首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Tansley Review No. 116   总被引:3,自引:0,他引:3  
  相似文献   

3.
Tansley Review No. 105.   总被引:3,自引:0,他引:3  
  相似文献   

4.
Heterocyst formation in cyanobacteria   总被引:8,自引:0,他引:8  
When deprived of combined nitrogen, many filamentous cyanobacteria develop a one-dimensional pattern of specialised nitrogen-fixing cells, known as heterocysts. Recent years have seen the identification and characterisation of some of the key genes and proteins involved in heterocyst development and spacing, including the positive regulator HetR and the diffusible inhibitor PatS.  相似文献   

5.
6.
The effects of temperature, light intensity and nutrient depletion on akinete formation in seven strains of planktonic Anabaena spp.: A. mucosa TAC426; A. crassa TAC436; A. spiroides TAC443 and TAC444; A. flosaquae TAC446; and A. ucrainica TAC448 and TAC449 were examined. A Marked Pfft of temperature on akinete formation was observed at 40 μmol photons·m?2·sec?1 and nutrient-sufficient conditions. At 20° C, akinetes did not develop in A. mucosa TAC426, A. crassa TAC436, A. spiroides TAC443, A. flos-aquae TAC446, or A. ucrainica TAC449 but were formed at frequencies of a little over 11% (ratio of filaments with akinetes to total filaments) in A. spiroides TAC444 and A. ucrainica TAC448. None of the strains fmd akinetes or heterocysts at 30° C and 35° C. At lower temperature (10° C and 15° C), akinetes developed in all the strains at maximum frequencies of 13.4–77.4% during the late exponential phase or late exponential to stationary phases of growth. With only one exception, low light or nutrient deletion did not lead to the induction of akinete diferentiation at 20° C. Only akinete formation in A. flosaquae TAC446 was induced by nitrogen deletion with a frequency of 12.1%, similar to that induced by low temperature, but the initiation of akinete formation in the strain was delayed compared to treatment with low temperature. These results show that temperature was the most important environmental factor triggering akinete formation in these species. In A. crassa TAC436 and A. spiroides TAC443 and TAC444, akinetes developed during the late exponential growth phase even though heterocysts were formed at a 100% frequency (ratio of filaments with heterocysts to total filaments) throughout the entire growth phase. In A. mucosa TAC426, A. flos-aquae TAC446, and A. ucrainica TAC448 and TAC449, there was a positive correlation between heterocyst and akinete formation, suggesting that the presence of a heterocyst may play a role in akinete formation.  相似文献   

7.
8.
Tansley Review No. 111   总被引:3,自引:0,他引:3  
  相似文献   

9.
Tansley Review No. 106   总被引:1,自引:0,他引:1  
For three decades, hypotheses relating to the occurrence and function of cyclic nucleotides in higher plants have been highly controversial. Although cyclic nucleotides had been shown to have key regulatory roles in animals and bacteria, investigations with higher plants in the 1970s and early 1980s were criticized on the basis of (i) a lack of specificity of effects apparently elicited by cyclic nucleotides, (ii) the equivocal identification of putative endogenous cyclic nucleotides and (iii) ambiguity in the identification of enzymes connected with cyclic nucleotide. More recent evidence based on more rigorous identification procedures has demonstrated conclusively the presence of cyclic nucleotides, nucleotidyl cyclases and cyclic nucleotide phosphodiesterases in higher plants, and has identified plant processes subject to regulation by cyclic nucleotides. Here we review the history of the debate, the recent evidence establishing the presence of these compounds and their role; future research objectives are discussed.  相似文献   

10.
Tansley Review No. 108   总被引:2,自引:0,他引:2  
  相似文献   

11.
Tansley Review No. 104   总被引:9,自引:0,他引:9  
  相似文献   

12.
13.
14.
Tansley Review No. 82   总被引:2,自引:1,他引:1  
  相似文献   

15.
Tansley Review No. 113   总被引:1,自引:0,他引:1  
  相似文献   

16.
Tansley Review No. 117   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
19.
Tansley Review No. 119   总被引:2,自引:0,他引:2  
  相似文献   

20.
Tansley Review No. 110.   总被引:1,自引:0,他引:1  
S UMMARY 367
I. I NTRODUCTION 367
II. N UMBER 368
III. S IZE 379
IV. A IR SPACE IN THE SEEDS 381
V. F LOATATION AND DISPERSAL 383
1. Air 383
(a) Physical considerations 383
(b) Dispersal 387
(c) Birds 415
2. Water 416
(a) Physical considerations 416
(b) Dispersal 416
VI. C ONCLUSIONS 417
Acknowledgements 417
References 418
Orchid seeds are very small, extremely light and produced in great numbers. Most range in length from c . 0.05 to 6.0 mm, with the difference between the longest and shortest known seeds in the family being 120-fold. The 'widest' seed at 0.9 mm is 90-fold wider than the 'thinnest' one, which measures 0.01 mm (because orchid seeds are tubular or balloon-like, 'wide' and 'thin' actually refer to diameter). Known seed weights extend from 0.31 lg to 24 μg (a 78-fold difference). Recorded numbers of seeds per fruit are as high as 4000000 and as low as 20–50 (80000–200000-fold difference). Testae are usually transparent, with outer cell walls that may be smooth or reticulated. Ultrasonic treatments enhance germination, which suggests that the testae can be restrictive. Embryos are even smaller: their volume is substantially smaller than that of the testa. As a result, orchid seeds have large internal air spaces that render them balloon-like. They can float in the air for long periods, a property that facilitates long-distance dispersal. The difficult-to-wet outer surfaces of the testa and large internal air spaces enable the seeds to float on water for prolonged periods. This facilitates distribution through tree effluates and/or small run-off rivulets that may follow rains. Due to their size and characteristics, orchid seeds may also be transported in and on land animals and birds (in fur, feathers or hair, mud on feet, and perhaps also following ingestion).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号