首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel. A fifth motility gene is located in the mot operon downstream of the motB and motC genes. Its gene product was originally designated MotD, a cytoplasmic motility protein having an unknown function. We report here reassignment of MotD as FliK, the regulator of flagellar hook length. The FliK gene is one of the few flagellar genes not annotated in the contiguous flagellar regulon of S. meliloti. Characteristic for its class, the 475-residue FliK protein contains a conserved, compactly folded Flg hook domain in its carboxy-terminal region. Deletion of fliK leads to formation of prolonged flagellar hooks (polyhooks) with missing filament structures. Extragenic suppressor mutations all mapped in the cytoplasmic region of the transmembrane export protein FlhB and restored assembly of a flagellar filament, and thus motility, in the presence of polyhooks. The structural properties of FliK are consistent with its function as a substrate specificity switch of the flagellar export apparatus for switching from rod/hook-type substrates to filament-type substrates.  相似文献   

3.
4.
The predatory bacterium Bdellovibrio bacteriovorus swims rapidly by rotation of a single, polar flagellum comprised of a helical filament of flagellin monomers, contained within a membrane sheath and powered by a basal motor complex. Bdellovibrio collides with, enters and replicates within bacterial prey, a process previously suggested to firstly require flagellar motility and then flagellar shedding upon prey entry. Here we show that flagella are not always shed upon prey entry and we study the six fliC flagellin genes of B. bacteriovorus, finding them all conserved and expressed in genome strain HD100 and the widely studied lab strain 109J. Individual inactivation of five of the fliC genes gave mutant Bdellovibrio that still made flagella, and which were motile and predatory. Inactivation of the sixth fliC gene abolished normal flagellar synthesis and motility, but a disordered flagellar sheath was still seen. We find that this non-motile mutant was still able to predate when directly applied to lawns of YFP-labelled prey bacteria, showing that flagellar motility is not essential for prey entry but important for efficient encounters with prey in liquid environments.  相似文献   

5.
Mutations in more than 30 genes affect motility in Caulobacter crescentus. We have determined the chromosomal map locations for 27 genes involved in flagellar morphogenesis (fla), three genes involved in flagellar function (mot), and three genes that have a pleiotropic effect on both motility and bacteriophage resistance (ple). Three multigene clusters have been detected at widely separated chromosomal locations, but in addition, there are 12 fla and mot genes that are found at eight additional sites scattered around the C. cresentus chromosome. Thus, there is more scatter of genes involved in flagellar structure and function than has been observed in other bacterial systems.  相似文献   

6.
Archaeal flagella are unique motility structures, and the absence of bacterial structural motility genes in the complete genome sequences of flagellated archaeal species suggests that archaeal flagellar biogenesis is likely mediated by novel components. In this study, a conserved flagellar gene family from each of Methanococcus voltae, Methanococcus maripaludis, Methanococcus thermolithotrophicus, and Methanococcus jannaschii has been characterized. These species possess multiple flagellin genes followed immediately by eight known and supposed flagellar accessory genes, flaCDEFGHIJ. Sequence analyses identified a conserved Walker box A motif in the putative nucleotide binding proteins FlaH and FlaI that may be involved in energy production for flagellin secretion or assembly. Northern blotting studies demonstrated that all the species have abundant polycistronic mRNAs corresponding to some of the structural flagellin genes, and in some cases several flagellar accessory genes were shown to be cotranscribed with the flagellin genes. Cloned flagellar accessory genes of M. voltae were successfully overexpressed as His-tagged proteins in Escherichia coli. These recombinant flagellar accessory proteins were affinity purified and used as antigens to raise polyclonal antibodies for localization studies. Immunoblotting of fractionated M. voltae cells demonstrated that FlaC, FlaD, FlaE, FlaH, and FlaI are all present in the cell as membrane-associated proteins but are not major components of isolated flagellar filaments. Interestingly, flaD was found to encode two proteins, each translated from a separate ribosome binding site. These protein expression data indicate for the first time that the putative flagellar accessory genes of M. voltae, and likely those of other archaeal species, do encode proteins that can be detected in the cell.  相似文献   

7.
Buchnera aphidicola is the endosymbiotic bacterium of the pea aphid. Due to its small genome size, Buchnera lacks many essential genes for autogenous life but obtains nutrients from the host. Although the Buchnera cell is nonmotile, it retains clusters of flagellar genes that lack the late genes necessary for motility, including the flagellin gene. In this study, we show that the flagellar genes are actually transcribed and translated and that the Buchnera cell surface is covered with hundreds of hook-basal-body (HBB) complexes. The abundance of HBB complexes suggests a role other than motility. We discuss the possibility that the HBB complex may serve as a protein transporter not only for the flagellar proteins but also for other proteins to maintain the symbiotic system.  相似文献   

8.
9.
Phagocytosis of bacteria by innate immune cells is a primary method of bacterial clearance during infection. However, the mechanisms by which the host cell recognizes bacteria and consequentially initiates phagocytosis are largely unclear. Previous studies of the bacterium Pseudomonas aeruginosa have indicated that bacterial flagella and flagellar motility play an important role in colonization of the host and, importantly, that loss of flagellar motility enables phagocytic evasion. Here we use molecular, cellular, and genetic methods to provide the first formal evidence that phagocytic cells recognize bacterial motility rather than flagella and initiate phagocytosis in response to this motility. We demonstrate that deletion of genes coding for the flagellar stator complex, which results in non-swimming bacteria that retain an initial flagellar structure, confers resistance to phagocytic binding and ingestion in several species of the gamma proteobacterial group of Gram-negative bacteria, indicative of a shared strategy for phagocytic evasion. Furthermore, we show for the first time that susceptibility to phagocytosis in swimming bacteria is proportional to mot gene function and, consequently, flagellar rotation since complementary genetically- and biochemically-modulated incremental decreases in flagellar motility result in corresponding and proportional phagocytic evasion. These findings identify that phagocytic cells respond to flagellar movement, which represents a novel mechanism for non-opsonized phagocytic recognition of pathogenic bacteria.  相似文献   

10.
11.
The predatory bacterium Bdellovibrio bacteriovorus uses flagellar motility to locate regions rich in Gram-negative prey bacteria, colliding and attaching to prey and then ceasing flagellar motility. Prey are then invaded to form a "bdelloplast" in a type IV pilus-dependent process, and prey contents are digested, allowing Bdellovibrio growth and septation. After septation, Bdellovibrio flagellar motility resumes inside the prey bdelloplast prior to its lysis and escape of Bdellovibrio progeny. Bdellovibrio can also grow slowly outside prey as long flagellate host-independent (HI) cells, cultured on peptone-rich media. The B. bacteriovorus HD100 genome encodes three pairs of MotAB flagellar motor proteins, each of which could potentially form an inner membrane ion channel, interact with the FliG flagellar rotor ring, and produce flagellar rotation. In 2004, Flannagan and coworkers (R. S. Flannagan, M. A. Valvano, and S. F. Koval, Microbiology 150:649-656, 2004) used antisense RNA and green fluorescent protein (GFP) expression to downregulate a single Bdellovibrio motA gene and reported slowed release from the bdelloplast and altered motility of the progeny. Here we inactivated each pair of motAB genes and found that each pair contributes to motility, both predatorily, inside the bdelloplast and during HI growth; however, each pair was dispensable, and deletion of no pair abolished motility totally. Driving-ion studies with phenamil, carbonyl cyanide m-chlorophenylhydrazone (CCCP), and different pH and sodium conditions indicated that all Mot pairs are proton driven, although the sequence similarities of each Mot pair suggests that some may originate from halophilic species. Thus, Bdellovibrio is a "dedicated motorist," retaining and expressing three pairs of mot genes.  相似文献   

12.
13.
14.
15.
16.
Role of two flagellin genes in Campylobacter motility.   总被引:30,自引:12,他引:18       下载免费PDF全文
Campylobacter coli VC167 T2 has two flagellin genes, flaA and flaB, which share 91.9% sequence identity. The flaA gene is transcribed from a o-28 promoter, and the flaB gene from a o-54 promoter. Gene replacement mutagenesis techniques were used to generate flaA+ flaB and flaA flaB+ mutants. Both gene products are capable of assembling independently into functional filaments. A flagellar filament composed exclusively of the flaA gene product is indistinguishable in length from that of the wild type and shows a slight reduction in motility. The flagellar filament composed exclusively of the flaB gene product is severely truncated in length and greatly reduced in motility. Thus, while both flagellins are not necessary for motility, both products are required for a fully active flagellar filament. Although the wild-type flagellar filament is a heteropolymer of the flaA and flaB gene products, immunogold electron microscopy suggests that flaB epitopes are poorly surface exposed along the length of the wild-type filament.  相似文献   

17.
18.
19.
Regulation cascade of flagellar expression in Gram-negative bacteria   总被引:21,自引:0,他引:21  
Flagellar motility helps bacteria to reach the most favourable environments and to successfully compete with other micro-organisms. These complex organelles also play an important role in adhesion to substrates, biofilm formation and virulence process. In addition, because their synthesis and functioning are very expensive for the cell (about 2% of biosynthetic energy expenditure in Escherichia coli) and may induce a strong immune response in the host organism, the expression of flagellar genes is highly regulated by environmental conditions. In the past few years, many data have been published about the regulation of motility in polarly and laterally flagellated bacteria. However, the mechanism of motility control by environmental factors and by some regulatory proteins remains largely unknown. In this respect, recent experimental data suggest that the master regulatory protein-encoding genes at the first level of the cascade are the main target for many environmental factors. This mechanism might require DNA topology alterations of their regulatory regions. Finally, despite some differences the polar and lateral flagellar cascades share many functional similarities, including a similar hierarchical organisation of flagellar systems. The remarkable parallelism in the functional organisation of flagellar systems suggests an evolutionary conservation of regulatory mechanisms in Gram-negative bacteria.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号