首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate of senescence and the two-dimensional pattern of soluble proteins from detached oat leaves senescing in either darkness or light were analyzed, and compared to those of leaves in which senescence was delayed by application of the cytokinin benzyladenine or enhanced through the action of abscisic acid.Senescence of detached leaves in light did not differ significantly from senescence in attached leaves on intact plants. In darkness, protein was lost at a higher rate than in light, but several individual proteins showed relative increases. Notably, proteins previously characterized as high-molecular-weight proteins and senescence-associated proteins (Klerk et al., 1992) increased. Changes observed during incubation in light or darkness appeared to be related to this condition rather than the rate or progress of senescence. Cytokinins delayed and abscisic acid accelerated the changes in protein pattern compared to water. Beside changes previously identified in leaves senescing on the plant, detached leaves show alterations that reflect their condition of incubation rather than their developmental progress.Abbreviations 2D-PAG two-dimensional polyacrylamide gel electrophoresis - ABA abscisic acid - BA N6-benzyladenine - BSA bovine serum albumin - EDTA ethylenediamine tetraacetic acid - IEF isoelectric focusing - Rubisco ribulosebisphosphate carboxylase/oxygenase - SDS sodium dodecyl sulfate - Tris tris (hydroxymethyl) aminomethane  相似文献   

2.
Acclimation of photosynthetic capacity to elevated CO2 involves a decrease of the leaf Rubisco content. In the present study, it was hypothesized that nitrogen uptake and partitioning within the leaf and among different aboveground organs affects the down-regulation of Rubisco. Given the interdependence of nitrogen and cytokinin signals at the whole plant level, it is also proposed that cytokinins affect the nitrogen economy of plants under elevated CO2, and therefore the acclimatory responses. Spring wheat received varying levels of nitrogen and cytokinin in field chambers with ambient (370 μmol mol−1) or elevated (700 μmol mol−1) atmospheric CO2. Gas exchange, Rubisco, soluble protein and nitrogen contents were determined in the top three leaves in the canopy, together with total nitrogen contents per shoot. Growth in elevated CO2 induced decreases in photosynthetic capacity only when nitrogen supply was low. However, the leaf contents of Rubisco, soluble protein and total nitrogen on an area basis declined in elevated CO2 regardless of nitrogen supply. Total nitrogen in the shoot was no lower in elevated than ambient CO2, but the fraction of this nitrogen located in flag and penultimate leaves was lower in elevated CO2. Decreased Rubisco: chlorophyll ratios accompanied losses of leaf Rubisco with CO2 enrichment. Cytokinin applications increased nitrogen content in all leaves and nitrogen allocation to senescing leaves, but decreased Rubisco contents in flag leaves at anthesis and in all leaves 20 days later, together with the amount of Rubisco relative to soluble protein in all leaves at both growth stages. The results suggest that down regulation of Rubisco in leaves at elevated CO2 is linked with decreased allocation of nitrogen to the younger leaves and that cytokinins cause a fractional decrease of Rubisco and therefore do not alleviate acclimation to elevated CO2.  相似文献   

3.
Seasonal changes in photosynthetic capacity, leaf nitrogen (N) content, leaf chlorophyll (Chl) content and leaf N allocation patterns in leaves of different ages in the evergreen understory shrub, Daphniphyllum humile Maxim, growing at a forest border and an understory site were studied. In current-year leaves at the understory site, the N and Rubisco contents increased from spring to autumn although their light-saturated photosynthetic rate at 22°C (P max22) remained stable, indicating that their mesophyll conductance rates declined as they completed their development and/or that they invested increasing amounts of their resources in photosynthetic enzymes during this period. In contrast, seasonal changes in P max22 in current-year leaves at the forest border site were correlated with changes in Rubisco content. In 1-year old leaves at the understory site, P max22 and contents of Chl, leaf N, and Rubisco remained stable from spring to autumn, while these parameters decreased in 1-year-old forest border leaves, indicating that N may have been remobilized from shaded 1-year-old leaves to sunlit current-year leaves. When leaves senesced at the forest border site the Rubisco content decreased more rapidly than that of light-harvesting proteins such as LHCII, suggesting that N remobilization from Rubisco may be more efficient, possibly because Rubisco has greater N costs and is soluble, whereas the light-harvesting proteins are membrane components.  相似文献   

4.
Protease activities and its relation to the contents of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase were investigated in detached leaves of rice (Oryza sativa L.) floated on the solutions containing abscisic acid (ABA) or benzyladenine (BA). Rubisco and Rubisco activase contents were decreased during the time course and the decreases were enhanced by ABA and suppressed by BA. The decrease in Rubisco activase was faster than that in Rubisco. SDS-dependent protease activities at 50–70 kDa (rice SDS-dependent protease: RSP) analyzed by the gelatin containing PAGE were significantly enhanced by ABA. RSPs were also increased in attached leaves during senescence. RSPs had the pH optimum of 5.5, suggesting that RSPs are vacuolar protease. Both decrease in Rubisco and Rubisco activase contents and increase in RSPs activities were suppressed by cycloheximide. These findings indicate that the activities of RSPs are well correlated with the decrease in these protein contents. Immunoblotting analysis showed that Rubisco in the leaf extracts was completely degraded by 5 h at pH 5.5 with SDS where it was optimal condition for RSPs. However, the degradation of Rubisco did not proceed at pH 7.5 without SDS where it is near physiological condition for stromal proteins. Rubisco activase was degraded at similar rate under both conditions. These results suggest that RSPs can functions in a senescence related degradation system of chloroplast protein in rice leaves. Rubisco activase would be more susceptible to proteolysis than Rubisco under physiological condition and this could affect the contents of these proteins in leaves.  相似文献   

5.
Li  X.  Zhou  Z.  Zhang  S.  Jin  F.  Gao  P. 《World journal of microbiology & biotechnology》1997,13(6):683-688
A cell-bound cellobiose-oxidizing enzyme was produced by cellulolytic Cytophaga sp. LX-7. It was found that both the cellulosic substrates and the soluble carbohydrate substrates tested promoted the production of the cellobiose-oxidizing enzyme, and the highest specific activities were obtained with cellulose powder MN300, carboxy- methylcellulose CM22, maltose and cellobiose. Among the nitrogen sources examined, peptone gave the best cellobiose-oxidizing enzyme production, whereas inorganic nitrogen sources gave very poor growth. The medium buffered with Tris/HCl, pH 7.1, yielded the highest levels of cellobiose-oxidizing enzyme activity and the temperature optimum for crude enzyme activity was 40°C.  相似文献   

6.
Three activity peaks hydrolysing L-cystine-di-beta-naphthylamide (CysNA) and two activities hydrolysing L-leucine-beta-naphthylamide (LeuNA) were separated by gel filtration on Sepharose 6B from human placental tissue. The enzyme activities in the void volume and the solubilized enzyme activities with both substrates apparently are bound and free forms of the same enzymes (I) since detergent treatment caused a total disappearance of the activities in the void volume. The second distinct enzyme (II) was highly soluble and detected only with CysNA. The particle-bound enzyme(s) had a pH optimum at 6.5 with CysNA and at about 7.5 with LeuNA. They were highly sensitive to EDTA, could be reactivated by Co2+ and Zn2+ and were more sensitive to Ni2+ and L-methionine than the soluble enzyme II. The former enzyme(s) tolerated thermal treatment better than the soluble enzyme II. The solubilized free enzyme(s) I had a molecular weight of about 309,000. The soluble enzyme II was resistant to EDTA. Its optimum was at pH 6.0 and an estimate of 76,000 for the molecular weight was obtained.  相似文献   

7.
This paper presents a study on the enzyme reduction of the disulfide bond and the following results have been found.

In enzyme preparation, antioxidants showed a stability effect and EDTA appeared to have both enzyme stabilization and solubilization. On the distribution of the enzyme activity in subcellular fractions, the water soluble fraction appeared to contain the major released enzyme activity. The enzyme was inhibited with several metals. Hg2+ and transition metals were the most toxic. The substrate specificity of this enzyme was wide for the low molecular substrates, but the protein disulfide reducing activity was not detected in this preparation. It was assumed that the thiol-disulfide transhydrogenase was coupled with glutathione reductase and the disulfide substrates were reduced by the system involving the two enzymes. A new method for the direct recording of an enzyme-catalyzed thiol-disulfide interchange using diphenyl disulfide and p,p-dinitro diphenyl disulfide was devised.  相似文献   

8.
Albugo candida (pers.) O. Kuntze (white blister rust) is a biotrophic fungus which infects cruciferous plants including Arabidopsis thaliana (L) Heynh. We report the effect of this pathogen on the photosynthetic and carbohydrate metabolism of A. thaliana. As infection progressed A. Candida caused a reduction in the rate of photosynthesis when measured at either ambient or saturating concentrations of CO2. These data suggested that both chlorophyll and Rubisco were lost from regions of infected leaves, and measurements of chlorophyll, Rubisco content and activity supported these observations. The reduction in the rate of photosynthesis was not caused by closure of stomata as transpiration was unaffected by the disease. Infected leaves accumulated both soluble carbohydrates and starch. The activities of sucrose-phosphate synthase, sucrose synthase and ADP glucose pyrophosphorylase did not change in response to infection. However, the activities of both the wall-bound and soluble acid invertases were higher in infected leaves than in controls; a new soluble invertase isoform with a pl of 5-1 appeared in infected leaves. The possible origin of the increase in wall-bound and soluble invertase activities and its effect on the carbohydrate and photosynthetic metabolism of the leaf are discussed.  相似文献   

9.
The expression of the Acidothermus cellulolyticus endoglucanase E1 gene in transgenic tobacco (Nicotiana tabacum) was examined in this study, where E1 coding sequence was transcribed under the control of a leaf specific Rubisco small subunit promoter (tomato RbcS-3C). Targeting the E1 protein to the chloroplast was established using a chloroplast transit peptide of Rubisco small subunit protein (tomato RbcS-2A) and confirmed by immunocytochemistry. The E1 produced in transgenic tobacco plants was found to be biologically active, and to accumulate in leaves at levels of up to 1.35% of total soluble protein. Optimum temperature and pH for E1 enzyme activity in leaf extracts were 81°C and 5.25, respectively. E1 activity remained constant on a gram fresh leaf weight basis, but dramatically increased on a total leaf soluble protein basis as leaves aged, or when leaf discs were dehydrated. E1 protein in old leaves, or after 5h dehydration, was partially degraded although E1 activity remained constant. Transgenic plants exhibited normal growth and developmental characteristics with photosynthetic rates similar to those of untransformed SR1 tobacco plants. Results from these biochemical and physiological analyses suggest that the chloroplast is a suitable cellular compartment for accumulation of the hydrolytic E1 enzyme.  相似文献   

10.
Although ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco) is mostly known as a key enzyme involved in CO2 assimilation during the Calvin cycle, comparatively little is known about its role as a pool of nitrogen storage in leaves. For this purpose, we developed a protocol to purify Rubisco that enables later analysis of its 15N isotope composition (δ15N) at the natural abundance and 15N‐labeled plants. In order to test the utility of this protocol, durum wheat (Triticum durum var. Sula) exposed to an elevated CO2 concentration (700 vs 400 µmol mol?1) was labeled with K15NO3 (enriched at 2 atom %) during the ear development period. The developed protocol proves to be selective, simple, cost effective and reproducible. The study reveals that 15N labeling was different in total organic matter, total soluble protein and the Rubisco fraction. The obtained data suggest that photosynthetic acclimation in wheat is caused by Rubisco depletion. This depletion may be linked to preferential nitrogen remobilization from Rubisco toward grain filling.  相似文献   

11.
Two chloroplast envelope proteins from spinach (Spinacia oleracea L.) exhibiting relative molecular masses (Mrs) of 26 and 14 kDa are apparently phosphorylated by a unique Ca2+-dependent serine protein kinase. The activity of this enzyme shows the same sensitivity towards pH, Ca2+, Mg2+, H7 [1-(5-isoquinolinesulphonyl)-2-methylpiperazine] and ATP concentrations (Siegenthaler and Bovet 1993, Planta 190, 231–240). Autoradiographic analyses following two-dimensional-gel electrophoresis (isoelectric focusing and SDS-PAGE) associated with Western blotting experiments indicate that these two phosphoproteins appeared to be pools of the light-harvesting complex of photosystem II (LHCII) and of the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) small subunit, respectively. Immunoprecipitation of envelope-phosphorylated proteins, using immunoglobulins (IgG) directed to the apoprotein of LHCII and to the holoenzyme of Rubisco confirmed that LHCII and the Rubisco small subunit effectively incorporated 32P from (-32P)ATP in isolated envelope membranes. We propose that, in agreement with the fact that protein import is driven by ATP, the phosphorylation of LHCII and the Rubisco small subunit could take place after the processing of precursor proteins and could be an obligatory step for their internalization into chloroplasts.Abbreviations 2D two dimensional - IEF isoelectric focusing - IgG immunoglobulin G - LHCII light-harvesting chlorophyll a/b proteins of PSII - LHCII A apoprotein a of LHCII - LHCIIB apoprotein b of LHCII - LS Rubisco large subunit - Mops (3-[N-morpholino]propanesulfonic acid) - Mr relative molecular mass - PI isoelectric point - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - SS Rubisco small subunit The authors are grateful to Delphine Herrmann and Xavier Denys for their technical assistance. They also greatly thank Prof. R. J. Ellis and Dr. L. Barnett (Warwick University, UK) and Dr. P. Schürmann (University of Neuchâtel, Switzerland) for providing them with antibodies directed to the pea and spinach Rubisco holoenzymes and Dr. M. Spangfort (Lund University, Sweden) for his gift of the antibody directed to the pea LHCII apoprotein. This study was supported by the Swiss National Science Foundation. This work was part of a doctoral program carried out by L.B. in the Laboratoire de Physiologie végétale, Université de Neuchâtel, Switzerland.  相似文献   

12.
The physiological and photosynthetic responses of Littorella uniflora (L.) Ascherson, an amphibious macrophyte of isoetid life form, to rapid and prolonged emersion onto dry land, was studied at a reservoir. Water relations were little affected in the short term, but declining water potential and turgor pressure indicated water stress after flowering. High leaf lacunal CO2 concentrations suggested continued CO2 uptake from sediments. In contrast, a switch from Crassulacean acid metabolism (CAM) to C3 photosynthesis was indicated by much lower levels of ΔH+ (down minus dusk titratable acidity) and phosphoenolpyruvate carboxylase (PEPC) activity in new terrestrial leaves, 7–8‐fold higher activity of ribulose bisphosphate carboxylase oxygenase (Rubisco), and increased chlorophyll and soluble protein contents. Accumulated nitrate and amino acid pools were depleted, whereas storage of carbohydrates as soluble sugars, fructan and starch increased. Plant carbon and nitrogen isotope ratios (δ13C and δ15N) declined, perhaps reflecting changes in C fixation processes, N metabolism, and source C and N. In leaves of plants grown half‐emersed for an extended period, contrasting activities of PEPC and Rubisco were found in submersed and emersed portions. Overall, L. uniflora showed considerable phenotypic plasticity, yet seemed to remain poised for re‐submersion; these characteristics could be adaptive in the unpredictable water margin habitat.  相似文献   

13.
Malic enzyme (ME=L-malate: NADP oxidoreductase; E.C. 1.1.1.40) was extracted by Triton X-100-induced resolubilization of enzyme proteins which denaturize spontaneously upon homogenization of grape berry material. The purification procedure included fractionating with (NH4)2SO4, preparative IEF, and Sephadex G-100 chromatography. ME was identified by TLC of the radioactive product after supplementing the assay mixture with [14C]malate. Cofactor dependence, pH-optimum and affinities for substrates and cosubstrates were determined. Enzymic pI was found to be 5.8, the Hill coefficients range from 1 to 3. In malate decarboxylating direction at pH 7.4, grape ME displayed positive cooperativity toward the substrate, the curve approaching normal Michaelis-Menten-kinetics at pH 7.0. Substituting Mn2+ for Mg2+ not only increased maximal turnover rates, but also enzymic affinity for malate. These features were considered indicative of the regulatory properties of the enzyme. Their relevance for grape malate metabolism and fruit ripening is discussed.Abbreviations EDTA ethylenediaminetetraacetic acid - IFF isoelectric focusing - MDH malate dehydrogenase - ME malic enzyme - OAA oxaloacetic acid - PAG polyacrylamide gel - TCA trichloroacetic acid - TLC thin layer chromatography  相似文献   

14.
以杂交稻(汕优63)为试验材料,在木村B营养液中培养至三叶期,用草酸5mmol/L预处理水稻2d,再处以氧化胁迫(用0.1mmol/L浓度的活性氧诱发剂甲基紫精处理)。结果表明MV诱发的氧化胁迫下,Rubisco及其它可溶性蛋白快速降解。草酸预处理可明显缓解Rubisco及其它可溶性蛋白的降解,降解速率分别降低1/3和1/2左右。植株经草酸处理后其叶片中几种抗氧化酶如AsA-POD、SOD、CAT活性大大提高,这可能是草酸预处理可缓解氧化胁迫下Rubisco和其它可溶性蛋白降解的重要原因。既然草酸能有效地诱导植物的抗氧化防卫反应,它可能作为一种诱抗剂来提高植物的抗逆性。  相似文献   

15.
From a biogas reactor metagenome an ORF (bp_cel9A) encoding a bacterial theme C glycoside hydrolase family 9 (GH9) enzyme was recombinantly produced in E. coli BL21 pQE-80L. BP_Cel9A exhibited?≤?55% identity to annotated sequences. Subsequently, the enzyme was purified to homogeneity by affinity chromatography. The endo-beta-glucanase BP_Cel9A hydrolyzed the beta-1,3–1,4-linked barley beta-glucan with 24 U/mg at 30 °C and pH 6.0. More than 62% of activity was measured between 10 and 40 °C. Lichenan and xyloglucan were hydrolyzed with 67% and 40% of activity, respectively. The activity towards different substrates varied with different temperatures. However, the enzyme activity on CMC was extremely low (>?1%). In contrast to BP_Cel9A, most GH9 glucanases act preferably on crystalline or soluble cellulose with only side activities towards related substrates. The addition of calcium or magnesium enhanced the activity of BP_Cel9A, especially at higher temperatures. EDTA inhibited the enzyme, whereas EGTA had no effect, suggesting that Mg2+ may adopt the function of Ca2+. BP_Cel9A exhibited a unique substrate spectrum when compared to other GH9 enzymes with great potential for mixed-linked glucan or xyloglucan degrading processes at moderate temperatures.  相似文献   

16.
In some soybean (Glycine max (L.) Merr.) cultivars, fruit removal does not delay the apparent loss of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) activity and abundance or the decline in photosynthesis. Analysis of leaf extracts from defruited plants indicated a time-dependent increase in both Rubisco activity and abundance in a 30000 · g pellet fraction in cultivars which had been reported to lose all Rubisco protein from the supernatant fraction. Attempts to solubilize the pelleted Rubisco by increasing the buffer volume/tissue ratio or by adding alkylphenoxypolyethoxyethanol (Triton X-100), ethylenediaminetetraacetic acid (EDTA), or NaCl were unsuccessful. However, treatment of the pellets with denaturants such as 8 M urea or 5% (w/v) sodium dodecyl sulfate (SDS) did release Rubisco from the pellet. Redistribution of protein to the pellet fraction appeared to be specific for Rubisco since the amount of ribulose-5-phosphate kinase (EC 2.7.1.19) found in the pellet fraction of leaf extracts of control and defruited plants was small and constant over time. The loss of soluble Rubisco, and the concomitant increase in insoluble Rubisco, in response to fruit removal varied with genotype and was reproducible in both field and greenhouse environments. In addition, the effect was influenced by node position and light; lower and-or shaded leaves exhibited less Rubisco in the pellet fraction than leaves from the top of the plant that was fully exposed to sunlight. When isolated by sucrose-density-gradient centrifugation, the insoluble Rubisco was found to co-purify with a 30-kDa (kilodalton) polypeptide. These results indicate that alteration of the source/sink ratio by removing fruits results in the formation of an insoluble form of Rubisco in leaf extracts of soybean. Whether or not Rubisco exists as an insoluble complex with the 30-kDa polypeptide in intact leaves of defruited plants remains to be determined.Abbreviations kDa kilodalton - PGA kinase 3-phosphoglyceric acid kinase (EC 2.7.2.3) - Rubisco ribulose-1,5-bisphosphate car-boxylase/oxygenase (EC 4.1.1.39) - Ru5P kinase ribulose-5-phosphate kinase (EC 2.7.1.19) - SDS-PAGE sodium dodecyl sulfatepolyacrylamide gel electrophoresis  相似文献   

17.
Gene fragments encoding the large subunit (LS) of Rubisco (RBCL) were cloned from various species of host plants of phytophagous Lepidoptera and expressed as recombinant proteins in Escherichia coli. Recombinant RBCLs were compared among each other along with casein and native Rubisco as proteinaceous substrates for measuring total midgut protease activities of fourth instar larvae of Helicoverpa armigera feeding on casein, Pieris brassicae feeding on cauliflower, and Antheraea assamensis feeding on Litsea monopetala and Persea bombycina. Cognate rRBCL (from the pertinent host plant species) substrates performed similar to noncognate rRBCL reflecting the conserved nature of encoding genes and the versatile use of these recombinant proteins. Casein and recombinant RBCL generally outperformed native Rubisco as substrates, except where inclusion of a reducing agent in the enzyme assay likely unfolded the plant proteins. Levels of total midgut protease activities detected in A. assamensis larvae feeding on two primary host species were similar, suggesting that the suite(s) of digestive enzymes in these insects could hydrolyze a plant protein efficiently. Protease activities detected in the presence of protease inhibitors and the reducing agent dithiothreitol (DTT) suggested that recombinant RBCL was a suitable protein substrate for studying insect proteases using in vitro enzyme assays and substrate zymography.  相似文献   

18.
The responses of photosynthesis, Rubisco activity, Rubisco protein, leaf carbohydrates and total soluble protein to three carbon dioxide treatments were studied in winter wheat [Triticum aestivum (L.)] and barley [Hordeum vulgare (L.)]. Barley and wheat plants were grown in small field plots during 1995 and 1996 in clear, acrylic chambers (1.2–2.4 m2) and were provided with continuous carbon dioxide fertilization at concentrations of 350, 525 and 700 mol mol–1. Photosynthetic rates of barley penultimate leaves and wheat flag leaves measured at growth carbon dioxide concentrations decreased with leaf age in all three CO2 treatments during 1995 and 1996. Photosynthetic acclimation to elevated CO2 was observed on seven of eight measurement dates for barley and ten of eleven measurement dates for wheat over both years. Initial Rubisco activity, total soluble protein and Rubisco protein in barley penultimate leaves and wheat flag leaves also decreased with leaf age. Total Rubisco activity was not used because of enzyme degradation. There was a significant CO2 treatment effect on initial Rubisco activity, total soluble protein and Rubisco protein for wheat in 1995 and 1996 and for barley in 1995. Responses of barley penultimate leaf Rubisco activity and leaf protein concentrations to elevated carbon dioxide were nonsignificant in 1996. A significant CO2 treatment effect also was detected when means of Rubisco activity, soluble protein and Rubisco protein for wheat flag leaves were combined over harvests and years. These three flag leaf parameters were not significantly different in the 350 and 525 mol mol–1 CO2 treatments but were decreased during growth in 700 mol mol–1 CO2 relative to the other two CO2 treatments. Ratios of photosynthesis at 700 and 350 mol mol–1 were compared to ratios of Rubisco activity at 700 and 350 mol mol–1 using wheat flag leaf data from 1995 and 1996. Regression analysis of these data were linear [y = 0.586 + 1.103t x (r2 = 0.432)] and were significant at P 0.05. This result indicated that photosynthetic acclimation was positively correlated with changes of initial Rubisco activity in wheat flag leaves in response to CO2 enrichment. Effects of elevated CO2 on wheat leaf proteins during 1995 and 1996 and on barley during 1995 were consistent with an acceleration of senescence.  相似文献   

19.
《Plant science》1988,55(3):205-211
Potato (Solanum tuberosum L.) leaves were shown to contain a lipolytic enzyme activity which is stimulated by treatment with purified trypsin, pronase, and to a lesser degree by chymotrypsin. This protease-stimulated activity was stable over a wide range of pH values. Lipolytic enzyme activity also appeared to be regulated by pH, with a pronounced stimulation at pH 6.0 ± 0.5 and a subsequent inactivation at pH 8.0–9.0. This pH stimulation was slightly by ethylene diamine tetracetic acid (EDTA), and was inhibited by Ca2+. Although leupeptin slightly inhibited the pH stimulation, two other protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) and soybean trypsin inhibitor showed no effect. While some of the lipolytic enzyme activitiesn potato leaves (those detected by 1-acyl-2-[6-[(7-nitro-2,1,3 benzoxadiazol-4-yl) amino]-caproyl] phosphatidylcholine (C6-NBD-PC) hydrolysis) are stimulated by protease or pH treatment, others (those detected by 4-methylumbelliferyl laurate (4MUL) hydrolysis) are inactivated by them. The possible physiological significance of this apparent proteolytic activation is discussed.  相似文献   

20.
Alcaligenes faecalis produced extracellular protease when incubated in media containing protein substrates. Enzyme production was found to be influenced by various culture conditions. Enzyme production was growth-associated, expressed linearity with growth and reached a maximum at the end of the growth phase. Carbohydrates and inorganic nitrogen sources could not be utilized by the bacterium for its growth, and organic nitrogen appeared to be a primary determinant in protease production. Enzyme production reached its maximum level of 171.2 U/ml when the culture was incubated at 30 °C at pH 8.0. Ca2+ and Mg2+ enhanced the enzyme production. The crude enzyme powder was stable at high alkaline pH and stable upto 6 months at the storage temperature of 0–4 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号