首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 625 毫秒
1.
我们测定了鲤鱼线粒体半胱氮酸tRNA 基因和轻链(L 链)复制起始区的核苷酸序列,绘制了半胱氨酸tRNA 三叶草形的二级结构以及L 链复制区的茎环结构。通过五种脊椎动物tRNA~(cya)基因的核苷酸序列分析发现,鲤鱼线粒体tRNA~(cya)基因有许多不同于细胞质tRNA~(cya)基因的不寻常的结构特点。鲤鱼线粒体L 链复制起始区含有36个碱基,复制起始区茎环结构中的茎含有11对碱基,而环则是由14个碱基组成。同其它10种脊椎动物L-链复制起始区的核苷酸序列比较发现,鲤鱼茎环结构中的茎序列是非常保守的,而环的序列及环的长度则变化较大。茎环结构可能在轻链复制中起着重要的作用。  相似文献   

2.
鲤鱼线粒体tRNAphe基因结构的特异性   总被引:2,自引:0,他引:2  
鲤鱼线粒体tRNAphe基因的核酸序列已被测定。在鲸、人、抓蟾、牛、小鼠、鸡和锂鱼中对此基因序列比较发现在D茎存在一个奇怪的保守结构,然而D茎在其余种类的已经测定的脊椎动物线粒体tRNA基因和细胞质tRNA基因中是极不保守的。这一保结构饮食有13bp碱基,我们将此保守区前7个碱基与真核生物RNAPolⅢ识别的A区要比较, 此不同物种的两种序列存在部分的同源性。考虑到tRNAphe基因在编码区之间这  相似文献   

3.
在脊椎动物线粒基因组的研究中。迄今为止已测定了人、牛、大鼠、爪蟾、鲸鱼、海豹、鸡等动物线粒体基因组的全序列。结果表明,脊椎动物线粒体基因组结构排列非常紧密。22个tRNA基因分布于结构基因和rRNA基因之间,并随其临近的基因一起转录,随后被精确地剪切焉,继续加工成熟。线粒体tRNA与细胞质tRNA相比有许多不同之处,如D环碱基数明显减少:TψC环中缺少T54-C-Pu-A序列:且各个臂上有高比例的碱基错配;同时在线粒体rRNA中A+U含量很高。目前有报道指出线粒体中某些tRNA三叶草结构的变化与物种的进化相关联,但这一说法是否具有普遍性尚须探讨。我们最近完成了鲤鱼线粒体tRNA^phe基因的结构分析(图一),并将其与上述已报导的几种脊椎动物粒体tRNA^phe基因进行了比较(表一),发现这些tRNA^phe基因的D臂上都存在一个13bp的强保守区,而其它21种线粒体tRNA基因上的这一区域都是最不保守的。我们将此保守区前7个碱基与真核生物RNAPollIII识别的A区相比较,发现RNAPolIII识别的A区的3个强保守碱基在大事箕类型与碱基排列位置上完全与此保守区相同(图二)。考虑到tRNA^phe基因在线粒体基因组上位于置换环区和线粒体rRNA基因编码区之间这一特殊区域内,这种结构上的特殊性暗示着tRNA^phe基因与其它tRNSA基因在功能上存在着差异。鲤鱼线粒体tRNA^phe基因位于D环与12sRNA基因之间,由重链编码,长度为67bp,同哺乳动物线粒体tRNA基因一样,也不编码3′端的CCA序列。鲤鱼线料体tRNA^phe基因G+C/A+U=0.76,可见其A+U含量明显高于细胞质tRNA,从其二级结构上看,其氨基酸臂富含GC 对,存在二个错配碱基对,TψC环无TψC序列,T茎也有高比例的错配,且无细胞质tRNSA中特有的那组G-C对,D环由6个碱基组成,其D臂完全互补配对。在已知种类的线粒体其他tRNA基因结构中,反密码环最为保守,其次为氨基酸臂,D环和T环及其相应的臂最不保守。但是在tRNA^phe基因中最保守的却是D环的臂。这种tRNA^phe基因结构上的不寻常性,显示了其功能上的不寻常性,目前人们普遍的看法是线粒体tRNA^phe基因在其转录过程中,还起着识别转录本加工信号的作用,但这一过程的细节目前还不甚清楚。从结构上看,tRNA^phe基因 位于线粒体基因组D环一侧,而D环上具有重链复制启动始点和重链轻链转录调控区。在绝大多数由重链编码的基因中,tRNA^phe基因是被首先转录的基因,同时也是在各种成熟RNA转录本中,必须被剪切下来的tRNA。由此可见tRNA^phe基因在转录水平以及转录后的加工水平上均具有特殊的调控作用。我们推测脊椎动物tRNSA^phe其D臂上强保守结构的存在,也正是这种作用的一种反映。关于tRNA^phe基因结构与功能的关系及其表达调控特性的研究正在进行中。  相似文献   

4.
我们测定了鲁鱼线粒体半胱氨酸tRNA基因和轻链复制起始区的核苷酸序列,绘制了半胱氨酸tRNA三叶草形的二级结构以及L链复制区的茎环结构。通过种脊椎动物tRNA^CYS基因的核苷酸序列分析发现,鲤鱼线粒体tRNA^CYS基因的不寻常的结构特点。鲤鱼线粒体L链复制起始区含有36个碱基,复制起始区茎环名的茎含有11对碱基,而环则是由14个碱基组成。同其它10种脊椎动物L-链复制起始区的核苷酸序列比较发现  相似文献   

5.
在脊椎动物线粒体基因组的研究中,迄今为止已测定了人、牛、大鼠、爪蟾、鲸鱼、海豹、鸡等动物线粒体基因组的全序列。结果表明,脊椎动物线粒体基因组结构排列非常紧密。22个tRNA基因分布于结构基因和rRNA基因之间,并随其临近的基因一起转录,随后被精确地剪切下来,继续加工成熟。线粒体tRNA与细胞质tRNA相比有许多不同之处,如:D环碱基数目明显减少;TΨC环中缺少T54-C-Pu-A序列;且各个臂上有高比例的碱基错配;同时在线粒体tRNA中A+U含量很高。目前有报道指出线粒体中某些tRNA三叶草结构的变化与物种的进化相关联,但这一说法是否具有普遍性尚须探讨。我们最近完成了鲤鱼线粒体tRNAphe基因的结构分析(图一),并将其与上述已报导的几种脊椎动物线粒体tRNAphe基因进行了比较(表一),发现这些tRNAphe基因的D臂上都存在一个13bp的强保守区,而其它21种线粒体tRNA基因上的这一区域却是最不保守的。我们将此保守区前7个碱基与真核生物RNAPolⅢ识别的A区相比较,发现RNAPolⅢ识别的A区的3个强保守碱基在碱基类型与碱基排列位置上完全与此保守区相同(图二)。考虑到tRNAphe基因在线粒体基因组  相似文献   

6.
猛禽类15种鸟类线粒体tRNA基因序列及二级结构的比较研究   总被引:7,自引:0,他引:7  
利用PCR方法扩增13个猛禽类物种线粒体基因组中3个主要的tRNA基因簇:IQM(tRNA^lle-tRNA^gln-tRNA^Met)、WANCY(tRNA^Trp-tRNA^Ala-tRNA^Asn-tRNA^Cys-tRNA^Tyr。)和HSL(tRNA^His-tRNA^Ser(AGY)-tRNA^Leu(CUN)),测序后结合GenBank已登陆的游隼和普通鵟相应序列探讨猛禽类共15种鸟类的分子系统进化。3个目的片段长度分别为212~214bp、353~362bp、205~208bp,通过比较这些tRNA基因序列和二级结构差异,发现可变核苷酸位点占47%,这些变异中67%出现在环区,且存在插入和(或)缺失。茎区相对保守,其中一些变异如双链的互补性碱基突变、G-U配对等对于维系tRNA二级结构的稳定性非常重要。以夜鹰为外群分别构建了15个猛禽类物种共11个线粒体tRNA基因全序列和茎区序列的NJ树和MP树.其中基于全序列的系统发育树分支具有较高的自引导值,因此该数据集所反映的猛禽类系统发育关系可能更接近真实水平。系统发育分析显示,隼形目鹰科更接近于鸱鹗科而不是隼科,而草鹗科的分类地位也与传统的形态学和DNA-DNA杂交数据的结论存在分歧。比较物种问tRNA基因二级结构发现,部分tRNA基因中的核苷酸插入和缺失特征在科水平具有共同衍征,提示这些特征对于猛禽类科间系统发育关系具有较高的参考价值。  相似文献   

7.
Yang H  Huang Y 《动物学研究》2011,32(4):353-362
采用长距PCR扩增及保守引物步移法测定并注释了郑氏比蜢(Pielomastax zhengi)的线粒体基因组全序列。郑氏比蜢的线粒体基因组全长15602 bp,A+T含量为71.8%,37个基因位置与飞蝗的一致, 基因间隔序列共计10处47bp, 间隔长度从1~20bp不等; 有14对基因间存在52bp重叠, 重叠碱基数在1~8bp之间。蛋白质基因的起始密码子均为昆虫典型的起始密码子ATN。ND5基因使用了不完全终止密码子T,其余基因均为典型的TAA或TAG。除tRNASer(AGN)的DHU臂缺失外, 其余21个tRNA基因的二级结构均属典型的三叶草结构, 但在郑氏比蜢中有5个tRNA(tRNACys、tRNALys、 tRNAPhe、 tRNAPro tRNAArg)基因变异较大, 无法采用常规算法预测出来, 表现在这5个tRNA二级结构的TψC臂仅有3~4对配对碱基, tRNALys 和 tRNAArg的反密码臂仅有 4 对配对碱基。预测的lrRNA二级结构总共有6个结构域(结构域Ⅲ缺失), 44个茎环结构。预测的srRNA的二级结构包含3个结构域, 30个茎环结构。比较郑氏比蜢、西藏飞蝗(Locusta migratoria tibetensis)和疑钩额螽(Ruspolia dubia)rRNA二级结构后,发现郑氏比蜢与西藏飞蝗的更相似。A+T丰富区中存在一个被认为与复制及转录起始有关的Ploy(T)结构。  相似文献   

8.
张乃心  张玉娟  余果  陈斌 《昆虫学报》2013,56(4):398-407
研究双翅目昆虫线粒体基因组的结构特点, 并设计其测序的通用引物, 为今后双翅目昆虫线粒体基因组的研究提供参考和依据。利用比较基因组学和生物信息学方法, 分析了已经完全测序的26个双翅目昆虫线粒体基因组的结构特点、 碱基组成和保守区, 并据此设计了双翅目昆虫基因组测序的通用引物。结果表明: 双翅目昆虫线粒体基因组长14 503~19 517 bp, 其结构保守, 含有37个编码基因, 包括13个蛋白质编码基因, 22个tRNA编码基因和2个rRNA编码基因, 此外还包含一段长度差异很大的非编码区(AT富含区)。基因组内基因排列次序稳定, 除个别基因外, 其余都与黑腹果蝇Drosophila melanogaster基因排列次序一致。基因组的碱基组成不均衡, AT含量在72.59%~85.15%之间, 碱基使用存在偏向性, 偏好使用AC碱基。全基因组的核苷酸和氨基酸序列保守, 共鉴定了11个保守区。在保守区内共设计了26对双翅目线粒体基因组测序通用引物, 扩增的目标片段都在1 200 bp以内。将该套通用引物用于葱蝇Delia antiqua线粒体全基因组测序, 结果证明其高效、 合用。  相似文献   

9.
石磺线粒体基因组全序列对研究石磺科分子系统进化具有重要意义。利用LA-PCR技术对一种石磺Platevin-dexmortoni线粒体基因组全序列进行了测定和分析。结果表明,线粒体基因组序列全长13 991 bp,碱基组成分别为27.27%A、16.78%C、20.23%G、35.72%T;由22个tRNA、2个rRNA、13个蛋白编码基因和25个长度为2-118 bp的非编码区组成。4个蛋白质编码基因和5个tRNA基因从L链编码,其余基因均从H链编码。蛋白质基因的起始密码子,除ND2为GTG以外,均为典型的起始密码子ATN。ND2和Cytb基因使用了不完全终止密码子T,其余基因均使用典型的TAA或TAG。预测了22个tRNA基因的二级结构,发现tRNASer和TrnaAsn缺少DHU臂,tRNASer和tRNAThr的反密码子环上有9个碱基,而不是通常的7个碱基。最长的非编码区含有两个类似于的tRNAGln和tRNAPhy的二级结构。  相似文献   

10.
日本条螽完整的线粒体基因组序列长16 281 bp,包括13个蛋白质编码基因、22个tRNA基因、2个r RNA基因和1个D-loop区,其基因次序和方向与祖先序列相同。该线粒体基因组排列紧凑,但在ND2和tRNA~(Trp)之间有一段长为650 bp的基因间隔区。为研究螽斯科的系统发育关系,本研究选取日本条螽及其它17个螽斯科物种线粒体基因组的蛋白质编码基因和r RNA基因序列构建贝叶斯系统发生树。  相似文献   

11.
Genes for URF3, tRNAala, tRNAarg, tRNAasn, tRNAserAGY, tRNAglu, tRNAphe, and the carboxyl terminal segment of the URF5 gene have been identified within a sequenced segment of the mtDNA molecule of Drosophila yakuba. The genes occur in the order given. The URF5 and tRNAphe genes are transcribed in the same direction as replication while the URF3 and remaining five tRNA genes are transcribed in the opposite direction. Considerable differences exist in the relative arrangement of these genes in D. yakuba and mammalian mtDNA molecules. In the tRNAserAGY gene an eleven nucleotide loop, within which secondary structure formation seems unlikely, replaces the dihydrouridine arm, and both the variable loop (six nucleotides) and the T phi C loop (nine nucleotides) are larger than in any other D. yakuba tRNA gene. As available evidence is consistent with AGA codons specifying serine rather than arginine in the Drosophila mitochondrial genetic code, the possibility is considered that the 5'GCU anticodon of the D. yakuba tRNAserAGY gene can recognize AGA as well as AGY codons.  相似文献   

12.
动物线粒体DNA控制区是线粒体基因组复制与基因表达的最主要的调控区.采用杂交和测序的方法对草鱼线粒体DNA控制区进行定位、克隆并测定了控制区及其旁侧的tRNAPhe、rRNAPro和rRNAThr三个基因的序列,与多种脊椎动物的相应序列进行了比较,并进行了结构分析.草鱼线粒体控制区全长927bp,含有与酵母和爪蟾线粒体启动子相似的序列,其CSBⅠ、CSBⅡ和CSBⅢ序列与其他几种动物的CSB比较相当保守,TAS与其回文基序可形成稳定的茎环结构,成为H-链复制的终止信号.草鱼线粒体tRNAPhe、tRNAPro和tRNAThr可折叠成三叶草形二级结构,其基因具有许多不同于细胞质tRNA基因的结构特点,可能反映了线粒体tRNA与线粒体核糖体具有不寻常的作用方式  相似文献   

13.
Bovine mitochondrial tRNA(Ser) (UCN) has been thought to have two U-U mismatches at the top of the acceptor stem, as inferred from its gene sequence. However, this unusual structure has not been confirmed at the RNA level. In the course of investigating the structure and function of mitochondrial tRNAs, we have isolated the bovine liver mitochondrial tRNA(Ser) (UCN) and determined its complete sequence including the modified nucleotides. Analysis of the 5'-terminal nucleotide and enzymatic determination of the whole sequence of tRNA(Ser) (UCN) revealed that the tRNA started from the third nucleotide of the putative tRNA(Ser) (UCN) gene, which had formerly been supposed. Enzymatic probing of tRNA(Ser) (UCN) suggests that the tRNA possesses an unusual cloverleaf structure with the following characteristics. (1) There exists only one nucleotide between the acceptor stem with 7 base pairs and the D stem with 4 base pairs. (2) The anticodon stem seems to consist of 6 base pairs. Since the same type of cloverleaf structure as above could be constructed only for mitochondrial tRNA(Ser) (UCN) genes of mammals such as human, rat and mouse, but not for those of non-mammals such as chicken and frog, this unusual secondary structure seems to be conserved only in mammalian mitochondria.  相似文献   

14.
To help determine whether the typical arthropod arrangement was a synapomorphy for the whole Tettigoniidae, we sequenced the mitochondrial genome (mitogenome) of the quiet-calling katydids, Xizicus fascipes (Orthoptera: Tettigoniidae: Meconematinae). The 16,166-bp nucleotide sequences of X. fascipes mitogenome contains the typical gene content, gene order, base composition, and codon usage found in arthropod mitogenomes. As a whole, the X. fascipes mitogenome contains a lower A+T content (70.2%) found in the complete orthopteran mitogenomes determined to date. All protein-coding genes started with a typical ATN codon. Ten of the 13 protein-coding genes have a complete termination codon, but the remaining three genes (COIII, ND5 and ND4) terminate with incomplete T. All tRNAs have the typical clover-leaf structure of mitogenome tRNA, except for tRNA(Ser(AGN)), in which lengthened anticodon stem (9 bp) with a bulged nuleotide in the middle, an unusual T-stem (6 bp in constrast to the normal 5 bp), a mini DHU arm (2 bp) and no connector nucleotides. In the A+T-rich region, two (TA)n conserved blocks that were previously described in Ensifera and two 150-bp tandem repeats plus a partial copy of the composed at 61 bp of the beginning were present. Phylogenetic analysis found: i) the monophyly of Conocephalinae was interrupted by Elimaea cheni from Phaneropterinae; and ii) Meconematinae was the most basal group among these five subfamilies.  相似文献   

15.
ABSTRACT. The internal transcribed spacer (ITS) between the mitochondrial large (23S rRNA; rnl ) and small (16S rRNA; rns ) subunit ribosomal RNA genes of Acanthamoeba castellanii strain Neff was sequenced previously and was uniquely interesting because it contained tRNA genes with acceptor stem mismatches that underwent RNA editing repair. Our interest in this ITS region was to determine its phylogenetic potential in differentiating between closely related isolates. We analyzed the mitochondrial ITS region for 17 Acanthamoeba isolates and observed extensive sequence and length variability, making this region difficult to align. Acanthamoeba griffini strain S-7 had the shortest ITS (i.e. 559 base pairs [bp]) compared with Acanthamoeba palestinensis strain Reich, which had the longest (i.e. 1,360 bp). The length disparity occurred predominantly between the spacer region of the aspartic acid ( trnD ) and methionine ( trnM ) tRNA genes. Unexpectedly, this region in A. palestinensis Reich was found to contain a duplication of the trnM gene. Additionally, like A. castellanii strain Neff, all isolates examined had tRNAs with mismatches in their acceptor stem. Also, the potential for an additional type of editing not described previously for Acanthamoeba , involving purine to pyrimidine transversions was observed.  相似文献   

16.
E. coli unfractionated tRNA and tRNA phe both contain a single strong ethidium binding site. Singlet-singlet energy transfer has been used to measure the distance between this site and dansyl hydrazine covalently attached to the 3' end of the tRNAs. The distance obtained is between 33 and 40 A for both samples. This is completely consistent with results from earlier NMR studies which placed the single, strong ethidium binding site of yeast tRNAphe between base pairs 6 and 7 on the aminoacyl stem. From the known tertiary structure of tRNAphe it is possible to rationalize the unusual affinity of this site and its likely existence in all tRNAs.  相似文献   

17.
A new method is presented with which we isolated milochondrial DNA from fresh carp liver usingdifferential centrifugation and DNase treatment that gave high yield of purified product with an easyand economical procedure. Highly distinct bands were displayed in agarose gel electrophoresls ofthe product digested with restrictlon enzymes, which were successfully used in constructingrestriction map and molecular clone of mitochondrial genes. With DNAs thus obtained, we havecloned cysteine tRNA gene (tRNA~(Cys) gene) of carp mitochondria, determined the nucleotide sequenceof it and the light strand origin, and depicted the cloverleaf secondary structure of tDNA~(Cya) and thelight strand origin. Analysis of nucleotide sequences of tRNA~(Cy) genes of 5 vertebrates has revealedunusual features of carp mitochondrial tRNA~(Cy) gene as compared with their cytoplasmic counter-parts, Altogether 36 bases were found in the light strand origin of carp mitochondriaf: 11 pairs in thestem; and 14 bases in the loop. As compared with those of other 11 vertebrate species, the sequenceof the stem is very conservative while both sequence and length of the loop are quite variable. Thestructure of the stem-loop may play an important role in light strand replication.  相似文献   

18.
Chen M  Tian LL  Shi QH  Cao TW  Hao JS 《动物学研究》2012,33(2):191-201
该文对柳紫闪蛱蝶Apaturailia(鳞翅目:蛱蝶科)的线粒体基因组全序列进行了测定,同时结合其它已知蛱蝶类的相应序列进行了比较分析。结果显示:柳紫闪蛱蝶的线粒体基因组(GenBankaccessionno.:JF437925)是一个15242bp的环状DNA分子,包含13个蛋白质编码基因、2个rRNA基因和22个tRNA基因。13个蛋白编码基因中,除了COI基因的起始密码子是CGA外,其余12个蛋白编码基因都具有标准的ATN起始密码子;柳紫闪蛱蝶与其它已测的10种蛱蝶在基因定位和排列顺序方面几乎相同,只是在非编码序列上存在细微的差异,其核苷酸的构成及密码子使用频率都处于鳞翅目昆虫的范围之内。22个的tRNA基因中,除了tRNASer(AGN)缺少DHU臂,其余的tRNA基因都显示为典型的三叶草结构。基因组共存在9处基因间重叠区(总长度为33bp)以及12个基因间隔区(总长为155bp,最长间隔是49bp,最短的是1bp)。在ND6和Cytb间的间隔区中还发现有(TA)23似微卫星结构。与其他蛱蝶类相似,403bp的AT富集区包含有ATAGA,ATTTA二个保守模块(一个21bp的poly-T,一个10bp的poly-A),以及二个似微卫星的重复结构((TA)10和(TA)7)。  相似文献   

19.
The complete mitochondrial genome sequence of the silver croaker, Argyrosomus argentatus, was obtained by using LA-PCR and sequencing. The mitogenome is 16485 bp in length, consists of 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and a non-coding control region like those found in other vertebrates, with the gene order similar to that of typical teleosts. Most of the genes of A. argentatus were encoded on the H-strand, while the ND6 and eight tRNA (Gln, Ala, Asn, Cys, Tyr, Ser (UCN), Glu and Pro)) genes were encoded on the L-strand. The reading frames of two pairs of genes overlapped: ATPase8 and 6 and ND4L and ND4 by ten and seven nucleotides, respectively. The origin of L-strand replication in A. argentatus was in a cluster of five tRNA genes (WANCY) and was 46 nucleotides in length. The conserved motif (5'-GCGGG-3') was found at the base of the stem within the tRNA(Cys) gene. Within the control region, we identified all of the conserved motifs except for CSB-F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号