首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Parathyroid hormone-related protein (PTHrP) is a growth inhibitor for alveolar type II cells. Type II cell proliferation after lung injury from 85% oxygen is regulated, in part, by a fall in lung PTHrP. In this study, we investigated lung PTHrP after injury induced by >95% oxygen in rats and rabbits. In adult rats, lung PTHrP rose 10-fold over controls to 6,356 +/- 710 pg/ml (mean +/- SE) at 48 h of hyperoxia. Levels fell to 299 +/- 78 pg/ml, and staining for PTHrP mRNA was greatly reduced at 60 h (P < 0.05), the point of most severe injury and greatest pneumocyte proliferation. In adult rabbits, lung PTHrP peaked at 3,289 +/- 230 pg/ml after 64 h of hyperoxia with 24 h of normoxic recovery and then dropped to 1,629 +/- 153 pg/ml at 48 h of recovery (P < 0.05). Type II cell proliferation peaked shortly after the fall in PTHrP. In newborn rabbits, lavage PTHrP increased by 50% during the first 8 days of hyperoxia, whereas type II cell growth decreased. PTHrP declined at the LD(50), concurrent with increased type II cell division. In summary, lung PTHrP initially rises after injury with >95% hyperoxia and then falls near the peak of injury. Changes in PTHrP are temporally related to type II cell proliferation and may regulate repair of lung injury.  相似文献   

2.
Inhalation of silica leads to acute lung injury and alveolar type II cell proliferation. Type II cell proliferation after hyperoxic lung injury is regulated, in part, by parathyroid hormone-related protein (PTHrP). In this study, we investigated lung PTHrP and its effects on epithelial proliferation after injury induced by silica. Lung PTHrP decreased modestly 4 days after we instilled 10 mg of silica into rat lungs and then recovered from 4 to 28 days. The number of proliferating cell nuclear antigen (PCNA)-positive type II cells was increased threefold in silica-injured lungs compared with controls. Subsequently, rats were treated with four exogenous PTHrP peptides in the silica instillate, which were administered subcutaneously daily. One peptide, PTHrP-(38-64), had consistent and significant effects on cell proliferation. PTHrP-(38-64) increased the median number of PCNA-positive cells/field nearly fourfold above controls, 380 vs. 109 (P < 0.05). Thymidine incorporation was 2.5 times higher in type II cells isolated from rats treated with PTHrP-(38-64) compared with PBS. PTHrP-(38-64) significantly increased the number of cells expressing alkaline phosphatase, a type II cell marker. This study indicates that PTHrP-(38-64) stimulates type II cell growth and may have a role in lung repair in silica-injured rats.  相似文献   

3.
SPF级新生大鼠高氧肺损伤模型的建立   总被引:4,自引:1,他引:3  
目的建立一种操作简便、性能稳定的新生大鼠高氧肺损伤动物模型。方法①设计制造能自动控制氧浓度的高氧动物饲养舱。②将孕期满21 d出生的SPF级新生大鼠随机分成4组,即:高氧组Ⅰ(入高氧舱中饲养1~7 d),高氧组Ⅱ(入高氧舱中饲养14 d),以及相应的空气对照组Ⅰ、Ⅱ,每组14只。舱内氧浓度≥90%,每天23 h。计算肺系数,HE染色与病理学观察。结果高氧组与相应的对照组比较:高氧组大鼠体重轻,肺系数大,HE染色显示部分肺泡萎缩、肺间质及肺泡腔有水肿、出血,中性粒细胞浸润;肺泡发育明显滞后,辐射状肺泡计数明显少。结论本动物饲养舱性能稳定,操作简便;复制的新生大鼠的肺病理变化符合高氧肺损伤的改变。  相似文献   

4.
Several studies have suggested that exposure to hyperoxia causes lung injury through increased generation of reactive oxygen and nitrogen species. The present study was aimed to investigate the effects of hyperoxia exposure on protein nitration in lungs. Rats were exposed to hyperoxia (>95%) for 48, 60, and 72 h. Histopathological analysis showed a dramatic change in the severity of lung injury in terms of edema and hemorrhage between 48- and 60-h exposure times. Western blot for nitrotyrosine showed that several proteins with molecular masses of 29-66 kDa were nitrated in hyperoxic lung tissues. Immunohistochemical analyses indicate nitrotyrosine staining of alveolar epithelial and interstitial regions. Furthermore, immunoprecipitation followed by Western blot revealed the nitration of surfactant protein A and t1alpha, proteins specific for alveolar epithelial type II and type I cells, respectively. The increased myeloperoxidase (MPO) activity and total nitrite levels in bronchoalveolar lavage and lung tissue homogenates were observed in hyperoxic lungs. Neutrophils and macrophages isolated from the hyperoxia-exposed rats, when cocultured with a rat lung epithelial L2 cell line, caused a significant protein nitration in L2 cells. Inclusion of nitrite further increased the protein nitration. These studies suggest that protein nitration during hyperoxia may be mediated in part by MPO generated from activated phagocytic cells, and such protein modifications may contribute to hyperoxia-mediated lung injury.  相似文献   

5.
6.
Acute silica lung injury is marked by alveolar phospholipidosis and type II cell proliferation. Parathyroid hormone-related protein (PTHrP) 1-34 could have a regulatory role in this process because it stimulates phosphatidylcholine secretion and inhibits type II cell growth. Other regions of the PTHrP molecule may have biological activity and can also exert pulmonary effects. This study examined the temporal pattern for expression of several regions of PTHrP after silica lung injury and evaluated the effects of changes in expression on cell proliferation and lung phospholipids. Expression of all PTHrP regions fell at 4 days after injury. Reversing the decline in PTHrP 1-34 or PTHrP 67-86 with one intratracheal dose and four daily subcutaneous doses of PTHrP 1-34 or PTHrP 67-86 stimulated bronchoalveolar lavage disaturated phosphatidylcholine (DSPC) levels. Cell culture studies indicate that the peptides exerted direct effects on DSPC secretion by type II cells. Neither peptide affected type II cell proliferation with this dosing regimen, but addition of an additional intratracheal dose resulted in significant inhibition of growth, consistent with previous effects of PTHrP 1-34 in hyperoxic lung injury. These studies establish a regulatory role for PTHrP 1-34 and PTHrP 67-86 in DSPC metabolism and type II cell proliferation in silica injury. Growth inhibitory effects of PTHrP could interact with phospholipid stimulation by affecting type II cell numbers. Further studies are needed to explore the complex interactions of PTHrP-derived peptides and the type II cell response at various stages of silica lung injury.  相似文献   

7.
8.

Background

Hyperoxia plays an important role in the genesis of lung injury in preterm infants. Although alveolar type II cells are the main target of hyperoxic lung injury, the exact mechanisms whereby hyperoxia on fetal alveolar type II cells contributes to the genesis of lung injury are not fully defined, and there have been no specific measures for protection of fetal alveolar type II cells.

Objective

The aim of this study was to investigate (a) cell death response and inflammatory response in fetal alveolar type II cells in the transitional period from canalicular to saccular stages during 65%-hyperoxia and (b) whether the injurious stimulus is promoted by creating an imbalance between pro- and anti-inflammatory cytokines and (c) whether treatment with an anti-inflammatory cytokine may be effective for protection of fetal alveolar type II cells from injury secondary to 65%-hyperoxia.

Methods

Fetal alveolar type II cells were isolated on embryonic day 19 and exposed to 65%-oxygen for 24 h and 36 h. Cells in room air were used as controls. Cellular necrosis was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry, and cell proliferation was studied by BrdU incorporation. Release of cytokines including VEGF was analyzed by ELISA, and their gene expressions were investigated by qRT-PCR.

Results

65%-hyperoxia increased cellular necrosis, whereas it decreased cell proliferation in a time-dependent manner compared to controls. 65%-hyperoxia stimulated IL-8-release in a time-dependent fashion, whereas the anti-inflammatory cytokine, IL-10, showed an opposite response. 65%-hyperoxia induced a significant decrease of VEGF-release compared to controls, and similar findings were observed on IL-8/IL-10/VEGF genes expression. Preincubation of recombinant IL-10 prior to 65%-hyperoxia decreased cellular necrosis and IL-8-release, and increased VEGF-release and cell proliferation significantly compared to hyperoxic cells without IL-10.

Conclusions

The present study provides an experimental evidence that IL-10 may play a potential role in protection of fetal alveolar type II cells from injury induced by 65%-hyperoxia.  相似文献   

9.
A heparin-binding growth factor, midkine, is the product of a retinoic acid-responsive gene. Since retinol plays critical roles in lung development and treatment of bronchopulmonary dysplasia, and midkine has been implicated in the maturation of lung explants and in cytoprotection, we herein examined midkine expression during postnatal development of the lungs and hyperoxic lung injury. Midkine protein transiently increased to a maximum level at around 4 days postnatal. Immunohistochemistry revealed that the amounts of midkine increased in resident alveolar cells, but not in smooth muscle cells or the large airway epithelium. If neonatal mice were exposed to >95% oxygen, lung development was impaired and midkine expression was suppressed. In contrast, when adult mouse lungs as well as in vitro cultured lung adenocarcinoma cells were exposed to hyperoxia, midkine expression was not affected. Furthermore, a pronounced induction of midkine by retinoic acid was observed in neonatal lungs. The results indicate that midkine expression is associated with postnatal lung development, but not necessarily with hyperoxic cell damage.  相似文献   

10.
Legionella pneumophila is a major cause of life-threatening pneumonia, which is characterized by a high incidence of acute lung injury and resultant severe hypoxemia. Mechanical ventilation using high oxygen concentrations is often required in the treatment of patients with L. pneumophila pneumonia. Unfortunately, oxygen itself may propagate various forms of tissue damage, including acute lung injury. The effect of hyperoxia as a cofactor in the course of L. pneumophila pneumonia is poorly understood. In this study, we show that exposure to hyperoxic conditions during the evolution of pneumonia results in a marked increase in lethality in mice with Legionella pneumonia. The enhanced lethality was associated with an increase in lung permeability, but not changes in either lung bacterial burden or leukocyte accumulation. Interestingly, accelerated apoptosis as evidenced by assessment of histone-DNA fragments and caspase-3 activity were noted in the infected lungs of mice exposed to hyperoxia. TUNEL staining of infected lung sections demonstrated increased apoptosis in hyperoxic mice, predominantly in macrophages and alveolar epithelial cells. In vitro exposure of primary murine alveolar epithelial cells to Legionella in conjunction with hyperoxia accelerated apoptosis and loss of barrier function. Fas-deficient mice demonstrated partial resistance to the lethal effects of Legionella infection induced by hyperoxia, which was associated with attenuated apoptosis in the lung. These results demonstrate that hyperoxia serves as an important cofactor for the development of acute lung injury and lethality in L. pneumophila pneumonia. Exaggerated apoptosis, in part through Fas-mediated signaling, may accelerate hyperoxia-induced acute lung injury in Legionella pneumonia.  相似文献   

11.
We have previously demonstrated that mice exposed to sublethal hyperoxia (an atmosphere of >95% oxygen for 4 days, followed by return to room air) have significantly impaired pulmonary innate immune response. Alveolar macrophages (AM) from hyperoxia-exposed mice exhibit significantly diminished antimicrobial activity and markedly reduced production of inflammatory cytokines in response to stimulation with LPS compared with AM from control mice in normoxia. As a consequence of these defects, mice exposed to sublethal hyperoxia are more susceptible to lethal pneumonia with Klebsiella pneumoniae than control mice. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a growth factor produced by normal pulmonary alveolar epithelial cells that is critically involved in maintenance of normal AM function. We now report that sublethal hyperoxia in vivo leads to greatly reduced alveolar epithelial cell GM-CSF expression. Systemic treatment of mice with recombinant murine GM-CSF during hyperoxia exposure preserved AM function, as indicated by cell surface Toll-like receptor 4 expression and by inflammatory cytokine secretion following stimulation with LPS ex vivo. Treatment of hyperoxic mice with GM-CSF significantly reduced lung bacterial burden following intratracheal inoculation with K. pneumoniae, returning lung bacterial colony-forming units to the level of normoxic controls. These data point to a critical role for continuous GM-CSF activity in the lung in maintenance of normal AM function and demonstrate that lung injury due to hyperoxic stress results in significant impairment in pulmonary innate immunity through suppression of alveolar epithelial cell GM-CSF expression.  相似文献   

12.

Background

Prolonged exposure to hyperoxia in neonates can cause hyperoxic acute lung injury (HALI), which is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and maintenance of barrier properties requires intact epithelial tight junctions (TJs). However, in neonatal animals, relatively little is known about how the TJ proteins are expressed in the pulmonary epithelium, including whether expression of TJ proteins is regulated in response to hyperoxia exposure. This study determines whether changes in tight junctions play an important role in disruption of the pulmonary epithelial barrier during hyperoxic acute lung injury.

Methods

Newborn rats, randomly divided into two groups, were exposed to hyperoxia (95% oxygen) or normoxia for 1–7 days, and the severity of lung injury was assessed; location and expression of key tight junction protein occludin and ZO-1 were examined by immunofluorescence staining and immunobloting; messenger RNA in lung tissue was studied by RT-PCR; transmission electron microscopy study was performed for the detection of tight junction morphology.

Results

We found that different durations of hyperoxia exposure caused different degrees of lung injury in newborn rats. Treatment with hyperoxia for prolonged duration contributed to more serious lung injury, which was characterized by increased wet-to-dry ratio, extravascular lung water content, and bronchoalveolar lavage fluid (BALF):serum FD4 ratio. Transmission electron microscopy study demonstrated that hyperoxia destroyed the structure of tight junctions and prolonged hyperoxia exposure, enhancing the structure destruction. The results were compatible with pathohistologic findings. We found that hyperoxia markedly disrupted the membrane localization and downregulated the cytoplasm expression of the key tight junction proteins occludin and ZO-1 in the alveolar epithelium by immunofluorescence. The changes of messenger RNA and protein expression of occludin and ZO-1 in lung tissue detected by RT-PCR and immunoblotting were consistent with the degree of lung injury.

Conclusions

These data suggest that the disruption of the pulmonary epithelial barrier induced by hyperoxia is, at least in part, due to massive deterioration in the expression and localization of key TJ proteins.  相似文献   

13.
Lung diseases characterized by alveolar damage such as bronchopulmonary dysplasia (BPD) in premature infants and emphysema lack efficient treatments. Understanding the mechanisms contributing to normal and impaired alveolar growth and repair may identify new therapeutic targets for these lung diseases. Axonal guidance cues are molecules that guide the outgrowth of axons. Amongst these axonal guidance cues, members of the Semaphorin family, in particular Semaphorin 3C (Sema3C), contribute to early lung branching morphogenesis. The role of Sema3C during alveolar growth and repair is unknown. We hypothesized that Sema3C promotes alveolar development and repair. In vivo Sema3C knock down using intranasal siRNA during the postnatal stage of alveolar development in rats caused significant air space enlargement reminiscent of BPD. Sema3C knock down was associated with increased TLR3 expression and lung inflammatory cells influx. In a model of O2-induced arrested alveolar growth in newborn rats mimicking BPD, air space enlargement was associated with decreased lung Sema3C mRNA expression. In vitro, Sema3C treatment preserved alveolar epithelial cell viability in hyperoxia and accelerated alveolar epithelial cell wound healing. Sema3C preserved lung microvascular endothelial cell vascular network formation in vitro under hyperoxic conditions. In vivo, Sema3C treatment of hyperoxic rats decreased lung neutrophil influx and preserved alveolar and lung vascular growth. Sema3C also preserved lung plexinA2 and Sema3C expression, alveolar epithelial cell proliferation and decreased lung apoptosis. In conclusion, the axonal guidance cue Sema3C promotes normal alveolar growth and may be worthwhile further investigating as a potential therapeutic target for lung repair.  相似文献   

14.
Assisted ventilation is necessary for treating preterm infants with respiratory distress syndrome. Unfortunately, high and prolonged concentrations of oxygen associated with assisted ventilation often lead to pulmonary changes, such as hemorrhage and inflammation. The resulting chronic pulmonary condition is known as bronchopulmonary dysplasia. Pulmonary changes characteristic of this syndrome can be produced in rat pups exposed to high oxygen levels. We exposed 21-d-old rats to room air or continuous 95% oxygen for 7 d and then allocated them into 6 groups to evaluate whether treatment with zileuton and zafirlukast, 2 agents which decrease the effects of leukotrienes, lessened the pulmonary effects of short-term hyperoxia. After 7 d, lung tissue was collected for light and electron microscopy. Pulmonary changes including edema, hemorrhage, alveolar macrophage influx, and Type II pneumocyte proliferation were graded on a numerical scoring system. Compared with controls exposed to hyperoxia [corrected] and saline, rats exposed to hyperoxia and treated with zileuton had significantly reduced levels of alveolar macrophage influx and Type II pneumocyte proliferation, but those exposed to hyperoxia [corrected] and treated with zafirlukast showed no significant reduction in any pulmonary changes. This study helps define pulmonary changes induced secondary to hyperoxia in rat pups and presents new information on the mechanisms of leukotriene inhibition in decreasing the severity of hyperoxic lung injury.  相似文献   

15.
Hyperoxia exposure is a significant risk factor for the impaired alveolarization characteristic of bronchopulmonary dysplasia. Type II alveolar epithelial cells (AECIIs) may serve as "alveolar stem cells" to transdifferentiate into type I alveolar epithelial cells (AECIs). Here, we show that hyperoxia is capable of inducing transdifferentiation of AECIIs in premature rats in vitro. Hyperoxia-induced transdifferentiation was characterized by typical morphological changes, inhibition of cellular proliferation, decline in expression rate of Ki67, accumulation of cells in the G(1) phase of the cell cycle, increased expression of AECI-specific protein aquaporin 5, and decreased expression of AECII-associated protein surfactant protein C. These results suggest that hyperoxia may induce transdifferentiation of AECIIs into AECIs and the transdifferentiation may be responsible for repairing early lung injury.  相似文献   

16.
The treatment of severe lung disease often requires the use of high concentrations of oxygen coupled with the need for assisted ventilation, potentially exposing the pulmonary epithelium to both reactive oxygen species and nonphysiological cyclic stretch. Whereas prolonged hyperoxia is known to cause increased cell injury, cyclic stretch may result in either cell proliferation or injury depending on the pattern and degree of exposure to mechanical deformation. How hyperoxia and cyclic stretch interact to affect the pulmonary epithelium in vitro has not been previously investigated. This study was performed using human alveolar epithelial A549 cells to explore the combined effects of cyclic stretch and hyperoxia on cell proliferation and viability. Under room air conditions, cyclic stretch did not alter cell viability at any time point and increased cell number after 48 h compared with unstretched controls. After exposure to prolonged hyperoxia, cell number and [(3)H]thymidine incorporation markedly decreased, whereas evidence of oxidative stress and nonapoptotic cell death increased. The combination of cyclic stretch with hyperoxia significantly mitigated the negative effects of prolonged hyperoxia alone on measures of cell proliferation and viability. In addition, cyclic stretch resulted in decreased levels of oxidative stress over time in hyperoxia-exposed cells. Our results suggest that cyclic stretch, as applied in this study, can minimize the detrimental effects of hyperoxia on alveolar epithelial A549 cells.  相似文献   

17.
Pseudomonas. aeruginosa (PA) is a leading cause of nosocomial pneumonia in patients receiving mechanical ventilation with hyperoxia. Exposure to supraphysiological concentrations of reactive oxygen species during hyperoxia may result in macrophage damage that reduces their ability to phagocytose PA. We tested this hypothesis in cultured macrophage-like RAW 264.7 cells and alveolar macrophages from mice exposed to hyperoxia. Exposure to hyperoxia induced a similarly impaired phagocytosis of both the mucoid and the nonmucoid forms of PA in alveolar macrophages and RAW cells. Compromised PA phagocytosis was associated with cytoskeleton disorganization and actin oxidation in hyperoxic macrophages. To test whether moderate concentrations of O(2) limit the loss of phagocytic function induced by > or =95% O(2), mice and RAW cells were exposed to 65% O(2). Interestingly, although the resulting lung injury/cell proliferation was not significant, exposure to 65% O(2) resulted in a marked reduction in PA phagocytosis that was comparable to that of > or =95% O(2). Treatment with antioxidants, even post hyperoxic exposure, preserved actin cytoskeleton organization and phagocytosis of PA. These data suggest that hyperoxia reduces macrophage phagocytosis through effects on actin functions which can be preserved by antioxidant treatment. In addition, administration of moderate rather than higher concentrations of O2 does not improve macrophage phagocytosis of PA.  相似文献   

18.
The angiogenic growth factor angiopoietin 2 (Ang2) destabilizes blood vessels, enhances vascular leak and induces vascular regression and endothelial cell apoptosis. We considered that Ang2 might be important in hyperoxic acute lung injury (ALI). Here we have characterized the responses in lungs induced by hyperoxia in wild-type and Ang2-/- mice or those given either recombinant Ang2 or short interfering RNA (siRNA) targeted to Ang2. During hyperoxia Ang2 expression is induced in lung epithelial cells, while hyperoxia-induced oxidant injury, cell death, inflammation, permeability alterations and mortality are ameliorated in Ang2-/- and siRNA-treated mice. Hyperoxia induces and activates the extrinsic and mitochondrial cell death pathways and activates initiator and effector caspases through Ang2-dependent pathways in vivo. Ang2 increases inflammation and cell death during hyperoxia in vivo and stimulates epithelial necrosis in hyperoxia in vitro. Ang2 in plasma and alveolar edema fluid is increased in adults with ALI and pulmonary edema. Tracheal Ang2 is also increased in neonates that develop bronchopulmonary dysplasia. Ang2 is thus a mediator of epithelial necrosis with an important role in hyperoxic ALI and pulmonary edema.  相似文献   

19.
20.
Extracellular superoxide dismutase (EC-SOD) is highly expressed in lung tissue. EC-SOD contains a heparin-binding domain that is sensitive to proteolysis. This heparin-binding domain is important in allowing EC-SOD to exist in relatively high concentrations in specific regions of the extracellular matrix and on cell surfaces. EC-SOD has been shown to protect the lung against hyperoxia in transgenic and knockout studies. This study tests the hypothesis that proteolytic clearance of EC-SOD from the lung during hyperoxia contributes to the oxidant-antioxidant imbalance that is associated with this injury. Exposure to 100% oxygen for 72 h resulted in a significant decrease in EC-SOD levels in the lungs and bronchoalveolar lavage fluid of mice. This correlated with a significant depletion of EC-SOD from the alveolar parenchyma as determined by immunofluorescence and immunohistochemistry. EC-SOD mRNA was unaffected by hyperoxia; however, there was an increase in the ratio of proteolyzed to uncut EC-SOD after hyperoxia, which suggests that hyperoxia depletes EC-SOD from the alveolar parenchyma by cutting the heparin-binding domain. This may enhance hyperoxic pulmonary injury by altering the oxidant-antioxidant balance in alveolar spaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号