首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the mechanism by which cGMP contributes to the vasodilator response to nitric oxide (NO) in rat middle cerebral arteries (MCA). Administration of a NO donor, diethylaminodiazen-1-ium-1,2-dioate (DEA-NONOate), or 8-bromo-cGMP (8-BrcGMP) increased the diameter of serotonin-preconstricted MCA by 79 +/- 3%. The response to DEA-NONOate, but not 8-BrcGMP, was attenuated by iberiotoxin (10(-7) M) or a 80 mM high-K(+) media, suggesting that activation of K(+) channels contributes to the vasodilator response to NO but not 8-BrcGMP. The effects of NO and cGMP on the vasoconstrictor response to Ca(2+) were also studied in MCA that were permeabilized with alpha-toxin and ionomycin. Elevations in bath Ca(2+) from 10(-8) to 10(-5) M decreased the diameter of permeabilized MCA by 76 +/- 5%. DEA-NONOate (10(-6) M) and 8-BrcGMP (10(-4) M) blunted this response by 60%. Inhibition of guanylyl cyclase with 1H-[1,2,4]oxadiazole[4,3-a] quinoxalin-1-one (10(-5) M) blocked the inhibitory effect of the NO donor, but not 8-BrcGMP, on Ca(2+)-induced vasoconstriction. 8-BrcGMP (10(-4) M) had no effect on intracellular Ca(2+) concentration ([Ca(2+)](i)) in control, serotonin-stimulated, or alpha-toxin- and ionomycin-permeabilized vascular smooth muscle cells isolated from the MCA. These results indicate that the vasodilator response to NO in rat MCA is mediated by activation of Ca(2+)-activated K(+) channels via a cGMP-independent pathway and that cGMP also contributes to the vasodilator response to NO by decreasing the contractile response to elevations in [Ca(2+)](i).  相似文献   

2.
Recent studies have indicated that 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to the fall in cerebral blood flow (CBF) after subarachnoid hemorrhage (SAH), but the factors that stimulate the production of 20-HETE are unknown. This study examines the role of vasoactive factors released by clotting blood vs. the scavenging of nitric oxide (NO) by hemoglobin (Hb) in the fall in CBF after SAH. Intracisternal (icv) injection of blood produced a greater and more prolonged (120 vs. 30 min) decrease in CBF than that produced by a 4% solution of Hb. Pretreating rats with N(omega)-nitro-l-arginine methyl ester (l-NAME; 10 mg/kg iv) to block the synthesis of NO had no effect on the fall in CBF produced by an icv injection of blood. l-NAME enhanced rather than attenuated the fall in CBF produced by an icv injection of Hb. Blockade of the synthesis of 20-HETE with TS-011 (0.1 mg/kg iv) prevented the sustained fall in CBF produced by an icv injection of blood and the transient vasoconstrictor response to Hb. Hb (0.1%) reduced the diameter of the basilar artery (BA) of rats in vitro by 10 +/- 2%. This response was reversed by TS-011 (100 nM). Pretreatment of vessels with l-NAME (300 muM) reduced the diameter of BA and blocked the subsequent vasoconstrictor response to the addition of Hb to the bath. TS-011 returned the diameter of vessels exposed to l-NAME and Hb to that of control. These results suggest that the fall in CBF after SAH is largely due to the release of vasoactive factors by clotting blood rather than the scavenging of NO by Hb and that 20-HETE contributes the vasoconstrictor response of cerebral vessels to both Hb and blood.  相似文献   

3.
The cerebrovascular response to decreases in hematocrit and viscosity depends on accompanying changes in arterial O2 content. This study examines whether 1) the arteriolar dilation seen after exchange transfusion with a 5% albumin solution can be reduced by the K(ATP) channel antagonist glibenclamide (known to inhibit hypoxic dilation), and 2) the arteriolar constriction seen after exchange transfusion with a cell-free hemoglobin polymer to improve O2-carrying capacity can be blocked by inhibitors of the synthesis or vasoconstrictor actions of 20-HETE. In anesthetized rats, decreasing hematocrit by one-third with albumin exchange transfusion dilated pial arterioles (14 +/- 2%; SD), whereas superfusion of the surface of the brain with 10 muM glibenclamide blocked this response (-10 +/- 7%). Exchange transfusion with polymeric hemoglobin decreased the diameter of pial arterioles by 20 +/- 3% without altering arterial pressure. This constrictor response was attenuated by superfusing the surface of the brain with a 20-HETE antagonist, WIT-002 (10 microM; -5 +/- 1%), and was blocked by two chemically dissimilar selective inhibitors of the synthesis of 20-HETE, DDMS (50 microM; 0 +/- 4%) and HET-0016 (1 microM; +6 +/- 4%). The constrictor response to hemoglobin transfusion was not blocked by an inhibitor of nitric oxide (NO) synthase, and the inhibition of the constrictor response by DDMS was not altered by coadministration of the NO synthase inhibitor. We conclude 1) that activation of K(ATP) channels contributes to pial arteriolar dilation during anemia, whereas 2) constriction to polymeric hemoglobin transfusion at reduced hematocrit represents a regulatory response that limits increased O2 transport and that is mediated by increased formation of 20-HETE, rather than by NO scavenging.  相似文献   

4.
Nitric oxide (NO) plays an important role in the control of vascular tone. NO donors have therapeutic use and the most used NO donors, nitroglycerin and sodium nitroprusside have problems in their use. Thus, new NO donors have been synthesized to minimize these undesirable effects. Nytrosil ruthenium complexes have been studied as a new class of NO donors. trans-[RuCl([15]aneN(4))NO](2+), induces vasorelaxation only in presence of reducing agent. In this study, we characterized the mechanisms of vasorelaxation of trans-[RuCl([15]aneN(4))NO](2+) in denuded rat aorta and identified which NO forms are involved in this relaxation. We also evaluated the effect of this NO donor in decreasing the cytosolic Ca(2+) concentration ([Ca(2+)]c) of the vascular smooth muscle cells. Vasorelaxation to trans-[RuCl([15]aneN(4))NO](2+) (E(max): 101.8 +/- 2.3%, pEC(50): 5.03 +/- 0.15) was almost abolished in the presence of the NO* scavenger hydroxocobalamin (E(max): 4.0 +/- 0.4%; P < 0.001) and it was partially inhibited by the NO(-) scavenger L-cysteine (E(max): 79.9 +/- 6.9%, pEC(50): 4.41 +/- 0.06; P < 0.05). The guanylyl cyclase inhibitor ODQ reduced the E(max) (57.7 +/- 4.0%, P < 0.001) and pEC(50) (4.21 +/- 0.42, P < 0.01) and the combination of ODQ and TEA abolished the response to trans-[RuCl([15]aneN(4))NO](2+). The blockade of voltage-dependent (K(v)), ATP-sensitive (K(ATP)), and Ca(2+)-activated (K(Ca) K(+) channels reduced the vasorelaxation induced by trans-[RuCl([15]aneN(4))NO](2+). This compound significantly reduced [Ca(2+)]c (from 100% to 85.9 +/- 3.5%, n = 4). In conclusion, our data demonstrate that this NO donor induces vascular relaxation involving NO* and NO(-) species, that is associated to a decrease in [Ca(2+)]c. The mechanisms of vasorelaxation involve guanylyl cyclase activation, cGMP production and K(+) channels activation.  相似文献   

5.
In enteric synaptosomes of the rat, the role of voltage-dependent Ca(2+) channels in K(+)-induced VIP release and nitric oxide (NO) synthesis was investigated. Basal VIP release was 39 +/- 4 pg/mg, and cofactor-substituted NO synthase activity was 7.0 +/- 0.8 fmol. mg(-1). min(-1). K(+) depolarization (65 mM) stimulated VIP release Ca(2+) dependently (basal, 100%; K(+), 172.2 +/- 16.2%; P < 0.05, n = 5). K(+)-stimulated VIP release was reduced by blockers of the P-type (omega-agatoxin-IVA, 3 x 10(-8) M) and N-type (omega-conotoxin-GVIA, 10(-6) M) Ca(2+) channels by ~50 and 25%, respectively, but not by blockers of the L-type (isradipine, 10(-8) M), Q-type (omega-conotoxin-MVIIC, 10(-6) M), or T-type (Ni(2+), 10(-6) M) Ca(2+) channels. In contrast, NO synthesis was suppressed by omega-agatoxin-IVA, omega-conotoxin-GVIA, and isradipine by ~79, 70, and 70%, respectively, whereas Ni(2+) and omega-conotoxin-MVIIC had no effect. These findings are suggestive of a coupling of depolarization-induced VIP release primarily to the P- and N-type Ca(2+) channels, whereas NO synthesis is presumably dependent on Ca(2+) influx not only via the P- and N- but also via the L-type Ca(2+) channel. In contrast, none of the Ca(2+) channel blockers affected VIP release evoked by exogenous NO, suggesting that NO induces VIP secretion by a different mechanism, presumably involving intracellular Ca(2+) stores.  相似文献   

6.
The aim of this study was to investigate whether apamin-sensitive K(+)channels play a role in the NO induced relaxation of the human pregnant myometrium. Concentration-response curves for sodium nitroprusside (SNP) (10(-9)-10(-4)M) were constructed in the absence and presence of 10(-8)M apamin and 10(-7)M charybdotoxin (CTX). Preincubation with apamin resulted in a significant attenuation of the relaxation caused by SNP, while pre-treatment with CTX insignificantly decreased the SNP induced relaxation. Our findings suggest that apamin-sensitive K(+)channels exist in the human pregnant myometrium and play a role in modulation of the myometrium response to NO donors  相似文献   

7.
Mediator contributions to hypoxic dilation of rat gracilis muscle resistance arteries were determined by measuring dilation, vascular smooth muscle hyperpolarization, and metabolite production after incremental hypoxia. Nitric oxide (NO) synthase inhibition abolished responses to mild hypoxia, whereas COX inhibition impaired responses to more severe hypoxia by 77%. Blocking 20-hydroxyeicosatetraenoic acid (20-HETE) impaired responses to moderate hypoxia. With only NO systems intact, responses were maintained with mild hypoxia (88% normal) mediated via K(Ca) channels. When only COX pathways were intact, responses to moderate-severe hypoxia were largely retained (79% of normal) mediated via K(ATP) channels. Vessel responses to moderate hypoxia were retained with only 20-HETE systems intact mediated via K(Ca) channels. NO production increased 5.6-fold with mild hypoxia; greater hypoxia was without further effect. With increased hypoxia, 20-HETE levels fell to 40% of control values. 6-keto-PGF(1alpha) levels were not altered with mild hypoxia, but increased 4.6-fold with severe hypoxia. These results suggest vascular reactivity to progressive hypoxia represents an integration of NO production (mild hypoxia), PGI(2) production (severe hypoxia), and reduced 20-HETE levels (moderate hypoxia).  相似文献   

8.
We examined whether insulin resistance alters the function of ATP-dependent and Ca(2+)-activated K(+) channels (K(ATP) and K(Ca) channels, respectively) in pressurized isolated middle cerebral arteries (MCAs) from fructose-fed insulin-resistant (IR) and control rats. Blockade of K(Ca) channels with tetraethylammonium chloride (TEA, 2.5 mM) or iberiotoxin (IBTX, 0.1 microM) increased the spontaneously developed tone in control MCAs by 10.5 +/- 1.3% (n = 10) and 13.3 +/- 2.3% (n = 6), respectively. In the IR arteries, TEA induced similar constrictions (8.0 +/- 1.1%, n = 10), but IBTX constricted the IR arteries by only 3.1 +/- 0.9% (n = 8; P < 0.01). Bradykinin (BK)-induced endothelium-mediated relaxation was reduced in IR MCAs. Maximum relaxation to BK (10(-6) M) was 42 +/- 4% in control (n = 9) and 19 +/- 2% in IR (n = 10; P < 0.01) arteries. Pretreatment with TEA, IBTX, or the K(ATP) channel blocker glibenclamide (10 microM) inhibited relaxation to BK in control MCAs but did not alter dilation in IR arteries. Relaxation to the K(ATP) channel opener cromakalim was also diminished in IR MCAs. Maximum relaxation to cromakalim (10(-5) M) was 48 +/- 3% in control (n = 6) and 19 +/- 2% in IR arteries (n = 6; P < 0.01). These findings demonstrate that insulin resistance alters the function of K(ATP) and K(Ca) channels in isolated MCAs and affects the control of resting vascular tone and the mediation of dilator stimuli.  相似文献   

9.
The aim of this work has been to characterize and to compare the responses of the rat ileal longitudinal muscle to the nitric oxide (NO) donors, sodium nitroprusside (SNP) and morpholinosydnonimine hydrochloride (SIN-1). SNP (10(-5)-10(-3) M) caused a contraction followed by a relaxation, both components being concentration-dependent. In contrast, SIN-1 (10(-5)-10(-4) M) caused a relaxation followed by a contraction. Neither the neural blocker tetrodotoxin (TTX) nor atropine were able to change the response to SNP, whereas nifedipine abolished its contractile component. In contrast, TTX and nifedipine diminished both the relaxation and the contraction in response to SIN-1, whereas atropine decreased only the contractile component. The specific guanylate cyclase inhibitor oxadiazolo-quinoxalin-1-one (ODQ) decreased the relaxation induced by SNP but did not modify that caused by SIN-1. The K+ channel blockers charybdotoxin, apamin and tetraethylamonium were unable to modify the response to SNP. In contrast, both TEA and apamin significantly decreased the relaxation induced by SIN- 1. The relaxation resulting from electrical field stimulation (EFS) of enteric nerves in non-adrenergic non-cholinergic conditions is mainly but not exclusively nitrergic, as incubation with the NO synthase inhibitor L-NNA markedly decreases such relaxation. EFS-induced relaxation is also sensitive to ODQ. We conclude that SNP acts mainly on smooth muscle cells activating L-type Ca2+ channels, which result in contraction, and activates the soluble guanylate cyclase, which results in relaxation. In contrast SIN-1 has mixed--neuronal and muscular--effects, the contraction being caused both by acetylcholine release from neurons and by direct activation of L-type Ca2+ channels on smooth muscle cells. SIN-1-induced relaxation is cGMP-independent and it is likely to occur as a consequence of both, neuronal release of inhibitory transmitter(s) and by activation of apamin sensitive K+ channels. The effect of the nitrergic transmitter released from enteric nerves is different from those caused by SIN-1 but shows similarities with those caused by SNP.  相似文献   

10.
The present study was designed to test the hypothesis that in cerebral arteries of the fetus, ATP-sensitive (K(ATP)) and Ca(2+)-activated K(+) channels (K(Ca)) play an important role in the regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) and that this differs significantly from that of the adult. In main branch middle cerebral arteries (MCA) from near-term fetal ( approximately 140 days) and nonpregnant adult sheep, simultaneously we measured norepinephrine (NE)-induced responses of vascular tension and [Ca(2+)](i) in the absence and presence of selective K(+)-channel openers/blockers. In fetal MCA, in a dose-dependent manner, both the K(ATP)-channel opener pinacidil and the K(Ca)-channel opener NS 1619 significantly inhibited NE-induced tension [negative logarithm of the half-maximal inhibitory concentration (pIC(50)) = 5.0 +/- 0.1 and 8.2 +/- 0.1, respectively], with a modest decrease of [Ca(2+)](i). In the adult MCA, in contrast, both pinacidil and NS 1619 produced a significant tension decrease (pIC(50) = 5.1 +/- 0.1 and 7.6 +/- 0.1, respectively) with no change in [Ca(2+)](i). In addition, the K(Ca)-channel blocker iberiotoxin (10(-7) to 10(-6) M) resulted in increased tension and [Ca(2+)](i) in both adult and fetal MCA, although the K(ATP)-channel blocker glibenclamide (10(-7) to 3 x 10(-5) M) failed to do so. Of interest, administration of 10(-7) M iberiotoxin totally eliminated vascular contraction and increase in [Ca(2+)](i) seen in response to 10(-5) M ryanodine. In precontracted fetal cerebral arteries, activation of the K(ATP) and K(Ca) channels significantly decreased both tension and [Ca(2+)](i), suggesting that both K(+) channels play an important role in regulating L-type channel Ca(2+) flux and therefore vascular tone in these vessels. In the adult, K(ATP) and the K(Ca) channels also appear to play an important role in this regard; however, in the adult vessel, activation of these channels with resultant vasorelaxation can occur with no significant change in [Ca(2+)](i). These channels show differing responses to inhibition, e.g., K(Ca)-channel inhibition, resulting in increased tension and [Ca(2+)](i), whereas K(ATP)-channel inhibition showed no such effect. In addition, the K(Ca) channel appears to be coupled to the sarcoplasmic reticulum ryanodine receptor. Thus differences in plasma membrane K(+)-channel activity may account, in part, for the differences in the regulation of contractility of fetal and adult cerebral arteries.  相似文献   

11.
12.
We have used the patch-clamp technique to study the effect of angiotensin II (AII) on the activity of the apical 70 pS K+ channel and used Na(+)-sensitive fluorescent dye (SBFI) to investigate the effect of AII on intracellular Na+ concentration (Na+i) in the thick ascending limb (TAL) of the rat kidney. Addition of 50 pM AII reversibly reduced NPo, a product of channel open probability (Po) and channel number (N), to 40% of the control value and reduced the Na+i by 26%. The AII (50 pM)-induced decrease in channel activity defined by NPo was partially reversed by addition of 5 microM 17-octadecynoic acid (17-ODYA), an agent which blocks the cytochrome P450 monooxygenase. The notion that P450 metabolites of arachidonic acid (AA) may mediate the inhibitory effect of AII was further suggested by experiments in which addition of 10 nM of 20-hydroxyeicosatetraenoic acid (20-HETE) blocked the channel activity in cell-attached patches in the presence of 17-ODYA. We have used gas chromatography mass spectrometry (GC/MS) to measure the production of 20-HETE, a major AA metabolite of the P450-dependent pathway in the TAL of the rat. Addition of 50 pM AII increased the production of 20-HETE to 260% of the control value, indicating that 20- HETE may be involved in mediating the effect of AII (50 pM). In contrast to the inhibitory effect of 50 pM AII, addition of 50-100 nM AII increased the channel activity to 270% of the control value and elevated the Na+i by 45%. The effect of AII on the activity of the 70 pS K+ channel was also observed in the presence of 5 microM 17-ODYA and 5 microM calphostin C, an inhibitor of protein kinase C. However, addition of 100 microM NG-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase, abolished completely the AII (50- 100 nM)-induced increase in channel activity and addition of an exogenous nitric oxide (NO) donor, S-nitroso-N-acetyl-penicillamine (SNAP), increased channel activity in the presence of L-NAME. These data suggest that the stimulatory effect of AII is mediated by NO. We conclude that AII has dual effects on the activity of the apical 70 pS K+ channel. The inhibitory effect of AII is mediated by P450-dependent metabolites whereas the stimulatory effect may be mediated via NO.  相似文献   

13.
The effect of the NO donors cis-[RuCl(bpy)(2)(NO)](PF(6)) (RUNOCL) and sodium nitroprusside (SNP) on the cytosolic Ca(2+) concentration ([Ca(2+)](c)) was studied in cells isolated from the rat aorta smooth muscle of cells isolated from the rat aorta smooth muscle. SNP is a metal nitrosyl complex made up of iron, cyanide groups, and a nitro moiety; the RUNOCL complex is made up of ruthenium and bipyridine ligands, with chloride and nitrosyl groups in the ruthenium axial positions. Rat aorta smooth muscle cells were loaded with fluo-3 acetoxymethyl ester (Fluo-3 AM) and imaged by a confocal scanning laser microscope excited with the 488 nm line of the argon ion laser. Fluorescence emission was measured at 510 nm. One of the NO donors, RUNOCL (100 micromol/L) or SNP (100 micromol/L), was then added to the cell chamber and the fluorescent intensity percentage (%IF) was measured after 240 s. RUNOCL reduced the %IF to 60.0+/-10.0% of the initial value. After treatment with the soluble guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazole[4,3-a]quinoxalin-1-one (ODQ) (10 micromol/L), the measurement of %IF was 81.0+/-5.0% (n=4). In the presence of tetraethylammonium (TEA) (1 mmol/L) the %IF was 79.0+/-6.4% (n=4). A combination of ODQ and TEA increased the %IF to 97.0+/-3.5% (n=4). As for SNP, it reduced the %IF to 81.4+/-4.7% (n=4), but this effect was inhibited by ODQ (%IF 94.0+/-3.6%; n=4) and TEA (%IF 88.0+/-2.1%; n=4). The combination of ODQ and TEA increased (%IF 92.0+/-2.8%; n=4). Taken together, these results indicate that both the new NO donor RUNOCL and SNP reduce [Ca(2+)](c). Our data also give evidence that soluble guanylyl cyclase and K(+) channels sensitive to TEA are involved in the mechanisms responsible for the reduction in [Ca(2+)](c) of the rat aorta smooth muscle cells.  相似文献   

14.
The role of nitric oxide (NO), K(+) channels, and arachidonic acid metabolism, via cytochrome P450 and cyclooxygenase pathways, in the renal vasodilatory effect of bradykinin was examined in the isolated rat kidney perfused ex situ with a blood-free solution. Bradykinin (BK, 0.25-1.0 microM) induced a dose-dependent reduction of 10-35% in the relative renal vascular resistance (rRVR) of isolated kidneys preconstricted with phenylephrine (PHE, 0.17-0.35 microM). The vasodilating effect of 0.5 microM bradykinin was significantly inhibited by the nitric oxide synthase inhibitors, N(G)-nitro-L-arginine (95% inhibition) and N(G)-nitro-L-arginine methyl ester (45-75% inhibition). Clotrimazole, an inhibitor of cytochrome P450 pathway but not indomethacin, a cyclooxygenase inhibitor, reduced the renal vasodilator response to bradykinin by 84%. The nonspecific K(+) channel inhibitor, tetraethylammonium ion (TEA) and the selective inhibitor of Ca(2+)-activated K(+) channels, charybdotoxin (ChTX) greatly attenuated the vasodilator response to bradykinin by approximately 84% and 79%, respectively. These two K(+) channel inhibitors showed similar effects on vasodilatation induced by S-nitroso-acetyl-D,L-penicillamine (1 microM), a nitric oxide donor. The results suggest that bradykinin releases nitric oxide which, by opening potassium channels specifically the Ca(+)-dependent type, mediates the renal vasodilator response to bradykinin in the isolated kidney perfused ex situ.  相似文献   

15.
The mechanism of sensing hypoxia and hypoxia-induced activation of cerebral arterial Ca(2+)-activated K(+) (K(Ca)) channel currents and vasodilation is not known. We investigated the roles of the cytochrome P-450 4A (CYP 4A) omega-hydroxylase metabolite of arachidonic acid, 20-hydroxyeicosatetraenoic acid (20-HETE), and generation of superoxide in the hypoxia-evoked activation of the K(Ca) channel current in rat cerebral arterial muscle cells (CAMCs) and cerebral vasodilation. Patch-clamp analysis of K(+) channel current identified a voltage- and Ca(2+)-dependent 238 +/- 21-pS unitary K(+) currents that are inhibitable by tetraethylammonium (TEA, 1 mM) or iberiotoxin (100 nM). Hypoxia (<2% O(2)) reversibly enhanced the open-state probability (NP(o)) of the 238-pS unitary K(Ca) current in cell-attached patches. This effect of hypoxia was not observed on unitary K(Ca) currents recorded from either excised inside-out or outside-out membrane patches. Inhibition of CYP 4A omega-hydroxylase activity increased the NP(o) of K(Ca) single-channel current. Hypoxia reduced the basal endogenous level of 20-HETE by 47 +/- 3% as well as catalytic formation of 20-HETE in cerebral arterial muscle homogenates as determined by liquid chromatography-mass spectrometry analysis. The concentration of authentic 20-HETE was reduced when incubated with the superoxide donor KO(2). Exogenous 20-HETE (100 nM) attenuated the hypoxia-induced activation of the K(Ca) current in CAMCs. Hypoxia did not augment the increase in NP(o) of K(Ca) channel current induced by suicide inhibition of endogenous CYP 4A omega-hydroxylase activity with 17-octadecynoic acid. In pressure (80 mmHg)-constricted cerebral arterial segments, hypoxia induced dilation that was partly attenuated by 20-HETE or by the K(Ca) channel blocker TEA. Exposure to hypoxia caused the generation of intracellular superoxide as evidenced by intense staining of arterial muscle with the fluorescent probe hydroethidine, by quantitation using fluorescent HPLC analysis, and by attenuation of the hypoxia-induced activation of the K(Ca) channel current by superoxide dismutation. These results suggest that the exposure of CAMCs to hypoxia results in the generation of superoxide and reduction in endogenous level of 20-HETE that may account for the hypoxia-induced activation of arterial K(Ca) channel currents and cerebral vasodilation.  相似文献   

16.
We have used patch-clamp techniques to study the effects of arachidonic acid (AA) on the activity of the 70-pS K+ channel, the predominant type of the two apical K+ channels operating under physiological conditions in the thick ascending limb (TAL) of the rat kidney. Addition of 5-10 microM AA blocked the activity of the 70-pS K+ channel in both cell- attached and inside-out patches. The inhibitory effect of AA was specific, because application of 10 microM linoleic acid, oleic acid, or palmitic acid failed to mimic the effect of AA. The effect of AA could not be blocked by pretreatment of the TAL tubules with either 5 microM indomethacin (inhibitor of cyclooxygenase) or 4 microM cinnamyl- 3,4-dihydroxy-alpha-cyanocinnamate (CDC) (inhibitor of lipooxygenase). In contrast, addition of 5 microM 17-octadecynoic acid (17-ODYA), an inhibitor of P450 monooxygenases, abolised the effect of AA on the channel activity, indicating that the effect was mediated by cytochrome P450 metabolites of AA. Addition of 10 nM 20-hydroxyeicosatetraenoic acid (20-HETE), the main metabolite of the cytochrome P450 metabolic pathway in the medullary TAL, mimicked the inhibitory effect of 10 microM AA. However, addition of 100 nM 19-HETE or 17-HETE had no significant effects and 100 nM 20-carboxy AA (20-COOH) reduced the channel activity by only 20%, indicating that the inhibitory effect of 20-HETE was specific and responsible for the action of AA. Inhibition of the P450 metabolic pathway by either 5 microM 17-ODYA or 12, 12- dibromododec-11-enoic acid (DBDD) dramatically increased the channel activity by 280% in cell-attached patches. The stimulatory effect of 17- ODYA or DBDD was not observed in inside-out patches. The results strongly indicate that 20-HETE is a specific inhibitor for the 70-pS K+ channel and may play an important role in the regulation of the K+ channel activity in the TAL.  相似文献   

17.
Hypoxia initiated pulmonary vasoconstriction is due to the inhibition of voltage-gated K(+) (K(V)) channels. But the mechanism is unclear. We have evidence that hypoxia activates 15-lipoxygenase (15-LOX) in distal pulmonary arteries and increases the formation of 15-hydroxyeicosatetraenoate (15-HETE). 15-HETE-induced pulmonary artery constriction to be through the inhibition of K(V) channels (K(V)1.5, K(V)2.1 and K(V)3.4). However, no direct link among hypoxia, 15-HETE and inhibition of K(V) subtypes is established. Therefore, we investigated whether 15-LOX/15-HETE pathway contributes to the hypoxia-induced down-regulation of K(V) channels. As K(V)1.5 channel is O(2)-sensitive, it was chosen in the initial study. We found that inhibition of 15-LOX suppressed the response of hypoxic pulmonary artery rings to phenylephrine. The expressions of K(V)1.5 channel mRNA and protein was robustly up-regulated in cultured PASMC and pulmonary artery after blocking of 15-LOX by lipoxygenase inhibitors in hypoxia. The 15-LOX blockade also partly rescued the voltage-gated K(+) current (I(K(V))). 15-HETE contributes to the down-regulation of K(V)1.5 channel, inhibition of I(K(V)) and increase of native pulmonary artery tension after hypoxia. Hypoxia inhibits K(V)1.5 channel through 15-LOX/15-HETE pathway.  相似文献   

18.
Arachidonic acid (AA) can undergo monooxygenation or epoxidation by enzymes in the cytochrome P450 (CYP) family in the brain, kidney, lung, vasculature, and the liver. CYP-AA metabolites, 19- and 20-hydroxyeicosatetraenoic acids (HETEs), epoxyeicosatrienoic acids (EETs) and diHETEs have different biological properties based on sites of production and can be stored in tissue lipids and released in response to hormonal stimuli. 20-HETE is a vasoconstrictor, causing blockade of Ca(++)-activated K(+) (KCa) channels. Inhibition of the formation of nitric oxide (NO) by 20-HETE mediates most of the cGMP-independent component of the vasodilator response to NO. 20-HETE elicits a potent dilator response in human and rabbit pulmonary vascular and bronchiole rings that is dependent on an intact endothelium and COX. 20-HETE is also a vascular oxygen sensor, inhibits Na(+)/K(+)-ATPase activity, is an endogenous inhibitor of the Na(+)-K(+)-2Cl(-)cotransporter, mediates the mitogenic actions of vasoactive agents and growth factors in many tissues and plays a significant role in angiogenesis. EETs, produced by the vascular endothelium, are potent dilators. EETs hyperpolarize VSM cells by activating KCa channels. Several investigators have proposed that one or more EETs may serve as endothelial-derived hyperpolarizing factors (EDHF). EETs constrict human and rabbit bronchioles, are potent mediators of insulin and glucagon release in isolated rat pancreatic islets, and have anti-inflammatory activity. Compared with other organs, the liver has the highest total CYP content and contains the highest levels of individual CYP enzymes involved in the metabolism of fatty acids. In humans, 50-75% of CYP-dependent AA metabolites formed by liver microsomes are omega/omega-OH-AA, mainly w-OH-AA, i.e. 20HETE, and 13-28% are EETs. Very little information is available on the role of 19- and 20-HETE and EETs in liver function. EETs are involved in vasopressin-induced glycogenolysis, probably via the activation of phosphorylase. In the portal vein, inhibition of EETs exerts profound effects on a variety of K-channel activities in smooth muscles of this vessel. 20-HETE is a weak, COX-dependent, vasoconstrictor of the portal circulation. EETs, particularly 11,12-EET, cause vasoconstriction of the porto-sinusoidal circulation. Increased synthesis of EETs in portal vessels and/or sinusoids or increased levels in blood from the meseneric circulation may participate in the pathophysiology of portal hypertension of cirrhosis. CYP-dependent AA metabolites are involved in the pathophysiology of portal hypertension, not only by increasing resistance in the porto-sinusoidal circulation, but also by increasing portal inflow through mesenteric vasodilatation. In patients with cirrhosis, urinary 20-HETE is several-fold higher than PGs and TxB2, whereas in normal subjects, 20-HETE and PGs are excreted at similar rates. Thus, 20-HETE is probably produced in increased amounts in the preglomerular microcirculation accounting for the functional decrease of flow and increase in sodium reabsorption. In conclusion, CYP-AA metabolites represent a group of compounds that participate in the regulation of liver metabolic activity and hemodynamics. They appear to be deeply involved in abnormalities related to liver diseases, particularly cirrhosis, and play a key role in the pathophysiology of portal hypertension and renal failure.  相似文献   

19.
The aim of this study was to investigate the effect of nitric oxide on renal Na+,K(+)-ATPase and ouabain-sensitive H+,K(+)-ATPase activities. The study was performed in male Wistar rats. The investigated substances were infused under general anaesthesia into abdominal aorta proximally to the renal arteries. The activity of ATPases was assayed in isolated microsomal fraction. NO donor, S-nitroso-N-acetylpenicillamine (SNAP), infused at doses of 10(-7) and 10(-6)mol/kg/min decreased medullary Na+,K(+)-ATPase activity by 29.4% and 45.2%, respectively. Another NO donor, spermine NONOate, administered at the same doses reduced Na+,K(+)-ATPase activity in the renal medulla by 31.7% and 46.5%, respectively. Neither of NO releasers had any effect on Na+,K(+)-ATPase in the renal cortex and on either cortical or medullary ouabain-sensitive H+,K(+)-ATPase. Infusion of NO precursor, L-arginine (100 micromol/kg/min), decreased medullary Na+,K(+)-ATPase activity by 32.2%, whereas inhibitor of nitric oxide synthase, L-NAME (10 nmol/kg/min), increased this activity by 20.7%. The effect of synthetic NO donors was mimicked by 8-bromo-cGMP and blocked by inhibitors of soluble guanylate cyclase, ODQ or methylene blue, as well as by specific inhibitor of protein kinase G, KT5823. In addition, inhibitory effect of either SNAP or 8-bromo-cGMP on medullary Na+,K(+)-ATPase was abolished by 17-octadecynoic acid (17-ODYA), which inhibits cytochrome P450-dependent metabolism of arachidonic acid. These data suggest that NO decreases Na+,K(+)-ATPase activity in the renal medulla through the mechanism involving cGMP, protein kinase G, and cytochrome P450-dependent arachidonate metabolites. In contrast, NO has no effect on Na+,K(+)-ATPase in the renal cortex and on either cortical or medullary ouabain-sensitive H+,K(+)-ATPase.  相似文献   

20.
We investigated the mechanisms involved in the nitric oxide (NO)-induced inhibitory effects on longitudinal smooth muscle of mouse ileum, using organ bath technique. Exogenously applied NO, delivered as sodium nitroprusside (SNP; 0.1-100 micromol/L) induced a concentration-dependent reduction of the ileal spontaneous contractions. 1H-[1,2,4]oxadiazolol[4,3,a]quinoxalin-1-one (ODQ; 1 micromol/L), a guanilyl cyclase inhibitor, reduced the SNP-induced effects. Tetraethylammonium chloride (20 mmol/L), a non-selective K+ channel blocker, and charybdotoxin (0.1 micromol/L), blocker of large conductance Ca2+-dependent K+ channels, significantly reduced SNP-induced inhibitory effects. In contrast, apamin (0.1 micromol/L), blocker of small conductance Ca2+-dependent K+ channels, was not able to affect the response to SNP. Ciclopiazonic acid (10 micromol/L) or thapsigargin (0.1 micromol/L), sarcoplasmatic reticulum Ca2+-ATPase inhibitors, decreased the SNP-inhibitory effects. Ryanodine (10 micromol/L), inhibitor of Ca2+ release from ryanodine-sensitive intracellular stores, significantly reduced the SNP inhibitory effects. The membrane permeable analogue of cGMP, 8-bromoguanosine 3',5'-cyclic monophosphate (100 micromol/L), also reduced spontaneous mechanical activity, and its effect was antagonized by ryanodine. The present study suggests that NO causes inhibitory effects on longitudinal smooth muscle of mouse ileum through cGMP which in turn would activate the large conductance Ca2+-dependent K+ channels, via localized ryanodine-sensitive Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号