首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Potential of Lactic Streptococci to Produce Bacteriocin   总被引:34,自引:15,他引:19       下载免费PDF全文
A survey was made on the bacteriocin-producing potential of lactic streptococci. Bacteriocin-like activities were isolated and partially purified from about 5% of the 280 strains investigated. The frequency of production varied from about 1% in Streptococcus lactis subsp. diacetylactis to 9 and 7.5% in S. lactis and Streptococcus cremoris, respectively. Eight strains of S. cremoris produced bacteriocins which, on the basis of heat stability at different pH values and inhibitory spectrum, could be divided into four types. From 54 S. lactis strains, 5 strains produced inhibitory substances, namely, three nisin-like antibiotics and two different bacteriocins. Only 1 of 93 S. lactis subsp. diacetylactis strains produced a bacteriocin which was very similar to bacteriocins of type I in S. cremoris. All of the bacteriocins that were partially purified by ammonium sulfate precipitation showed very limited inhibitory spectra. Most of the lactic streptococci and a few members of the genera Clostridium, Leuconostoc, and Pediococcus were inhibited. None of the bacteriocins acted on gram-negative bacteria. The bacteriocinogenic strains were also characterized on the basis of plasmid content. All strains possessed between one and nine plasmids ranging from 1 to 50 megadaltons.  相似文献   

2.
The conjugative transposon Tn919, originally isolated in Streptococcus sanguis FC1, is capable of low-frequency transfer (10−7 and 10−8 per recipient) on membrane filters to a wide number of streptococcal recipients including the industrially important lactic streptococci. The introduction of pMG600 (Lac+ Lax; a lactose plasmid capable of conjugative transfer at high frequencies and which, in certain hosts, confers an unusual clumping phenotype) into a Streptococcus lactis CH919 donor, generating S. lactis CH001, resulted in a significant improvement in the transfer frequency of Tn919 to S. lactis CK50 (1.25 × 10−4 per recipient). In addition, these matings could be performed on agar surfaces, allowing the recovery of a greater number of recipients than with filter matings. Tn919 also transferred at high frequency to S. lactis subsp. diacetylactis 18-16S but not to Streptococcus cremoris strains. Insertion in 18-16S transconjugants generated from filter matings with an S. lactis CH919 donor was random, occurring at different sites on the chromosome and also in plasmid DNA. Thus, the conditions necessary for the practical exploitation of Tn919 in the targeting and cloning of genes from a member of the lactic streptococci, namely, high-frequency delivery and random insertion in host DNA, were achieved.  相似文献   

3.
Eight of 40 strains of Streptococcus lactis and S. lactis subsp. diacetylactis were able to conjugally transfer a degree of phage insensitivity to Streptococcus lactis LM0230. Transconjugants from one donor strain, S. lactis subsp. diacetylactis 4942, contained a 106-kilobase (kb) cointegrate plasmid, pAJ1106. The plasmid was conjugative (Tra+) and conferred phage insensitivity (Hsp) and lactose-fermenting ability (Lac) in S. lactis and Streptococcus cremoris transconjugants. The phage resistance mechanism was effective against prolate- and small isometric-headed phages at 30°C. In S. lactis transconjugants, the phage resistance mechanism was considerably weakened at elevated temperatures. A series of deletion plasmids was isolated from transconjugants in S. cremoris 4854. Deletion plasmids were pAJ2074 (74 kb), Lac+, Hsp+, Tra+; pAJ3060 (60 kb), Lac+, Hsp+; and pAJ4013 (13 kb), Lac+. These plasmids should facilitate mapping Hsp and tra genes, with the aim of constructing phage-insensitive strains useful to the dairy industry.  相似文献   

4.
Prophage curing was achieved in Streptococcus lactis and Streptococcus cremoris, and the cured derivatives were shown to be indicators for their temperate bacteriophages. Relysogenization of these cured derivatives completed the first formal demonstration of the lysogenic state in lactic streptococci.  相似文献   

5.
Curing and genetic transfer experiments showed that lactose-fermenting ability (Lac+) and the ability to produce mucoidness in milk cultures (Muc+) in Streptococcus cremoris MS were coded on plasmids. The Lac+ phenotype was associated with a 75.8-megadalton plasmid, pSRQ2201. The Muc+ phenotype was associated with a 18.5-megadalton plasmid, pSRQ2202. The Lac plasmid, pSRQ2201, was first conjugatively transferred from S. cremoris MS to LacS. lactis ML-3/2.2. Later, the Muc plasmid, pSRQ2202, was conjugatively transferred from Lac Muc+S. cremoris MS04 to Lac+ nonmucoid S. lactis transconjugant ML-3/2.201. Subsequently, pSRQ2201 and pSRQ2202 were cotransferred from Lac+ Muc+S. lactis transconjugant ML-3/2.202 to Lac, nonmucoid, malty S. lactis 4/4.2 and S. lactis subsp. diacetylactis SLA3.25. Transconjugants showing pSRQ2201 were Lac+; those containing pSRQ2202 were Muc+. With the transfer of pSRQ2202, the transconjugants S. lactis ML-3/2.202 and S. lactis subsp. diacetylactis SLA3.2501 not only acquired the Muc+ phenotype but also resistance to bacteriophages, which were lytic to the respective parent strains S. lactis ML-3/2.201 and S. lactis subsp. diacetylactis SLA3.25.  相似文献   

6.
Studies were conducted on different strains of L. bulgaricus, L. casei, S. thermophilus, S. lactis, and S. cremoris isolated in Bulgaria and applied as pure cultures and in combinations as starters. All the strains under investigation were found to preserve, on “freezing-thawing” their characteristic morphological and biochemical properties, regardless of the temperature and rate of cooling, but the optimum freezing temperature of the strains studied is ?196 °C (in liquid nitrogen). High cooling rates provide higher viability and activity of lactic acid bacterial cells. Lactic acid streptococci, S. lactis and S. thermophilus, are considerably more resistant than lactic acid rods, L. casei and L. bulgaricus, at all the freezing regimens tested.  相似文献   

7.
A modified medium which distinguished between citrate-fermenting and non-citrate-fermenting species of lactic streptococci within 48 h was developed. In addition, the occurrence of citrate-negative variants in citrate-positive populations of Streptococcus lactis subsp. diacetylactis could be detected.  相似文献   

8.
Streptococcus cremoris C3 was found to transfer lactose-fermenting ability to LM2301, a Streptococcus lactis C2 lactose-negative streptomycin-resistant (Lac Strr) derivative which is devoid of plasmid deoxyribonucleic acid (DNA); to LM3302, a Lac erythromycin-resistant (Eryr) derivative of S. lactis ML3; and to BC102, an S. cremoris B1 Lac Eryr derivative which is devoid of plasmid DNA. S. cremoris strains R1, EB7, and Z8 were able to transfer lactose-fermenting ability to LM3302 in solid-surface matings. Transduction and transformation were ruled out as mechanisms of genetic transfer. Chloroform treatment of donor cells prevented the appearance of recombinant clones, indicating that viable cell-to-cell contact was responsible for genetic transfer. Transfer of plasmid DNA was confirmed by agarose gel electrophoresis. Transconjugants recovered from EB7 and Z8 matings with LM3302 exhibited plasmid sizes not observed in the donor strains. Transconjugants recovered from R1, EB7, and Z8 matings with LM3302 were able to donate lactose-fermenting ability at a high frequency to LM2301. In S. cremoris R1, EB7, and Z8 matings with LM2301, streptomycin resistance was transferred from LM2301 to the S. cremoris strains. The results confirm genetic transfer resembling conjugation between S. cremoris and S. lactis strains and present presumptive evidence for plasmid linkage of lactose metabolism in S. cremoris.  相似文献   

9.
Temperate phages were induced from Streptococcus cremoris R1, BK5, and 134. DNA from the three induced phages was shown to be homologous with prophage DNA in the bacterial chromosomes of their lysogenic hosts by the Southern blot hybridization technique. 32P-labeled DNA from 11 lytic phages which had been isolated on cheese starters was similarly hybridized with DNA from 36 strains of lactic streptococci. No significant homology was detected between the phage and bacterial DNA. Phages and lactic streptococci used included phages isolated in a recently opened cheese plant and all the starter strains used in the plant since it commenced operation. The three temperate phages were compared by DNA-DNA hybridizations with 25 lytic phages isolated on cheese starters. Little or no homology was found between DNA from the temperate and lytic phages. In contrast, temperate phages showed a partial relationship with one another. Temperate phage DNA also showed partial homology with DNA from a number of strains of lactic streptococci, many of which have been shown to be lysogenic. This suggests that many temperate phages in lactic streptococci may be related to one another and therefore may be homoimmune with one another. These findings indicate that the release of temperate phages from starter cells currently in use is unlikely to be the predominant source of lytic phages in cheese plants.  相似文献   

10.
Strains of lactic streptococci isolated from samples of raw milk which had developed a malty aroma were subjected to the cultural, physiological, and serological tests commonly employed in the classification of streptococci. None of the strains could be differentiated from Streptococcus lactis by these tests. Resting cells of strains which produced an organoleptically detectable malty aroma when cultured in milk were usually found to possess an active α-ketoacid decarboxylase, indicating the presence of the mechanism responsible for the characteristic aroma production. This decarboxylase activity was either weak or nonexistent in the nonmalty strains, and no activity was detected in known strains of S. lactis, S. cremoris, or S. diacetilactis. The malty strains usually produced higher acidities in milk than did the nonmalty strains, and, in most instances, they developed a granular type of growth sediment in broth, as opposed to a viscid sediment. Many of them gave weakly positive Voges-Proskauer tests in glucose broth with or without added citrate and appeared to be somewhat more resistant to nisin than the nonmalty strains.  相似文献   

11.
Eleven of 150 Streptococcus cremoris strains examined produced the bacteriocin diplococcin. The diplococcin activity spectrum was restricted to S. cremoris and Streptococcus lactis strains, and none of a wide range of other gram-positive or gram-negative strains were inhibited. The diplococcin produced by S. cremoris 346 was purified by ammonium sulfate precipitation and column chromatography. Purified diplococcin was very unstable at room temperature and lost 75% of its activity after heating at 100°C for 1 min. The proteolytic enzymes trypsin, pronase, and α-chymotrypsin completely inactivated diplococcin. The amino acid composition showed a high content of acidic and neutral acids and a correspondingly low content of basic amino acids, including one residue of ornithine per mole. From the amino acid analysis a molecular weight of 5,300 was estimated. Diplococcin was readily distinguished from the S. lactis bacteriocin nisin by its restricted activity spectrum, its biological properties, and by cross-reaction experiments.  相似文献   

12.
It has been previously observed that loss of plasmid pGK4101 occurred concomitantly with loss of lactose-fermenting ability in Streptococcus lactis subsp. diacetylactis 18-16. Transfer of this 41-megadalton plasmid to LM0230, a lactosenegative (Lac) strain of S. lactis, required cell-to-cell contact and resulted in a conversion of LM0230 to the Lac+ phenotype. This confirms the linkage of lactose-fermenting ability to the 41-megadalton plasmid in S. lactis subsp. diacetylactis and, in addition, demonstrates transfer by a process resembling conjugation in the group N streptococci.  相似文献   

13.
A series of reactions between phages, sensitive hosts, and transconjugants where the sensitivity of small isometric-, large isometric-, and prolate-headed phages to pTR2030-induced phage resistance was evaluated in Streptococcus lactis and Streptococcus cremoris strains. Phage-resistant transconjugants were constructed in the desired host by conjugal transfer of lactose-fermenting ability (Lac+, pTR1040) and phage resistance (Hsp+, pTR2030) from S. lactis TEK1. S. lactis and S. cremoris transconjugants harboring pTR2030 were resistant to all small isometric-headed phages examined. In contrast, prolate- and large isometric-headed phages were either not inhibited in the pTR2030 transconjugants or exhibited a reduction in plaque size without a reduction in the efficiency of plaquing. Small isometric-headed phages subject to pTR2030 induced inhibition shared no significant DNA homology with pTR2030, suggesting that phage immunity genes are not harbored on the plasmid or responsible for resistance. The general effectiveness of pTR2030 against small isometric-headed phages was highly significant since these are the phages which have been isolated most commonly from dairy fermentation plants.  相似文献   

14.
Improved medium for lactic streptococci and their bacteriophages   总被引:234,自引:140,他引:94       下载免费PDF全文
Incorporation of 1.9% β-disodium glycerophosphate (GP) into a complex medium resulted in improved growth by lactic streptococci at 30 C. The medium, called M17, contained: Phytone peptone, 5.0 g; polypeptone, 5.0 g; yeast extract, 2.5 g; beef extract, 5.0 g; lactose, 5.0 g; ascorbic acid, 0.5 g; GP, 19.0 g; 1.0 M MgSO4·7H2O, 1.0 ml; and glass-distilled water, 1,000 ml. Based on absorbance readings and total counts, all strains of Streptococcus cremoris, S. diacetilactis, and S. lactis grew better in M17 medium than in a similar medium lacking GP or in lactic broth. Enhanced growth was probably due to the increased buffering capacity of the medium, since pH values below 5.70 were not reached after 24 h of growth at 30 C by S. lactis or S. cremoris strains. The medium also proved useful for isolation of bacterial mutants lacking the ability to ferment lactose; such mutants formed minute colonies on M17 agar plates, whereas wild-type cells formed colonies 3 to 4 mm in diameter. Incorporation of sterile GP into skim milk at 1.9% final concentration resulted in enhanced acid-producing activity by lactic streptococci when cells were inoculated from GP milk into skim milk not containing GP. M17 medium also proved superior to other media in demonstrating and distinguishing between lactic streptococcal bacteriophages. Plaques larger than 6 mm in diameter developed with some phage-host combinations, and turbid plaques, indicative of lysogeny, were also easily demonstrated for some systems.  相似文献   

15.
Bacteriophage-resistant dairy streptococci were obtained following conjugal transfer of pTR2030 from a lactose-negative donor, Streptococcus lactis TEK12, to lactose-positive recipient strains, Streptococcus cremoris LMA13 and 924 and S. lactis LMA12. Fast acid-producing, phage-resistant transconjugants were selected by challenge with homologous phage on fast-slow differential agar or lactose indicator agar. Acquisition of pTR2030 by the transconjugants was confirmed by DNA-DNA hybridization. Resistance of transconjugants to homologous phage was complete. Curing or deletion of pTR2030 in the transconjugants confirmed that phage resistance was due to pTR2030 acquisition and not to coincident background mutation. Phage-sensitive pTR2030 deletion derivatives of LMA12 transconjugants were isolated in vivo. The HindIII fragment B of pTR2030 was subcloned into pBR322 to yield a recombinant plasmid, pMET2, useful as a source of pTR2030 DNA. A specific, chemically synthesized oligomer useful as a pTR2030 probe was derived from the sequence of a small portion of pTR2030. The conjugal strategy presented here was effective in yielding fast acid-producing, phage-resistant S. cremoris and S. lactis strains without the use of antibiotic resistance markers and without interfering with the acid-producing ability of the recipient strain.  相似文献   

16.
“Viili,” a fermented milk product, has a firm but viscous consistency. It is produced with traditional mesophilic mixed-strain starters, which have various stabilities in dairy practice. Thirteen morphologically different types of phages were found in 90 viili samples studied by electron microscopy. Ten of the phage types had isometric heads with long, noncontractile tails, two had elongated heads with long, noncontractile tails, and one had a unique, very long elongated head with a short tail. Further morphological differences were found in the tail size and in the presence or absence of a collar, a baseplate, and a tail fiber. To find hosts for the industrially significant phages, we examined the sensitivities of 500 bacterial isolates from starters of the viili. Seven of the phages attacked Streptococcus cremoris strains, three attacked S. lactis subsp. diacetylactis strains, and four attacked Leuconostoc cremoris strains. Some phages differed only in their host specificity. Hosts were not found for 4 of the 13 morphological types of phages.  相似文献   

17.
Inhibitory effects of lactic acid bacteria for dairy use on the mutagenicities of some volatile nitrosamines were investigated in vitro using a Salmonella typhimurium TA 98 streptomycin-dependent strain (SD 510) as an indicator bacterium. Among 40 strains examined, Leuconostoc paramesenteroides R-62, R-8, Streptococcus lactis subsp. diacetylactis R-63, and St. cremoris R-48 strongly inhibited the mutagenicity of N-nitroso-diethylamine (NDEA) and moderately N-nitroso-dimethylamine (NDMA), but not N-nitroso-piperidine (NPIP) or N-nitroso-pyrrolidine (NPYR). In addition, the filtrates obtained from cell suspensions of the lactic acid bacteria examined inhibited the mutagenicity of NDEA.  相似文献   

18.
Two strains of mesophilic lactic acid bacteria, Streptococcus cremoris AM2 and Leuconostoc lactis CNRZ 1091, were grown in pure and mixed cultures in the presence or absence of citrate (15 mM) and at controlled (pH 6.5) or uncontrolled pH. Microbial cell densities at the end of growth, maximum growth rates, the pH decrease of the medium resulting from growth, and the corresponding acidification rates were determined to establish comparisons. The control of pH in pure cultures had no effect on L. lactis CNRZ 1091 populations. The final populations of S. cremoris AM2, however, were at least five times higher than when the pH was not controlled (4 × 108 vs. 2 × 109 CFU · ml−1). The pH had no effect on the growth rate of either strain. That of S. cremoris AM2 (0.8 h−1) was about twice that of L. lactis CNRZ 1091. When the pH fell below 5, the growth of both strains decreased or stopped altogether. Citrate had no effect on S. cremoris AM2, while final populations of L. lactis CNRZ 1091 were two to three times higher (3 × 108 CFU · ml−1); it had no effect on the maximum growth rates of the two strains. Citrate attenuated the pH decrease of the medium and reduced the maximum acidification rate of the culture by 50%, due to the growth of S. cremoris AM2. Acidification due to L. lactis CNRZ 1091, however, was very slight. Regardless of the conditions of pH and citrate, the total bacterial population in mixed culture was lower (by 39%) than that of the sum of each pure culture. Mixed culture improved the maximum growth rate of L. lactis CNRZ 1091 (0.6 h−1) by 50%, while that of S. cremoris AM2 was unaffected. The acidification rate of the growth medium in mixed culture, affected by the presence of citrate, resulted from the development and activity of S. cremoris AM2.  相似文献   

19.
Summary A rapid and simple technique utilizing the APIZYM enzymatic patterns complemented with arginine dihydrolase and citratase was developed for species differentiation of 40 lactic acid bacteria relevant to the dairy industry.Streptococcus species in general produced no -galactosidase, except forStreptococcus thermophilus. Lactobacillus species showed strong aminopeptidases and galactosidases but contained no arginine dihydrolase and citratase. Among the group N-streptococci,Streptococcus diacetylactis produced citratase, whereasStreptococcus cremoris differed by the production of butyrate esterase.Streptococcus faecalis was readily distinguishable fromStreptococcus lactis by butyrate esterase activity that was the basis of the differential agar developed. Heterofermentative lactobacilli differed from homofermentative lactobacilli in possessing arginine dihydrolase and citratase but by not producing leucine-aminopeptidase.  相似文献   

20.
Transfer of sucrose fermentation ability, nisin production, and nisin resistance from Streptococcus lactis to S. lactis and Streptococcus lactis subsp. diacetylactis occurred between cells immobilized on nitrocellulose filters in the presence of DNase. Transconjugants were able to act as donors to transfer the Suc-Nis phenotype in subsequent mating. No changes in sensitivity to lytic phage c2 were noted in S. lactis transconjugants. However, temperature-independent restriction of lytic phage 18-16 was noted in transconjugants of S. lactis subsp. diacetylactis 18-16. Adsorption studies with phage-resistant transconjugants showed that resistance was not due to lack of adsorption by the lytic phage. Physical evidence for the presence of introduced plasmid DNA was not found in lysates of transconjugants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号