首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The mechanisms underlying the neurotoxic actions of methamphetamine (METH) and related substituted amphetamines are unknown. Previous studies with 2-deoxyglucose (2-DG) have suggested that METH-induced neurotoxicity may involve exhaustion of intracellular energy stores. However, because 2-DG also produces hypothermic effects, and because METH's neurotoxic actions are highly susceptible to thermoregulatory influence, previous findings with 2-DG are difficult to interpret. The present studies were undertaken to further examine the influence of 2-DG's glucoprivic and thermic effects in the context of METH-induced dopamine (DA) and serotonin (5-HT) neurotoxicity. 2-DG protected against METH-induced DA neurotoxicity in both rats and mice. In both species, 2-DG, alone or in combination with METH, produced hypothermic effects. METH's toxic effects on brain 5-HT neurons were either unaffected or exacerbated by 2-DG, depending on species, brain region, and dose of METH tested. These results indicate that different mechanisms may underlie METH-induced DA and 5-HT neurotoxicity, and suggest that, as compared with 5-HT neurons, DA neurons are more susceptible to temperature influence, whereas 5-HT neurons are more vulnerable than DA neurons to metabolic compromise. Additional studies are needed to further assess the role of energy stores in the neurotoxic effects of METH and related drugs.  相似文献   

2.
The blood–brain barrier (BBB) plays a key role in limiting and regulating glucose access to glial and neuronal cells. In this work glucose uptake on a human BBB cell model (the hCMEC/D3 cell line) was characterized. The influence of some hormones and diet components on glucose uptake was also studied. 3H-2-deoxy-d-glucose ([3H]-DG) uptake for hCMEC/D3 cells was evaluated in the presence or absence of tested compounds. [3H]-DG uptake was sodium- and energy-independent. [3H]-DG uptake was regulated by Ca2+ and calmodulin but not by MAPK kinase pathways. PKC, PKA and protein tyrosine kinase also seem to be involved in glucose uptake modulation. Progesterone and estrone were found to decrease 3H-DG uptake. Catechin and epicatechin did not have any effect, but their methylated metabolites increased [3H]-DG uptake. Quercetin and myricetin decreased [3H]-DG uptake, and glucuronic acid-conjugated quercetin did not have any effect. These cells expressed GLUT1, GLUT3 and SGLT1 mRNA.  相似文献   

3.
Entomologists have used a range of techniques to treat insects with neuroactive compounds, but it is not always clear whether different treatment methods are equally effective in delivering a compound to a target organ. Here, we used five different techniques to treat honeybees with 3H-octopamine (3H-OA), and analysed the distribution of the 3H radiolabelled compound within different tissues and how it changed over time. All treatment methods, including injection of the median ocellus, resulted in 3H-OA detection in all parts of the honeybee. Injection through the median ocellus was the most effective method for delivering 3H-OA to the brain. Topical application of 3H-OA dissolved in dimethylformamide (dMF) to the thorax was as effective as thoracic injections of 3H-OA in delivering 3H-OA to the brain, but topical applications to the abdomen were less so. Most of the 3H-OA applied topically remained associated with the cuticle and the tissues of the body segment to which it had been applied. For all treatment methods, 3H-OA was rapidly lost from the brain and head capsule, and accumulated in the abdomen. Our findings demonstrate the value of thoracic topical treatment with compounds dissolved in dMF as an effective non-invasive method for short-term, systemic pharmacological treatments.  相似文献   

4.
Duchenne muscular dystrophy is an X-linked disorder characterized by loss of dystrophin, a cytoskeletal protein that connects the actin cytoskeleton in skeletal muscle cells to extracellular matrix. Dystrophin binds to the cytoplasmic domain of the transmembrane glycoprotein β-dystroglycan (β-DG), which associates with cell surface α-dystroglycan (α-DG) that binds laminin in the extracellular matrix. β-DG can also associate with utrophin, and this differential association correlates with specific glycosylation changes on α-DG. Genetic modification of α-DG glycosylation can promote utrophin binding and rescue dystrophic phenotypes in mouse dystrophy models. We used high throughput screening with the plant lectin Wisteria floribunda agglutinin (WFA) to identify compounds that altered muscle cell surface glycosylation, with the goal of finding compounds that increase abundance of α-DG and associated sarcolemmal glycoproteins, increase utrophin usage, and increase laminin binding. We identified one compound, lobeline, from the Prestwick library of Food and Drug Administration-approved compounds that fulfilled these criteria, increasing WFA binding to C2C12 cells and to primary muscle cells from wild type and mdx mice. WFA binding and enhancement by lobeline required complex N-glycans but not O-mannose glycans that bind laminin. However, inhibiting complex N-glycan processing reduced laminin binding to muscle cell glycoproteins, although O-mannosylation was intact. Glycan analysis demonstrated a general increase in N-glycans on lobeline-treated cells rather than specific alterations in cell surface glycosylation, consistent with increased abundance of multiple sarcolemmal glycoproteins. This demonstrates the feasibility of high throughput screening with plant lectins to identify compounds that alter muscle cell glycosylation and identifies a novel role for N-glycans in regulating muscle cell function.  相似文献   

5.
Neurotoxicity induced by different substituted amphetamines has been associated with the exhaustion of intracellular energy stores. Accordingly, we examined the influence of 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glucose uptake and metabolism, and nicotinamide, an agent that improves energy metabolism, on 3, 4-methylenedioxymethamphetamine (MDMA)-induced 5-hydroxytryptamine (5-HT; serotonin) deficits. Administration of MDMA (15 mg/kg i.p.) produced a significant hyperthermia, whereas 2-DG caused a profound hypothermia that lasted throughout the experiment. When MDMA was given to 2-DG-treated rats, an immediate but transient hyperthermia occurred and was followed by a return to hypothermia. 2-DG had no effect on 5-HT concentrations in the frontal cortex, hippocampus, and striatum but prevented the neurotoxicity induced by MDMA. When rats were injected with 2-DG/MDMA and were warmed to prevent hypothermia, the protection afforded by 2-DG was abolished. Nicotinamide had no effect on body temperature of the rats, and the hyperthermia induced by the nicotinamide/MDMA treatment was similar to that of the saline/MDMA-treated rats. However, the long-term 5-HT deficits induced by MDMA were potentiated by nicotinamide in all the brain regions examined. Finally, no change on ATP concentrations in the frontal cortex, hippocampus, and striatum was observed up to 3 h after a single dose of MDMA. These results suggest that an altered energy metabolism is not the main cause of the neurotoxic effects induced by MDMA.  相似文献   

6.
J W Hambley  G A Johnston 《Life sciences》1985,36(21):2053-2062
Human blood platelets show a sodium and temperature dependent uptake of gamma-aminobutyric acid (GABA) and other neuroactive amino acids. The most potent inhibitors tested of platelet GABA uptake were taurine and beta-alanine, while nipecotic acid and cis-3-aminocyclohexanecarboxylic acid were relatively weak inhibitors. These results suggest GABA is transported by a beta-amino acid uptake process in human platelets. Thus, platelet GABA uptake may more closely resemble glial rather than neuronal uptake.  相似文献   

7.
Recent etiological study in twins (Tanner et al. 1999) strongly suggests that environmental factors play an important role in typical, non-familial Parkinson's disease (PD), beginning after age 50. Epidemiological risk factor analyses of typical PD cases have identified several neurotoxicants, including MPP(+) (the active metabolite of MPTP), paraquat, dieldrin, manganese and salsolinol. Here, we tested the hypothesis that these neurotoxic agents might induce cell death in our nigral dopaminergic cell line, SN4741 (Son et al. 1999) through a common molecular mechanism. Our initial experiments revealed that treatment with both MPP(+) and the other PD-related neurotoxicants induced apoptotic cell death in SN4741 cells, following initial increases of H(2)O(2)-related ROS activity and subsequent activation of JNK1/2 MAP kinases. Moreover, we have demonstrated that during dopaminergic cell death cascades, MPP(+), the neurotoxicants and an oxidant, H(2)O(2) equally induce the ROS-dependent events. Remarkably, the oxidant treatment alone induced similar sequential molecular events: ROS increase, activation of JNK MAP kinases, activation of the PITSLRE kinase, p110, by both Caspase-1 and Caspase-3-like activities and apoptotic cell death. Pharmacological intervention using the combination of the antioxidant Trolox and a pan-caspase inhibitor Boc-(Asp)-fmk (BAF) exerted significant neuroprotection against ROS-induced dopaminergic cell death. Finally, the high throughput cDNA microarray screening using the current model identified downstream response genes, such as heme oxygenase-1, a constituent of Lewy bodies, that can be the useful biomarkers to monitor the pathological conditions of dopaminergic neurons under neurotoxic insult.  相似文献   

8.
Insulin-like growth factor I (IGF-I), an autocrine/paracrine growth factor involved in myogenesis, has rapid effects on muscle metabolism. In a manner analogous to insulin and mechanical stimuli such as stretch, IGF-I stimulates glucose transport through recruitment of glucose transporters to surface membranes in skeletal muscles. It is known that IGF-I is secreted from skeletal muscle cells in response to stretch. Therefore, we examined whether IGF-I is involved in the mechanism by which mechanical stretch regulates glucose transport using cultured C2C12 myotubes. IGF-I increased 2-deoxy- D-glucose (2-DG) uptake, and this created an additive effect with mechanical stretch, suggesting that these stimuli enhance glucose transport through different mechanisms. In fact, IGF-I-stimulated 2-DG uptake was not blocked by dantrolene (an inhibitor of Ca (2+)release from sarcoplasmic reticulum), whereas the stretch-stimulated effect was abolished. Conversely, the IGF-I-stimulated 2-DG uptake was prevented by phosphatidylinositol 3-kinase inhibitor wortmannin, which did not prevent the stretch-stimulated 2-DG uptake. In addition, experiments using media conditioned by stretched myotubes indicated that a mechanically induced release of locally acting autocrine/paracrine growth factors was not sufficient for induction of 2-DG uptake. Thus, our results demonstrate that mechanical stretch signaling for glucose transport is independent of the mechanism through which IGF-I increases this transport.  相似文献   

9.
Han HJ  Heo JS  Lee YJ 《Life sciences》2005,77(15):1916-1933
It is now suggested that all components of the renin-angiotensin system are present in many tissues, including the embryo and may play a major role in embryo development and differentiation. However, little is known regarding whether ANG II regulates glucose transport in mouse embryonic stem (ES) cells. Thus, the effects of ANG II on [3H]-2-deoxyglucose (2-DG) uptake and its related signal pathways were examined in mouse ES cells. ANG II significantly increased cell proliferation and 2-DG uptake in concentration- and time-dependent manner (>18 h, >10(-8) M) and increased mRNA and protein level of GLUT1 by 31+/-7% and 22+/-5% compared to control, respectively. Actinomycin D and cycloheximide completely blocked the effect of ANG II on 2-DG uptake. ANG II-induced increase of 2-DG uptake was blocked by losartan, an ANG II type 1 (AT1) receptor blocker, but not by PD 123319, an ANG II type 2 (AT2) receptor blocker. In addition, ANG II-induced stimulation of 2-DG uptake was attenuated by phospholipase C (PLC) inhibitors, neomycin and U 73122 and ANG II increased inositol phosphates (IPs) formation by 37+/-8% of control. Protein kinase C (PKC) inhibitors, staurosporine, bisindolylmaleimide I, and H-7 also blocked ANG II-induced stimulation of 2-DG uptake. Indeed, ANG II activated a PKC translocation from the cytosolic to membrane fraction, suggesting a role of PKC. A 23187 (Ca2+ ionophore) increased 2-DG uptake and nifedifine (L-type Ca2+ channel blocker) blocked it. In conclusion, ANG II increased 2-DG uptake by PKC activation via AT1 receptor in mouse ES cells.  相似文献   

10.
Using pregnant rats fed equicaloric liquid diets (AF, and libitum-fed controls; PF, pair-fed controls; EF, ethanol-fed), we have previously shown that maternal alcoholism produces a specific and significant decrease of glucose in the fetal brain, which is accompanied by growth retardation. To further define the mechanisms of ethanol-induced perturbations in fetal fuel supply, we have examined (i) the uptake of 2-deoxyglucose (2-DG) by dissociated brain cells from fetal rats that were exposed to ethanol in utero and (ii) the steady-state levels of the glucose transporter-1 (GT-1) mRNA. A 9% decrease in brain weight (P less than 0.001) and a 54.8% reduction in 2-DG uptake into brain cells (P less than 0.02) were found in offspring of EF mothers compared to the AF group. Brain weight correlated with the rate of 2-DG uptake (P less than 0.05). Northern blot analysis showed a 50% reduction of GT-1 mRNA in EF brain relative to that in the AF and PF groups. We conclude that glucose transport into the brain is an important parameter altered by maternal ethanol ingestion.  相似文献   

11.
Three potent and selective 11C-labelled NR2B antagonists have been synthesized and evaluated as PET ligands. The brain uptake of the compounds in mice varied substantially and was dominated by metabolism. One compound was found to have favourable uptake and retention in the brain, as well as a binding pattern consistent with the expression of the target receptor as measured by in vitro autoradiography. However, the metabolism of the compounds tested was too rapid to allow for in vivo imaging.  相似文献   

12.
Abstract— Uptake of 2-deoxy-d-glucose (2-DG) was investigated in capillaries isolated from rat brain. A high affinity, carrier-mediated transport system was defined with an apparent Km for 2-DG of 93 μM. Uptake was temperature-dependent and markedly inhibited by phloretin and selected hexose isomers. The apparent Ki for d-glucose inhibition of 2-DG uptake was 98 μM. Essentially all of the 2-DG retained by the capillary preparation could be released by sonication and 95% was recovered as free unphosphorylated 2-DG. Uptake was not sodium-dependent and not altered by insulin. These results suggest that movement of glucose across the blood-brain barrier through endothelial cells probably is not rate-limiting unless blood glucose levels are extremely low.  相似文献   

13.
The effects of norepinephrine (NE) infusion and surgical denervation or electrical stimulation of the sympathetic nerves on 2-deoxyglucose (2-DG) uptake in interscapular brown adipose tissue (BAT) were investigated in vivo in rats to obtain direct evidence for sympathetic control of glucose utilization in this tissue. 2-DG uptake was rather low in fasted rats, but after refeeding it increased in the BAT as well as the heart, skeletal muscle, and white adipose tissue, in parallel with an increase in plasma insulin level. Cold exposure also enhanced 2-DG uptake in the BAT without the increase in plasma insulin level, while it had no appreciable effect on 2-DG uptake in other tissues. Sympathetic denervation greatly attenuated the stimulatory effect of cold exposure on 2-DG uptake in BAT, but it did not affect the increased 2-DG uptake after refeeding. Electrical stimulation of the sympathetic nerves entering BAT or NE infusion produced a marked increase in 2-DG uptake in BAT without noticeable effects in other tissues. beta-Adrenergic blockade, but not alpha-blockade, abolished the increased 2-DG uptake in BAT. It was concluded that glucose utilization in BAT is activated directly, independently of the action of insulin, by sympathetic nerves via the beta-adrenergic pathway.  相似文献   

14.
We examined the effect of hypoxic ischemia and hypoxia vs. normoxia on postnatal murine brain substrate transporter concentrations and function. We detected a transient increase in the neuronal brain glucose transporter isoform (GLUT-3) in response to hypoxic ischemia after 4 h of reoxygenation. This increase was associated with no change in GLUT-1 (blood-brain barrier/glial isoform), monocarboxylate transporter isoforms 1 and 2, synapsin I (neuronal marker), or Bax (proapoptotic protein) but with a modest increase in Bcl-2 (antiapoptotic mitochondrial protein) protein concentrations. At 24 h of reoxygenation, the increase in GLUT-3 disappeared but was associated with a decline in Bcl-2 protein concentrations and the Bcl2:Bax ratio, an increase in caspase-3 enzyme activity (apoptotic effector enzyme), and extensive DNA fragmentation, which persisted later in time (48 h) only in the hippocampus. Hypoxia alone in the absence of ischemia was associated with a transient but modest increase in GLUT-3 and synapsin I protein concentrations, which did not cause significant apoptosis and/or necrosis. Assessment of glucose transporter function by 2-deoxyglucose (2-DG) uptake using two distinct techniques, namely positron emission tomography (PET) and the modified Sokoloff method, revealed a discrepancy due to glucose uptake by extracranial Harderian glands that masked the accurate detection of intracranial brain glucose uptake by PET scanning. The modified Sokoloff method assessing 2-DG uptake revealed that the transient increase in GLUT-3 was critical in protecting against a decline in brain glucose uptake. We conclude that hypoxic-ischemic brain injury is associated with transient compensatory changes targeted at protecting glucose delivery to fuel cellular energy metabolism, which then may delay the processes of apoptosis and cell necrosis.  相似文献   

15.
Yin  Qiong  Brameld  John M.  Parr  Tim  Murton  Andrew J. 《Amino acids》2020,52(3):477-486

Chronic mTORc1 hyperactivation via obesity-induced hyperleucinaemia has been implicated in the development of insulin resistance, yet the direct impact of leucine on insulin-stimulated glucose uptake in muscle cells remains unclear. To address this, differentiated L6 myotubes were subjected to various compounds designed to either inhibit mTORc1 activity (rapamycin), blunt leucine intracellular import (BCH), or activate mTORc1 signalling (3BDO), prior to the determination of the uptake of the glucose analogue, 2-deoxyglucose (2-DG), in response to 1 mM insulin. In separate experiments, L6 myotubes were subject to various media concentrations of leucine (0–0.8 mM) for 24 h before 2-DG uptake in response to insulin was assessed. Both rapamycin and BCH blunted 2-DG uptake, irrespective of insulin administration, and this occurred in parallel with a decline in mTOR, 4E-BP1, and p70S6K phosphorylation status, but little effect on AKT phosphorylation. In contrast, reducing leucine media concentrations suppressed 2-DG uptake, both under insulin- and non-insulin-stimulated conditions, but did not alter the phosphorylation state of AKT-mTORc1 components examined. Unexpectedly, 3BDO failed to stimulate mTORc1 signalling, but, nonetheless, caused a significant increase in 2-DG uptake under non-insulin-stimulated conditions. Both leucine and mTORc1 influence glucose uptake in muscle cells independent of insulin administration, and this likely occurs via distinct but overlapping mechanisms.

  相似文献   

16.
Abstract: The effects of 2-deoxyglucose (2-DG), an inhibitor of the uptake and use of glucose, on ATP loss caused by the neurotoxicant 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) were determined in the mouse brain. 2-DG alone had no effect on brain ATP levels, but when administered 30 min before MPTP exposure, 2-DG significantly enhanced MPTP-induced ATP reduction. This was reflected as an increase in ATP loss in the striatum (from 15 to 27%) as well as a significant decrease in ATP in the cerebellar cortex, an area of the brain that was not affected after exposure to MPTP alone. In mice pretreated with 2-DG, striatal ATP levels remained significantly decreased for >8 h after MPTP administration. In contrast, ATP levels in the cerebellar cortex returned to normal values within 4 h from MPTP exposure. Mazindol, a catecholamine uptake blocker, completely protected against MPTP-induced loss of striatal ATP in the absence of 2-DG, but it only partially prevented striatal ATP decrease after administration of both 2-DG and MPTP; mazindol was also ineffective in protecting against ATP loss caused by 2-DG and MPTP in the cerebellar cortex. 2-DG/MPTP-induced ATP loss appeared to be associated with the presence of the 1 -methyl-4-phenylpyridinium (MPP+) metabolite because (1) the pattern of ATP recovery in the striatum and cerebellar cortex appeared to reflect the pattern of MPP+clearance from these areas of the brain (i.e., significant MPP+ levels persisted longer in the striatum than in the cerebellar cortex), and (2) ATP decrease was completely prevented by blocking the conversion of MPTP to MPP+with the monoamine oxidase B inhibitor deprenyl. Data indicate that impairment of glucose metabolism dramatically enhances the effects of MPTP/MPP+ on cerebral energy supplies, making these effects relatively nonselective for dopaminergic neurons of the nigrostriatal pathway.  相似文献   

17.
The sensitivity of catfish, Ictalurus punctatus, brain ATPase activities to cyclodiene compounds was investigated. The ATPase system showed differences in sensitivity to aldrin, dieldrin and photodieldrin. However, aldrin-transdiol (a more terminal metabolite of dieldrin and reported as a more potent neurotoxin than dieldrin) had no effect on any ATPase activity from fish brain homogenates. Mitochondrial Mg2+ ATPase was the most sensitive ATPase to the cyclodiene compounds tested. The possibility that the neurotoxic effects of these compounds is a secondary response resulting from mitochondrial Mg2+ ATPase inhibition is discussed.  相似文献   

18.
昆虫神经毒素的研究:各种神经毒剂引起毒素的产生   总被引:2,自引:1,他引:1  
用五类(七种)神经毒性的杀虫药剂,对美洲(虫非)蠊测定了它们能否引起血淋巴中毒素的产生。DDT、溴氰菊酯及六六六均能引起血淋巴中毒素的产生,而E605、西维因、巴丹及杀虫脒均无此效果。纸层析及薄层层析,用标准样品(酪氨酸、酪胺、苯乙胺、L-亮氨酸及异戊胺)作比较,测定了这一产生的血淋巴中的毒素乃是酪胺,或主要是酪胺。增效试验,证明了杀虫脒与DDT或溴氰菊酯合用时,能增加酪胺的产量。讨论了这一毒素产生的条件,以及这一毒素有可能不是单一成分,而是几种单胺及氨基酸的复合物,但酪胺为其主要成分。  相似文献   

19.
1. Catecholamine, glucagon, and adrenocorticotropic hormone stimulated 2-deoxyglucose (2-DG) uptake via an increase in glucose transporters in plasma membranes, similarly to insulin. 2. In contrast to the action of insulin, the stimulating effects of these agonists on 2-DG uptake were abolished when Gi was not activated. 3. The mode of the 2-DG uptake stimulation was partially different among these agonists.  相似文献   

20.
Caloric restriction (CR) is a dietary intervention known to enhance cardiovascular health. The glucose analog 2-deoxy-D-glucose (2-DG) mimics CR effects in several animal models. However, whether 2-DG is beneficial to the heart remains obscure. Here, we tested the ability of 2-DG to reduce cardiomyocyte death triggered by doxorubicin (DOX, 1 μm), an antitumor drug that can cause heart failure. Treatment of neonatal rat cardiomyocytes with 0.5 mm 2-DG dramatically suppressed DOX cytotoxicity as indicated by a decreased number of cells that stained positive for propidium iodide and reduced apoptotic markers. 2-DG decreased intracellular ATP levels by 17.9%, but it prevented DOX-induced severe depletion of ATP, which may contribute to 2-DG-mediated cytoprotection. Also, 2-DG increased the activity of AMP-activated protein kinase (AMPK). Blocking AMPK signaling with compound C or small interfering RNA-mediated knockdown of the catalytic subunit markedly attenuated the protective effects of 2-DG. Conversely, AMPK activation by pharmacological or genetic approach reduced DOX cardiotoxicity but did not produce additive effects when used together with 2-DG. In addition, 2-DG induced autophagy, a cellular degradation pathway whose activation could be either protective or detrimental depending on the context. Paradoxically, despite its ability to activate autophagy, 2-DG prevented DOX-induced detrimental autophagy. Together, these results suggest that the CR mimetic 2-DG can antagonize DOX-induced cardiomyocyte death, which is mediated through multiple mechanisms, including the preservation of ATP content, the activation of AMPK, and the inhibition of autophagy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号