首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Milligan JR  Tran NQ  Ly A  Ward JF 《Biochemistry》2004,43(17):5102-5108
Guanyl radical species are produced in DNA by electron removal caused by ionizing radiation, photoionization, oxidation, or photosensitization. DNA guanyl radicals can be reduced by electron donation from mild reducing agents. Important biologically relevant examples are the redox active amino acids cysteine, cystine, methionine, tryptophan, and tyrosine. We have quantified the reactivity of derivatives of these amino acids with guanyl radicals located in plasmid DNA. The radicals were produced by electron removal using the single electron oxidizing agent (SCN)(2)(*)(-). Disulfides (cystine) are unreactive. Thioethers (methionine), thiols (cysteine), and phenols (tyrosine) react with rate constants in the range 10(4)-10(6), 10(5)-10(6), and 10(5)-10(6) dm(3) mol(-1) s(-1), respectively. Indoles (tryptophan) are the most reactive with rate constants of 10(7)-10(8) dm(3) mol(-1) s(-1). Selenium analogues of amino acids are over an order of magnitude more reactive than their sulfur equivalents. Increasing positive charge is associated with a ca. 10-fold increase in reactivity. The results suggest that amino acid residues located close to DNA (for example, in DNA binding proteins such as histones) might participate in the repair of oxidative DNA damage.  相似文献   

2.
The cell's susceptibility to DNA damage and its ability to repair this damage are important for cancer induction, promotion and progression. In the present work we determined the level of basal (total endogenous) and endogenous oxidative DNA damage as well as polymorphism of the DNA repair genes: RAD51 (135 G/C), XRCC3 (Thr241Met), OGG1 (Ser326Cys) and XPD (Lys751Gln) in peripheral blood lymphocytes of 41 breast cancer patients and 48 healthy individuals. DNA damage was evaluated by alkaline comet assay with DNA repair enzymes: Endo III and Fpg, preferentially recognizing oxidized DNA bases. The genotypes of the polymorphisms were determined by restriction fragment length polymorphism PCR. We observed a strong association between breast cancer occurrence and the genotypes C/C of the RAD51-135G/C polymorphism, Ser/Ser of the OGG1-Ser326Cys and Lys/Gln of the XPD-Lys751Gln, whereas the genotypes G/C of the RAD51-135G/C and Lys/Lys of the XPD-Lys751Gln exerted a protective effect against breast cancer. We also found that individuals with the G/C genotype of the RAD51-135G/C polymorphism and with the Lys/Lys genotype of the XPD-Lys751Gln polymorphism displayed a lower extent of basal and oxidative DNA damage. A strong association between higher level of oxidative DNA damage and the Lys/Gln genotype of the latter polymorphism was found. We also correlated genotypes with clinical characteristics of breast cancer patients. We observed a strong association between the G/C genotype of the RAD51-135 G/C polymorphism and the expression of the progesterone receptor and between both alleles of the OGG1-Ser326Cys polymorphism and lymph node metastasis. Our results suggest that the polymorphism of the RAD51, OGG1 and XPD genes may be linked with breast cancer by the modulation of the cellular response to oxidative stress and these polymorphisms may be considered as markers in breast cancer along with the genetic or/and environmental indicators of oxidative stress.  相似文献   

3.
Chemoresistance represents a major obstacle to the treatment of human cancers. Increased DNA repair capacity is one of the important mechanisms underlying chemoresistance. In silico analysis indicated that YTHDF1, an m6A binding protein, is a putative tumor promoter in breast cancer. Loss of function studies further showed that YTHDF1 promotes breast cancer cell growth in vitro and in vivo. YTHDF1 facilitates S-phase entry, DNA replication and DNA damage repair, and accordingly YTHDF1 knockdown sensitizes breast cancer cells to Adriamycin and Cisplatin as well as Olaparib, a PARP inhibitor. E2F8 is a target molecule by YTHDF1 which modulates E2F8 mRNA stability and DNA damage repair in a METTL14-dependent manner. These data demonstrate that YTHDF1 has a tumor-promoting role in breast cancer, and is a novel target to overcome chemoresistance.Subject terms: Breast cancer, Breast cancer  相似文献   

4.
Exposure of human (Hela) cells to the mutagens 4-nitroquinoline-1-oxide (4NQO) and N-methyl-N′-nitro-nitrosoguanidine (MNNG) produces damage in DNA that is repaired by a mechanism involving the insertion of new bases into DNA (repair replication). Vicia faba root tips, either from soaked seeds containing non-proliferating cells or from growing roots, do not perform detectable amounts of repair replication even though the mutagens inhibit DNA synthesis and cause chromosome aberrations. In view of similar failures to resolve excision in Chlamydomonas, Haplopappus, and Nicotiana after irradiation with UV light and in Vicia faba after X-irradiation it appears that plants in general might lack this repair process.  相似文献   

5.
Enhanced DNA damage repair capacity attenuates cell killing of DNA-damaging chemotherapeutic agents. In silico analysis showed that epithelial membrane protein 3 (EMP3) is associated with favorable survival, and negatively regulates cell cycle S-phase. Consistently, loss and gain of function studies demonstrated that EMP3 inhibits breast cancer cell S-phage entry, DNA replication, DNA damage repair, and stem-like properties. Moreover, EMP3 blocks Akt-mTOR signaling activation and induces autophagy. EMP3 negatively modulates BRCA1 and RAD51 expression, indicating EMP3 suppresses homologous recombination repair of DNA double-strand breaks. Accordingly, EMP3 sensitizes breast cancer cells to the DNA-damaging drug Adriamycin. EMP3 downregulates YTHDC1, a RNA-binding protein involved in m6a modification, which at least in part mediates the effects of EMP3 on breast cancer cells. Taken together, these data indicate that EMP3 is a putative tumor suppressor in breast cancer, and EMP3 downregulation may be responsible for breast cancer chemoresistance.Subject terms: Breast cancer, Cancer therapeutic resistance  相似文献   

6.
DNA damage response (DDR) is a regulatory system responsible for maintaining genome integrity and stability, which can sense and transduce DNA damage signals. The severity of damage appears to determine DDRs, which can include damage repair, cell-cycle arrest, and apoptosis. Furthermore, defective components in DNA damage and repair machinery are an underlying cause for the development and progression of various types of cancers. Increasing evidence indicates that there is an association between trace elements and DDR/repair mechanisms. In fact, trace elements seem to affect mediators of DDR. Besides, it has been revealed that oxidative stress (OS) and trace elements are associated with cancer development. In this review, we discuss the role of some critical trace elements in the risk of cancer. In addition, we provide a brief introduction on DDR and OS in cancer. Finally, we will further review the interactions between some important trace elements including selenium, zinc, chromium, cadmium, and arsenic, and DDR, and OS in cancer.  相似文献   

7.
8.
Oxidative damage to DNA caused by free radicals and other oxidants generate base and sugar damage, strand breaks, clustered sites, tandem lesions and DNA-protein cross-links. Oxidative DNA damage is mainly repaired by base-excision repair in living cells with the involvement of DNA glycosylases in the first step and other enzymes in subsequent steps. DNA glycosylases remove modified bases from DNA, generating an apurinic/apyrimidinic (AP) site. Some of these enzymes that remove oxidatively modified DNA bases also possess AP-lyase activity to cleave DNA at AP sites. DNA glycosylases possess varying substrate specificities, and some of them exhibit cross-activity for removal of both pyrimidine- and purine-derived lesions. Most studies on substrate specificities and excision kinetics of DNA glycosylases were performed using oligonucleotides with a single modified base incorporated at a specific position. Other studies used high-molecular weight DNA containing multiple pyrimidine- and purine-derived lesions. In this case, substrate specificities and excision kinetics were found to be different from those observed with oligonucleotides. This paper reviews substrate specificities and excision kinetics of DNA glycosylases for removal of pyrimidine- and purine-derived lesions in high-molecular weight DNA.  相似文献   

9.
Mitochondrial DNA repair of oxidative damage in mammalian cells   总被引:9,自引:0,他引:9  
Bohr VA  Stevnsner T  de Souza-Pinto NC 《Gene》2002,286(1):127-134
Nuclear and mitochondrial DNA are constantly being exposed to damaging agents, from endogenous and exogenous sources. In particular, reactive oxygen species (ROS) are formed at high levels as by-products of the normal metabolism. Upon oxidative attack of DNA many DNA lesions are formed and oxidized bases are generated with high frequency. Mitochondrial DNA has been shown to accumulate high levels of 8-hydroxy-2'-deoxyguanosine, the product of hydroxylation of guanine at carbon 8, which is a mutagenic lesion. Most of these small base modifications are repaired by the base excision repair (BER) pathway. Despite the initial concept that mitochondria lack DNA repair, experimental evidences now show that mitochondria are very proficient in BER of oxidative DNA damage, and proteins necessary for this pathway have been isolated from mammalian mitochondria. Here, we examine the BER pathway with an emphasis on mtDNA repair. The molecular mechanisms involved in the formation and removal of oxidative damage from mitochondria are discussed. The pivotal role of the OGG1 glycosylase in removal of oxidized guanines from mtDNA will also be examined. Lastly, changes in mtDNA repair during the aging process and possible biological implications are discussed.  相似文献   

10.
C Ishii  H Inoue 《Mutation research》1989,218(2):95-103
Double mutants were constructed combining mus-26, formerly designated uvs-(SA3B), with other UV-sensitive mutants. Tests of sensitivity of these double mutants to UV and to chemical mutagens revealed that mus-26 and upr-1 belong to the same epistatic group. The UV dose-response curve of mus-26 showed a characteristic plateau in the range of 100-200 J/m2. The same characteristic was also shown in the dose-response curves of upr-1 and the double mutant, upr-1 mus-26. Photoreactivation of UV damage in mus-26, upr-1 and upr-1 mus-26 was defective but not null. Assays were made of the reversion rate of ad-8 in strains that also carried UV-sensitive mutations. The reversion frequencies of the strains with upr-1 and upr-1 mus-26 were very low for the UV dose range below 300 J/m2, similarly to mus-26. Previously reported homozygous sterility of mus-26 was not caused by the mus-26 locus itself, and fertile strains were obtained among progeny. The results of this study suggest that mus-26 and upr-1 have similar properties in DNA repair.  相似文献   

11.
Since the discovery of 8-OH-dG formation, various aspects of oxidative DNA damage have been studied. For example, 2-OH-dA and a glyoxal-dG adduct were discovered as new types of oxidative DNA damage; 2-OH-dATP was found to induce mutations and to be a good substrate of a nucleotide sanitization enzyme, the MTH1 protein; and efforts were continued to establish standard methodologies for 8-OH-dG analyses in urine and cellular DNA. By these studies, we found solid chemistry-based approaches were often useful to clarify the biological phenomena.  相似文献   

12.
Human mismatch repair, drug-induced DNA damage, and secondary cancer   总被引:3,自引:0,他引:3  
Karran P  Offman J  Bignami M 《Biochimie》2003,85(11):1149-1160
DNA mismatch repair (MMR) is an important replication error avoidance mechanism that prevents mutation. The association of defective MMR with familial and sporadic gastrointestinal and endometrial cancer has been acknowledged for some years. More recently, it has become apparent that MMR defects are common in acute myeloid leukaemia/myelodysplastic syndrome (AML/MDS) that follows successful chemotherapy for a primary malignancy. Therapy-related haematological malignancies are often associated with treatment with alkylating agents. Their frequency is increasing and they now account for at least 10% of all AML cases. There is also evidence for an association between MMR deficient AML/MDS and immunosuppressive treatment with thiopurine drugs. Here we review how MMR interacts with alkylating agent and thiopurine-induced DNA damage and suggest possible ways in which MMR defects may arise in therapy-related AML/MDS.  相似文献   

13.
14.
Two related assays capable of determining cell extract repair activities for different oxidative lesions in DNA are described. Both assays measure the incorporation of radiolabeled nucleotides during repair of an oxidatively damaged template in a cell-free system. The assays differ in the type of oxidative damage present in the DNA. In one, singlet oxygen is used to generate predominantly 8-oxo-2'-deoxyguanosine lesions. In the other, hydroxyl radicals are used to generate a broad spectrum of damage including oxidized bases and strand breaks. Assay conditions were adjusted to ensure that radiolabel incorporation was directly proportional to cell extract repair activity. These assays represent sensitive tools for investigating the regulation of repair systems for oxidative DNA damage.  相似文献   

15.
16.
17.
DNA damage, homology-directed repair, and DNA methylation   总被引:1,自引:0,他引:1       下载免费PDF全文
To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES) cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP) genes (DR-GFP). A total of 2%–4% of the cells generated a functional GFP by homology-directed repair (HR) and gene conversion. However, ~50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2′-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.  相似文献   

18.
The interacting pathways for prevention and repair of oxidative DNA damage   总被引:22,自引:0,他引:22  
  相似文献   

19.
The comet assay is not the only way to measure oxidative DNA damage, but it is one of the most sensitive and accurate, being relatively free of artefacts. It is a valuable tool in population monitoring, for example in assessing the role of oxidative stress in human disease, and in monitoring the effects of dietary antioxidants. A simple modification allows the measurement of DNA repair. In combination with the analysis of polymorphisms in relevant genes, the comet assay - especially when adapted for analysis of large numbers of samples - can provide important information on the interactions between genetic variation and environmental factors in maintaining genome stability.  相似文献   

20.
Mechanism of oxidative DNA damage repair and relevance to human pathology   总被引:1,自引:0,他引:1  
Since DNA is prone to oxidative attack cells have evolved multiple protective strategies to prevent the deleterious effects of DNA oxidation. Base excision repair is the major mechanism for repair of DNA base damage by reactive oxygen species but recent evidence indicate that nucleotide excision repair proteins, that are mutated in human syndromes, are involved too. The mechanisms of repair dealing with the direct oxidation of DNA will be reviewed taking as prototype the oxidized base 7,8-dihydro-8-hydroxyguanine. The function of the individual repair components as inferred from model mice indicate that the ablation of two gene functions is mostly required to lead to accumulation of oxidative DNA damage, mutagenesis and cancer development. The recent identification of human diseases associated with mutations in oxidative damage repair show that defects in this pathway may lead to increased cancer but their major causative role seems to be in neurological diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号