首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Helices 4 and 5 of the Bacillus thuringiensis Cry4Ba delta-endotoxin have been shown to be important determinants for mosquito-larvicidal activity, likely being involved in membrane-pore formation. In this study, the Cry4Ba mutant protein containing an additional engineered tryptic cleavage site was used to produce the alpha4-alpha5 hairpin peptide by an efficient alternative strategy. Upon solubilization of toxin inclusions expressed in Escherichia coli and subsequent digestion with trypsin, the 130-kDa mutant protoxin was processed to protease-resistant fragments of ca. 47, 10 and 7 kDa. The 7-kDa fragment was identified as the alpha4-loop-alpha5 hairpin via N-terminal sequencing and mass spectrometry, and was successfully purified by size-exclusion FPLC and reversed-phase HPLC. Using circular dichroism spectroscopy, the 7-kDa peptide was found to exist predominantly as an alpha-helical structure. Membrane perturbation studies by using fluorimetric calcein-release assays revealed that the 7-kDa helical hairpin is highly active against unilamellar liposomes compared with the 65-kDa activated full-length toxin. These results directly support the role of the alpha4-loop-alpha5 hairpin in membrane perturbation and pore formation of the full-length Cry4Ba toxin.  相似文献   

2.
The crystal insecticidal proteins from Bacillus thuringiensis are modular proteins comprised of three domains connected by single linkers. Domain I is a seven alpha-helix bundle, which has been involved in membrane insertion and pore formation activity. Site-directed mutagenesis has contributed to identify regions that might play an important role in the structure of the pore-forming domain within the membrane. There are several evidences that support that the hairpin alpha4-alpha5 inserts into the membrane in an antiparallel manner, while other helices lie on the membrane surface. We hypothesized that highly conserved residues of alpha5 could play an important role in toxin insertion, oligomerization and/or pore formation. A total of 15 Cry1Ab mutants located in six conserved residues of Cry1Ab, Y153, Y161, H168, R173, W182 and G183, were isolated. Eleven mutants were located within helix alpha5, one mutant was located in the loop alpha4-alpha5 and three mutants, W182P, W182I and G183C, were located in the loop alpha5-alpha6. Their effect on binding, K(+) permeability and toxicity against Manduca sexta larvae was analyzed and compared. The results provide direct evidence that some residues located within alpha5 have an important role in stability of the toxin within the insect gut, while some others also have an important role in pore formation. The results also provide evidence that conserved residues within helix alpha5 are not involved in oligomer formation since mutations in these residues are able to make pores in vitro.  相似文献   

3.
The widely accepted model for toxicity mechanisms of the Bacillus thuringiensis Cry delta-endotoxins suggests that helices alpha4 and alpha5 form a helix-loop-helix hairpin structure to initiate membrane insertion and pore formation. In this report, alanine substitutions of two polar amino acids (Asn-166 and Tyr-170) and one charged residue (Glu-171) within the alpha4-alpha5 loop of the 130-kDa Cry4B mosquito-larvicidal protein were initially made via polymerase chain reaction-based directed mutagenesis. As with the wild-type toxin, all of the mutant proteins were highly expressed in Escherichia coli as inclusion bodies upon isopropyl-beta-Dthiogalactopyranoside induction. When E. coli cells expressing each mutant toxin were assayed against Aedes aegypti mosquito larvae, the activity was almost completely abolished for N166A and Y170A mutations, whereas E171A showed only a small reduction in toxicity. Further analysis of these two critical residues by induction of specific mutations revealed that polarity at position 166 and highly conserved aromaticity at position 170 within the alpha4-alpha5 loop play a crucial role in the larvicidal activity of the Cry4B toxin.  相似文献   

4.
Membrane-insertion fragments of Bcl-xL, Bax, and Bid   总被引:8,自引:0,他引:8  
Apoptosis regulators of the Bcl-2 family associate with intracellular membranes from mitochondria and the endoplasmic reticulum, where they perform their function. The activity of these proteins is related to the release of apoptogenic factors, sequestered in the mitochondria, to the cytoplasm, probably through the formation of ion and/or protein transport channels. Most of these proteins contain a C-terminal putative transmembrane (TM) fragment and a pair of hydrophobic alpha helices (alpha5-alpha6) similar to the membrane insertion fragments of the ion-channel domain of diphtheria toxin and colicins. Here, we report on the membrane-insertion properties of different segments from antiapoptotic Bcl-x(L) and proapoptotic Bax and Bid, that correspond to defined alpha helices in the structure of their soluble forms. According to prediction methods, there are only two putative TM fragments in Bcl-x(L) and Bax (the C-terminal alpha helix and alpha-helix 5) and one in activated tBid (alpha-helix 6). The rest of their sequence, including the second helix of the pore-forming domain, displays only weak hydrophobic peaks, which are below the prediction threshold. Subsequent analysis by glycosylation mapping of single alpha-helix segments in a model chimeric system confirms the above predictions and allows finding an extra TM fragment made of helix alpha1 of Bax. Surprisingly, the amphipathic helices alpha6 of Bcl-x(L) and Bax and alpha7 of Bid do insert in membranes only as part of the alpha5-alpha6 (Bcl-x(L) and Bax) or alpha6-alpha7 (Bid) hairpins but not when assayed individually. This behavior suggests a synergistic insertion and folding of the two helices of the hairpin that could be due to charge complementarity and additional stability provided by turn-inducing residues present at the interhelical region. Although these data come from chimeric systems, they show direct potentiality for acquiring a membrane inserted state. Thus, the above fragments should be considered for the definition of plausible models of the active, membrane-bound species of Bcl-2 proteins.  相似文献   

5.
D Espesset  D Duch  D Baty    V Gli 《The EMBO journal》1996,15(10):2356-2364
A bacterial signal sequence was fused to the colicin A pore-forming domain: the exported pore-forming domain was highly cytotoxic. We thus introduced a cysteine-residue pair in the fusion protein which has been shown to form a disulfide bond in the natural colicin A pore-forming domain between alpha-helices 5 and 6. Formation of the disulfide bond prevented the cytotoxic activity of the fusion protein, presumably by preventing the membrane insertion of helices 5 and 6. However, the cytotoxicity of the disulfide-linked pore-forming domain was reactivated by adding dithiothreitol into the culture medium. We were then able to co-produce the immunity protein with the disulfide linked pore-forming domain, by using a co-immunoprecipitation procedure, in order to show that they interact. We showed both proteins to be co-localized in the Escherichia coli inner membrane and subsequently co-immunoprecipitated them. The interaction required a functional immunity protein. The immunity protein also interacted with a mutant form of the pore-forming domain carrying a mutation located in the voltage-gated region: this mutant was devoid of pore-forming activity but still inserted into the membrane. Our results indicate that the immunity protein interacts with the membrane-anchored channel domain; the interaction requires a functional membrane-inserted immunity protein but does not require the channel to be in the open state.  相似文献   

6.
Lai B  Zhao G  London E 《Biochemistry》2008,47(15):4565-4574
Diphtheria toxin T domain aids the membrane translocation of diphtheria toxin A chain. When the isolated T domain is deeply membrane-inserted, helices TH 8-9 form a transmembrane hairpin, while helices TH 5-7 form a deeply inserted nontransmembrane structure. Blocking deep insertion of TH 8-9 blocks deep insertion of TH 5-7 ( Zhao, G., and London, E. ( 2005) Biochemistry 44, 4488- 4498 ). We now examine the effects of blocking the deep insertion of TH 5 and TH 6/7. An A282R/V283R dual substitution in TH 5 prevented its deep insertion, significantly decreased the deep insertion of TH 9, and to a lesser degree that of TH 6/7. Blocking deep insertion of TH 6/7 with a L307R mutation had no effect on the deep insertion of TH 5, similar to its previously characterized lack of effect on the deep insertion of TH 8-9. An I364K mutation in TH 9 blocked TH 8-9 deep insertion and greatly reduced pore formation by the T domain, consistent with the role of TH 8-9 in pore formation. The A282R/V283R mutations also reduced the extent of pore formation, but to a lesser degree, suggesting either that TH 5 is part of the pore or that interactions with TH 5 affect the ability of TH 8-9 to form pores. The L307R mutation enhanced the extent of pore formation, suggesting that deeply inserted TH 6/7 may act as a "cork" that partly blocks the pore. Combined, these results indicate that TH 5, 8, and 9 combine to form a deeply inserted scaffold of more strongly associated helices.  相似文献   

7.
The Bacillus thuringiensis insecticidal delta-endotoxins have a three-domain structure, with the seven amphipathic helices which comprise domain I being essential for toxicity. To better define the function of these helices in membrane insertion and toxicity, either site-directed or random mutagenesis of two regions was performed. Thirty-nucleotide segments in the B. thuringiensis cry1Ac1 gene, encoding parts of helix alpha4 and the loop connecting helices alpha4 and alpha5, were randomly mutagenized. This hydrophobic region of the toxin probably inserts into the membrane as a hairpin. Site-directed mutations were also created in specific surface residues of helix alpha3 in order to increase its hydrophobicity. Among 12 random mutations in helix alpha4, 5 resulted in the total loss of toxicity for Manduca sexta and Heliothis virescens, another caused a significant increase in toxicity, and one resulted in decreased toxicity. None of the nontoxic mutants was altered in toxin stability, binding of toxin to a membrane protein, or the ability of the toxin to aggregate in the membrane. Mutations in the loop connecting helices alpha4 and alpha5 did not affect toxicity, nor did mutations in alpha3, which should have enhanced the hydrophobic properties of this helix. In contrast to mutations in helix alpha5, those in helix alpha4 which inactivated the toxin did not affect its capacity to oligomerize in the membrane. Despite the formation of oligomers, there was no ion flow as measured by light scattering. Helix alpha5 is important for oligomerization and perhaps has other functions, whereas helix alpha4 must have a more direct role in establishing the properties of the channel.  相似文献   

8.
Helix alpha4 of Bacillus thuringiensis Cry toxins is thought to line the lumen of the pores they form in the midgut epithelial cells of susceptible insect larvae. To define its functional role in pore formation, most of the alpha4 amino acid residues were replaced individually by a cysteine in the Cry1Aa toxin. The toxicities and pore-forming abilities of the mutated toxins were examined, respectively, by bioassays using neonate Manduca sexta larvae and by a light-scattering assay using midgut brush border membrane vesicles isolated from M. sexta. A majority of these mutants had considerably reduced toxicities and pore-forming abilities. Most mutations causing substantial or complete loss of activity map on the hydrophilic face of the helix, while most of those having little or only relatively minor effects map on its hydrophobic face. The properties of the pores formed by mutants that retain significant activity appear similar to those of the pores formed by the wild-type toxin, suggesting that mutations resulting in a loss of activity interfere mainly with pore formation.  相似文献   

9.
Perfringolysin O (PFO), a water-soluble monomeric cytolysin secreted by pathogenic Clostridium perfringens, oligomerizes and forms large pores upon encountering cholesterol-containing membranes. Whereas all pore-forming bacterial toxins examined previously have been shown to penetrate the membrane using a single amphipathic beta hairpin per polypeptide, cysteine-scanning mutagenesis and multiple independent fluorescence techniques here reveal that each PFO monomer contains a second domain involved in pore formation, and that each of the two amphipathic beta hairpins completely spans the membrane. In the soluble monomer, these transmembrane segments are folded into six alpha helices. The insertion of two transmembrane hairpins per toxin monomer and the major change in secondary structure are striking and define a novel paradigm for the mechanism of membrane insertion by a cytolytic toxin.  相似文献   

10.
BACKGROUND: Membrane pore-forming toxins have a remarkable property: they adopt a stable soluble form structure, which, when in contact with a membrane, undergoes a series of transformations, leading to an active, membrane-bound form. In contrast to bacterial toxins, no structure of a pore-forming toxin from an eukaryotic organism has been determined so far, an indication that structural studies of equinatoxin II (EqtII) may unravel a novel mechanism. RESULTS: The crystal structure of the soluble form of EqtII from the sea anemone Actinia equina has been determined at 1.9 A resolution. EqtII is shown to be a single-domain protein based on a 12 strand beta sandwich fold with a hydrophobic core and a pair of alpha helices, each of which is associated with the face of a beta sheet. CONCLUSIONS: The structure of the 30 N-terminal residues is the largest segment that can adopt a different structure without disrupting the fold of the beta sandwich core. This segment includes a three-turn alpha helix that lies on the surface of a beta sheet and ends in a stretch of three positively charged residues, Lys-30, Arg-31, and Lys-32. On the basis of gathered data, it is suggested that this segment forms the membrane pore, whereas the beta sandwich structure remains unaltered and attaches to a membrane as do other structurally related extrinsic membrane proteins or their domains. The use of a structural data site-directed mutagenesis study should reveal the residues involved in membrane pore formation.  相似文献   

11.
Dimeric interactions among anti- and pro-apoptotic members of the BCL-2 protein family are dynamically regulated and intimately involved in survival and death functions. We report the structure of a BCL-X(L) homodimers a 3D-domain swapped dimer (3DDS). The X-ray crystal structure demonstrates the mutual exchange of carboxy-terminal regions including BH2 (Bcl-2 homology 2) between monomer subunits, with the hinge region occurring at the hairpin turn between the fifth and sixth alpha helices. Both BH3 peptide-binding hydrophobic grooves are unoccupied in the 3DDS dimer and available for BH3 peptide binding, as confirmed by sedimentation velocity analysis. BCL-X(L) 3DDS dimers have increased pore-forming activity compared to monomers, suggesting that 3DDS dimers may act as intermediates in membrane pore formation. Chemical crosslinking studies of Cys-substituted BCL-X(L) proteins demonstrate that 3DDS dimers form in synthetic lipid vesicles.  相似文献   

12.
Rosconi MP  Zhao G  London E 《Biochemistry》2004,43(28):9127-9139
Low pH-induced membrane insertion by diphtheria toxin T domain is crucial for A chain translocation into the cytoplasm. To define the membrane topography of the T domain, the exposure of biotinylated Cys residues to the cis and trans bilayer surfaces was examined using model membrane vesicles containing a deeply inserted T domain. To do this, the reactivity of biotin with external and vesicle-entrapped BODIPY-labeled streptavidin was measured. The T domain was found to insert with roughly 70-80% of the molecules in the physiologically relevant orientation. In this orientation, residue 349, located in the loop between hydrophobic helices 8 and 9, was exposed to the trans side of the bilayer, while other solution-exposed residues along the hydrophobic helices 5-9 region of the T domain located near the cis surface. A protocol developed to detect the movement of residues back and forth across the membranes demonstrated that T domain sequences did not rapidly equilibrate between the cis and the trans sides of the bilayer. Binding streptavidin to biotinylated residues prior to membrane insertion only inhibited T domain pore formation for residues in the loop between helices 8 and 9. Pore formation experiments used an approach avoiding interference from transient membrane defects/leakage that may occur upon the initial insertion of protein. Combined, these results indicate that at low pH hydrophobic helices 8 and 9 form a transmembrane hairpin, while hydrophobic helices 5-7 form a nonclassical deeply inserted nontransmembraneous state. We propose that this represents a novel pre-translocation state that is distinct from a previously defined post-translocation state.  相似文献   

13.
The pore-forming domain of colicin A (pfColA) fused to a prokaryotic signal peptide (sp-pfColA) is transported across and inserts into the inner membrane of Escherichia coli from the periplasmic side and forms a functional channel. The soluble structure of pfColA consists of a ten-helix bundle containing a hydrophobic helical hairpin. Here, we generated a series of mutants in which an increasing number of sp-pfColA alpha-helices was deleted. These peptides were tested for their ability to form ion channels in vivo and in vitro. We found that the shortest sp-pfColA mutant protein that killed Escherichia coli was composed of the five last alpha-helices of sp-pfColA, whereas the shortest peptide that formed a channel in planar lipid bilayer membranes similar to that of intact pfColA was the protein composed of the last six alpha-helices. The peptide composed of the last five alpha-helices of pfColA generated a voltage-independent conductance in planar lipid bilayer with properties very different from that of intact pfColA. Thus, helices 1 to 4 are unnecessary for channel formation, while helix 5, or some part of it, is important but not absolutely necessary. Voltage-dependence of colicin is evidently controlled by the first four alpha-helices of pfColA.  相似文献   

14.
The pro-apoptotic protein Bax is instable in many cancer cells but the mechanism of Bax degradation remains unclear. Four different lengths of deductive Bax degradation sensitive (BDS) sequences within BH3-BH1 region, BDS-1 (Bax 67-124), BDS-3 (Bax 74-107), BDS-5 (Bax 67-107), and BDS-7 (Bax 74-124), were tested for the susceptibility to ubiquitin-dependent degradation. Both BDS-1 and BDS-7 which contain the α5 helix, a putative pore-forming domain of Bax, are sensitive to proteasome-dependent degradation and ubiquitin-conjugation. The Bax α5-deletion mutant (Bax-Δα5) was stable and also maintained its apoptosis-inducing ability. Deletion of helices α1 and part of α2 (Bax-Δ1-66) or helices α3 and α4 (Bax-Δα3,4) did not affect the sensitivity to degradation. However, Bax-Δ1-66 mutant was not able to induce apoptosis. Thus, we propose that the α5 helix of Bax is sensitive to ubiquitin-dependent degradation. Moreover, Bax mutant retains its pro-apoptosis ability when the α5 helix is deleted.  相似文献   

15.
Cry4Ba, isolated from Bacillus thuringiensis subsp. israelensis, is specifically toxic to the larvae of Aedes and Anopheles mosquitoes. The structure of activated Cry4Ba toxin has been determined by multiple isomorphous replacement with anomalous scattering and refined to R(cryst) = 20.5% and R(free)= 21.8% at 1.75 Angstroms resolution. It resembles previously reported Cry toxin structures but shows the following distinctions. In domain I the helix bundle contains only the long and amphipathic helices alpha3-alpha7. The N-terminal helices alpha1-alpha2b, absent due to proteolysis during crystallisation, appear inessential to toxicity. In domain II the beta-sheet prism presents short apical loops without the beta-ribbon extension of inner strands, thus placing the receptor combining sites close to the sheets. In domain III the beta-sandwich contains a helical extension from the C-terminal strand beta23, which interacts with a beta-hairpin excursion from the edge of the outer sheet. The structure provides a rational explanation of recent mutagenesis and biophysical data on this toxin. Furthermore, added to earlier structures from the Cry toxin family, Cry4Ba completes a minimal structural database covering the Coleoptera, Lepidoptera, Diptera and Lepidoptera/Diptera specificity classes. A multiple structure alignment found that the Diptera-specific Cry4Ba is structurally more closely similar to the Lepidoptera-specific Cry1Aa than the Coleoptera-specific Cry3Aa, but most distantly related to Lepidoptera/Diptera-specific Cry2Aa. The structures are most divergent in domain II, supporting the suggestion that this domain has a major role in specificity determination. They are most similar in the alpha3-alpha7 major fragment of domain I, which contains the alpha4-alpha5 hairpin crucial to pore formation. The collective knowledge of Cry toxin structure and mutagenesis data will lead to a more critical understanding of the structural basis for receptor binding and pore formation, as well as allowing the scope of diversity to be better appreciated.  相似文献   

16.
A critical process in apoptosis is the permeabilization of the mitochondrial outer membrane (MOM). This process is known to be regulated by the multi-domain Bcl-2 family proteins. For example, the pro-apoptotic proteins Bax and Bak are responsible for forming pores at MOM. The anti-apoptotic proteins (including Bcl-2, Mcl-1 and Bcl-xL), on the other hand, can inhibit this pore-forming process. Interestingly, although these two subgroups of proteins perform opposite apoptotic functions, their structures are very similar. This raises two highly interesting questions: (1) Why do these structurally similar proteins play opposite roles in apoptosis? (2) What are the roles of different functional domains of a Bcl-2 family protein in determining its apoptotic property? In this study, we generated a series of deletion mutants and substitution chimera, and used a combination of molecular biology, bio-informatics and living cell imaging techniques to answer these questions. Our major findings are: (1) All of the Bcl-2 family proteins appear to possess an intrinsic pro-apoptotic property. (2) The N-termini of these proteins play an active role in suppressing their pro-apoptotic function. (3) The apoptotic potency is positively correlated with membrane affinity of the alpha 5/6 helix domains. (4) Charge distribution flanking the alpha 5/6 helices is also important for the apoptotic potency. These findings explain why different members of Bcl-2 family proteins with similar domain composition can function oppositely in the apoptotic process.  相似文献   

17.
Prieto L  Lazaridis T 《Proteins》2011,79(1):126-141
Colicins are water-soluble toxins that, upon interaction with membranes, undergo a conformational change, insert, and form pores in them. Pore formation activity is localized in a bundle of 10 α-helices named the pore-forming domain (PFD). There is evidence that colicins attach to the membrane via a hydrophobic hairpin embedded in the core of the PFD. Two main models have been suggested for the membrane-bound state: penknife and umbrella, differing in regard to the orientation of the hydrophobic hairpin with respect to the membrane. The arrangement of the amphipathic helices has been described as either a compact three-dimensional structure or a two-dimensional array of loosely interacting helices on the membrane surface. Using molecular dynamics simulations with an implicit membrane model, we studied the structure and stability of the conformations proposed earlier for four colicins. We find that colicins are initially driven towards the membrane by electrostatic interactions between basic residues and the negatively charged membrane surface. They do not have a unique binding orientation, but in the predominant orientations the central hydrophobic hairpin is parallel to the membrane. In the inserted state, the estimated free energy tends to be lower for the compact arrangements of the amphipathic helix, but the more expanded ones are in better agreement with experimental distance distributions. The difference in energy between penknife and umbrella conformations is small enough for equilibrium to exist between them. Elongation of the hydrophobic hairpin helices and membrane thinning were found unable to produce stabilization of the transmembrane configuration of the hydrophobic hairpin.  相似文献   

18.
The crystal (Cry) insecticidal toxins, or delta-endotoxins, are lethal to a wide variety of insect larvae, and are therefore very important in insect control. Toxicity has been explained by formation of transmembrane oligomeric pores or ion channels and, more recently, by the ability of the monomeric toxin to subvert cellular signaling pathways. The structure, topology, and precise role of the putative pore in toxicity are not known. However, in vitro biophysical studies suggest that helices alpha4 and alpha5 in domain I insert into the lipid bilayer as an alpha-helical hairpin. Mutagenesis studies have assigned an important role to alpha5 in maintaining oligomerization, and to alpha4 in channel formation. To detect the possible homo-oligomerizing tendencies of these two helices, we have used the evolutionary conservation data contained in sixteen Cry homologs in order to filter non-native interactions found during a global conformational search. No conserved homo-oligomer was found for alpha4, but a right handed trimeric alpha5 model was present in the simulations of all Cry sequences. We propose a model for Cry toxin oligomerization based on sequence analysis and available mutagenesis data.  相似文献   

19.
Zhao G  London E 《Biochemistry》2005,44(11):4488-4498
Diphtheria toxin T domain aids the translocation of toxin A chain across membranes. T domain has two hydrophobic layers/subdomains that can insert deeply into membranes: helices TH8 and 9, which form a transmembrane hairpin, and helices TH5-7, which form a nonclassical, nontransmembrane structure. Substitutions were made at Pro345, a residue located near the turn between TH8 and 9. P345 is critical for toxicity and pore formation by the T domain. Fluorescence methods showed that hairpin-disrupting Gly or Glu substitutions at 345 did not insert into lipid bilayers as deeply as the wild-type protein, and consistent with previous studies, these mutations reduced pore formation activity as assayed by a novel biotin-streptavidin-based influx assay. Introducing Pro at positions 347 or 353 not only failed to compensate for substitutions at P345, but also they further disrupted deep insertion and/or pore formation. Substitution of P345 with Asn, a residue that promotes helical hairpin formation almost as well as Pro, resulted in somewhat more normal insertion and pore formation than other substitutions. Importantly, a P345E substitution disrupted deep insertion of TH5-7. This suggests that TH8 and 9 and TH5-7 undergo some sort of coordinated insertion into the lipid bilayer and/or that the membrane-inserted T domain has a distinct tertiary structure in which TH5-7 interact with TH8 and 9 instead of consisting of noninteracting hydrophobic segments. Intriguingly, a L307R substitution in TH6, which disrupted deep insertion of TH7, had only a weak effect on pore formation and deep insertion of TH8 and 9. This suggests that the TH8 and 9 region can insert independently of TH5-7 to some degree and that TH8 and 9 insertion may occur early in T-domain insertion.  相似文献   

20.
Despite being synthesized in the cytosol without a leader sequence, the soluble 253-residue mammalian protein CLIC4 (Chloride Intracellular Channel 4, or p64H1), a structural homologue of Omega-type glutathione-S-transferase, autoinserts into membranes to form an integral membrane protein with ion channel activity. A predicted transmembrane domain (TMD) near the N-terminus of CLIC4 could mediate membrane insertion, and contribute to oligomeric pores, with minimal reorganization of the soluble protein structure. We tested this idea by reconstituting recombinant CLIC4 in planar bilayers containing phosphatidyethanolamine, phosphatidylserine and cholesterol, recording ion channels with a maximum conductance of approximately 15 pS in KCl under both oxidizing and reducing conditions. The channels discriminated poorly between anions and cations, incompatible with the current "CLIC" nomenclature, and their conductance was modified by the trans (external or luminal) redox potential, as previously observed for CLIC1. We then reconstituted a truncated version of the protein, limited to the first 61 residues containing the predicted TMD. This included a single trans cysteine residue in the putative pore-forming subunits, at the external entrance to the pore. The truncated protein formed non-selective channels with a reduced conductance, but they retained their trans-redox sensitivity, and could still be blocked or inactivated by trans (not cis) thiol-reative dithiobisnitrobenzoic acid. We suggest that oligomers containing the putative TMD are essential components of the CLIC4 pore. However, the pore is inherently non-selective, and any ionic selectivity in CLIC4 (and other membrane CLICs) may be attributable to other regions of the protein, including the channel vestibules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号