 16.9 microU/ml) concentrations (all P < 0.001). During the HI-euG study, total fetal glucose utilization rate increased in response to higher insulin concentrations (65 and 64% in H and C groups). Similarly during the HG-euI study, a twofold increase in glucose supply increased fetal glucose utilization by 41 and 44% in H and C groups, respectively. Throughout both studies, absolute total fetal glucose utilization rates were reduced in H vs. C groups (P < 0.01) but were similar when expressed per kilogram fetus (HI-euG: 34.7, 49.5, and 57.5 in H vs. 34.7, 51.2, and 56.1 micromol.min(-1).kg(-1) in C, HG-euI: 28.7, 35.7, and 40.8 in H vs. 32.9, 34.5, and 43.8 micromol.min(-1).kg(-1) in C). These normal body weight-specific metabolic responses to short-term experimental increases in plasma insulin and glucose in response to chronic IUGR indicate maintained mechanisms of insulin action and glucose uptake/utilization capacity, which, if persistent, might predispose such IUGR offspring to excessive energy deposition in later life.  相似文献   

13.
Fetal decapitation in utero has enabled us to study the role of fetal pituitary hormones in the development of the fetal testis. Testes from males decapitated near 80 days of gestational life and later delivered at 150 days were smaller than normal and about one-tenth the normal weight. The size of the seminiferous tubules was similar in both groups; however, the number of Leydig cells seemed reduced. In addition, the Leydig cells of the experimental group contained smaller mitochondria with reduced tubular cristae, fewer lipid droplets, and reduced agranular endoplasmic reticulum. Androgen production was inhibited. Measured by radioimmunoassay, the testosterone level in the umbilical vein was 329 +/- 82 pg/ml in six decapitates fetuses, 412 +/- 62 pg/ml in ten normal fetuses. The level in the umbilical artery was 328 +/- 56 pg/ml in five decapitated fetuses, 658 +/- 140 pg/ml in normal fetuses. These studies suggest that chronic deprivation of fetal pituitary hormones inhibits the growth and development of the testis in general and of the Leydig cells in particular.  相似文献   

14.
It is difficult, if not impossible, to measure the placental transfer of glucose directly because of placental glucose consumption and the low A-V glucose difference across the sheep placenta. We have approached the problem of quantifying placental hexose transfer by using a nonmetabolized glucose analogue (3-O-methyl glucose) which shares the glucose transport system. We have measured the clearance by using a multisample technique permitting least squares linear computing to avoid the errors implicit in the Fick principle. The placental clearance of 3-O-methyl glucose was measured in the control condition and after the administration of insulin to the fetal circulation. A glucose clamp technique was used to maintain constant transplacental glucose concentrations throughout the duration of the experiment. A control series was performed in which the only intervention was the infusion of normal saline. In these experiments the maternal and fetal glucose concentrations remained constant as did the volume of distribution of 3-O-methyl glucose in the fetus. The maternal insulin concentration remained constant and fetal insulin concentration changed from 11 +/- 2 microU/ml to 355 +/- 51 microU/ml (P less than 0.01). In the face of this large increase in fetal plasma insulin, there was no change in the placental clearance of 3-O-methyl glucose. In the control condition the clearance was 14.1 +/- 1.0 ml/min per kg and this was 13.8 +/- 1.0 ml/min per kg in the high insulin condition. Fetal insulin may change placental glucose flux by decreasing fetal plasma glucose concentrations but does not do so by changing the activity of the glucose transport system.  相似文献   

15.
Placental restriction (PR) of fetal growth results in a low birth weight and an increased visceral fat mass in postnatal life. We investigated whether PR alters expression of genes that regulate adipogenesis [IGF1, IGF1 receptor (IGF1R), IGF2, IGF2R, proliferator-activated receptor-gamma, retinoid-X-receptor-alpha], adipocyte metabolism (lipoprotein lipase, G3PDH, GAPDH) and adipokine signaling (leptin, adiponectin) in visceral adipose tissue before birth. PR was induced by removal of the majority of endometrial caruncles in nonpregnant ewes before mating. Fetal blood samples were collected from 116 days gestation, and perirenal visceral adipose tissue (PAT) was collected from PR and control fetuses at 145 days. PAT gene expression was measured by quantitative RT-PCR. PR fetuses had a lower weight (PR 2.90 +/- 0.32 kg; control, 5.12 +/- 0.24 kg; P < 0.0001), mean gestational arterial Po(2) (P < 0.0001), plasma glucose (P < 0.01), and insulin concentrations (P < 0.02), than controls. The expression of IGF1 mRNA in PAT was lower in the PR fetuses (PR, 0.332 +/- 0.063; control, 0.741 +/- 0.083; P < 0.01). Leptin mRNA expression in PAT was also lower in PR fetuses (PR, 0.077 +/- 0.009; control, 0.115 +/- 0.013; P < 0.05), although there was no difference in the expression of other adipokine or adipogenic genes in PAT between PR and control fetuses. Thus, restriction of placental and hence, fetal substrate supply results in decreased IGF1 and leptin expression in fetal visceral adipose tissue, which may alter the functional development of the perirenal fat depot and contribute to altered leptin signaling in the growth-restricted newborn and the subsequent emergence of an increased visceral adiposity.  相似文献   

16.
Fetal intravenous glucose challenge test (0.75 g/kg of estimated fetal weight) was performed at 26-33 weeks gestation in 9 patients undergoing fetal blood sampling (FBS) by ultrasound guided needling from the umbilical vein. The indication for FBS was rapid karyotyping for fetal malformations in 5 (control group) and severe intrauterine growth retardation in the remaining 4 (IUGR group). Fetal blood samples were taken before the glucose infusion and after 1, 3, 5, 10 and 15 min; glucose and insulin were assayed on each occasion and acid-base balance at 0 and 5 min. Basal fetal pO2, pH, glucose and insulin were lower in the IUGR group than in controls. Following the glucose challenge, fetal glucose levels were similar in the two groups, but in the IUGR group the latter part of the glucose curve was characterized by a slower and delayed return to basal levels. In control fetuses the insulin response following the glucose challenge peaked at 3 min while in IUGR no change in insulin concentration was detected. Fetal pO2 did not change in either group; the median change in fetal pH was significantly different between the two groups (controls: +0.01; IUGR: -0.04; P less than 0.05) and there was a significant correlation between basal pO2 and the change in fetal pH (r = 0.79) (P less than 0.02). These results support the concept of a low energy state in IUGR. Fetal glucose supplementation in IUGR is unlikely to be of benefit and may even exacerbate underlying acidosis.  相似文献   

17.
Fetal volume control is driven by an equilibrium between fetal and maternal hydrostatic and oncotic pressures in the placenta. Renal contributions to blood volume regulation are minor because the fetal kidneys cannot excrete fluid from the fetal compartment. We hypothesized that an increase in fetal plasma protein would lead to an increase in plasma oncotic pressure, resulting in an increase in fetal arterial and venous pressures and decreased angiotensin levels. Plasma or lactated Ringer solution was infused into each of five twin fetuses. After 7 days, fetal protein concentration was 71.2 +/- 4.2 g/l in the plasma-infused fetuses compared with 35.7 +/- 6.3 g/l in the lactated Ringer-solution-infused fetuses. Arterial pressure was 68.0 +/- 3.6 compared with 43.4 +/- 1.9 mmHg in the lactated Ringer solution-infused fetuses (P < 0.0003), whereas venous pressure was 4.8 +/- 0.3 mmHg in the plasma-infused fetuses compared with 3.3 +/- 0.4 mmHg in the lactated Ringer solution-infused fetuses (P < 0.036). Six fetuses were studied on days 0, 7, and 14 of plasma protein infusion. Fetal protein concentration increased from 31.1 +/- 1.5 to 84.8 +/- 3.8 g/l after 14 days (P < 0.01), and arterial pressure increased from 43.1 +/- 1.8 to 69.1 +/- 4.1 mmHg (P < 0.01). Venous pressure increased from 3.0 +/- 0.4 to 6.2 +/- 1.3 mmHg (P < 0.05). Fetal heart rate did not change. Angiotensin II concentration decreased, from 24.6 +/- 5.6 to 2.9 +/- 1.3 pg/l, after 14 days (P < 0.01). Fetal plasma infusions resulted in fetal arterial and venous hypertensions that could not be corrected by reductions in angiotensin II levels.  相似文献   

18.
The objective of the current study was to develop an ovine animal model for consistent study of uterine blood flow (UBF) changes during synchronized ovarian cycles regardless of season. Sheep were surgically bilaterally instrumented with uterine artery blood flow transducers and 5-7 days later implanted with a vaginal progesterone (P(4))-controlled internal drug-releasing device (CIDR; 0.3 g) for 7 days. On Day 6 of P(4), sheep were given two prostaglandin F(2 alpha) injections (7.5 mg i.m. 4 h apart). At CIDR removal, Experimental Day 0, zero (n = 9), 500 IU (n = 8), or 1000 IU (n = 7) eCG was injected i.m.; UBF was monitored continuously for 55-75 h. Jugular blood was sampled every 8 h to evaluate levels of P(4), estradiol-17 beta (E(2)beta) and luteinizing hormone (LH). The inhibitor of nitric oxide synthase, L-nitro-arginine methyl ester (L-NAME) was infused in a stepwise fashion unilaterally into one uterine artery at 48-50 h after 500 IU eCG and the effects on UBF were examined (n = 7). The zero-eCG group gradually increased UBF from a baseline of 17.4 +/- 3.9 to 80.5 +/- 1.1 ml/min. The 500-IU-eCG group increased UBF between 10 and 15 h from a baseline of 11 +/- 3.3 to 83.3 +/- 1.0 ml/min, whereas UBF for the 1000-IU-eCG group was higher (100.1 +/- 1.7 ml/min) than that seen in either of the other groups. Plasma P(4) fell to baseline within 8 h of CIDR removal, while E(2)beta rose gradually in association with elevations in UBF. LH surges occurred between 32 and 56 h after CIDR removal and the LH surge occurred earlier in the 1000-IU-eCG group than the other two groups (P < 0.01). L-NAME infusion dose dependently reduced maximum levels of UBF ipsilaterally by 54.6% +/- 6.2%, but contralaterally only by 27.4% +/- 8.5%. Regardless of season, either dose of eCG will result in analogous UBF responses. During the follicular phase, elevations in UBF are in part locally controlled by the de novo production of nitric oxide.  相似文献   

19.
To test the hypothesis that coronary flow and coronary flow reserve are developmentally regulated, we used fluorescent microspheres to investigate the effects of acute (6 h) pulmonary artery banding (PAB) on baseline and adenosine-enhanced right (RV) and left ventricular (LV) blood flow in two groups of twin ovine fetuses (100 and 128 days of gestation, term 145 days, n = 6 fetuses/group). Within each group, one fetus underwent PAB to constrict the main pulmonary artery diameter by 50%, and the other twin served as a nonbanded control. Physiological measurements were made 6 h after the surgery was completed; tissues were then harvested for analysis of selected genes that may be involved in the early phase of coronary vascular remodeling. Within each age group, arterial blood gas values, heart rate, and mean arterial blood pressure were similar between control and PAB fetuses. Baseline endocardial blood flow in both ventricles was greater in 100 than 128-day fetuses (RV: 341 +/- 20 vs. 230 +/- 17 ml*min(-1)*100 g(-1); LV: 258 +/- 18 vs. 172 +/- 23 ml*min(-1)*100 g(-1), both P < 0.05). In both age groups, RV and LV endocardial blood flows increased significantly in control animals during adenosine infusion and were greater in PAB compared with control fetuses. After PAB, adenosine further increased RV blood flow in 128-day fetuses (from 416 +/- 30 to 598 +/- 33 ml*min(-1)*g(-1), P < 0.05) but did not enhance blood flow in 100-day animals (490 +/- 59 to 545 +/- 42 ml*min(-1)*100 g(-1), P > 0.2). RV vascular endothelial growth factor and Flk-1 mRNA levels were increased relative to controls (P < 0.05) in 128 but not 100-day PAB fetuses. We conclude that in the ovine fetus, developmentally related differences exist in 1) baseline myocardial blood flows, 2) the adaptive response of myocardial blood flow to acute systolic pressure load, and 3) the responses of selected genes involved in vasculogenesis to increased load in the fetal myocardium.  相似文献   

20.
The influence of relative maternal undernutrition on growth, endocrinology, and metabolic status in the adolescent ewe and her fetus were investigated at Days 90 and 130 of gestation. Singleton pregnancies to a single sire were established, and thereafter ewes were offered an optimal control (C; n = 14) or low (L [0.7 x C]; n = 21) dietary intake. Seven ewes receiving the L intake were switched to the C intake on Day 90 of gestation (L-C). At Day 90, live weight and adiposity score were reduced (P < 0.001) in L versus C dams. Plasma insulin and IGF1 concentrations were decreased (P < 0.02), whereas glucose concentrations were preserved in L relative to C intake dams. Fetal and placental mass was independent of maternal nutrition at this stage. By Day 130 of gestation, when compared to C and L-C dams, maternal adiposity was further depleted in L intake dams; concentrations of insulin, IGF1, and glucose were reduced; and nonesterified fatty acids increased. At Day 130, placental mass remained independent of maternal nutrition, but body weight was reduced (P < 0.01) in L compared with C fetuses (3555 g vs. 4273 g). Body weight was intermediate (3836 g) in L-C fetuses. Plasma glucose (P < 0.03), insulin (P < 0.07), and total liver glycogen content (P < 0.04) were attenuated in L fetuses. Fetal carcass analyses revealed absolute reductions (P < 0.05) in dry matter, crude protein, and fat, and a relative (g/kg) increase in carcass ash (P < 0.01) in L compared with C fetuses. Thus, limiting maternal intake during adolescent pregnancy gradually depleted maternal body reserves, impaired fetal nutrient supply, and slowed fetal soft tissue growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号