首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ultraviolet-sensitive and wild-type Haemophilus influenzae cells were exposed to irradiated and unirradiated transforming deoxyribonucleic acid (DNA) containing a marker which can be linked to another marker in the cells. Lysates were made after various times of incubation and assayed for transforming activity on an excisionless recipient. Repair can be noted as an increase in activity from the irradiated donor DNA after its linkage to the recipient DNA. No repair can be observed in a mutant which is unable to integrate transforming DNA. There is a little repair in another mutant which is unable to excise pyrimidine dimers. H. influenzae cells also repair nondimer damage, as judged by the increase in activity observed in lysates made with irradiated and maximally photoreactivated DNA.  相似文献   

2.
The interaction between transformation and prophages of HP1c1, S2, and a defective phage of Haemophilus influenzae has been investigated by measurement of (i) the effect of prophage on transformation frequency and (ii) the effect of transformation on phage induction. The presence of any of the prophages does not appreciably alter transformation frequencies in various Rec(+) and Rec(-) strains. However, exposure of competent lysogens to transforming deoxyribonucleic acid (DNA) may induce phage but only in Rec(+) strains, which are able to integrate transforming DNA into their genome. Transformation of Rec(+) lysogens with DNA irradiated with ultraviolet (UV) light causes the production of even more phage than results from unirradiated DNA, but this indirect UV induction is not as effective as direct induction by UV irradiation of lysogens. Both types of UV induction are influenced by the repair capacity of the host. Wild-type cells contain a prophage and can be induced by transformation to produce a defective phage, which kills a small fraction of the cells. Defective phage in wild-type cells are also induced by H. parainfluenzae DNA, and a much larger fraction of the cells is killed. Strain BC200, which is highly transformable but is not inducible for defective phage, is not killed by H. parainfluenzae DNA, suggesting that wild-type cells are killed by killed by this DNA because of phage induction. A minicell-producing mutant, LB11, has been isolated. Some phage induction occurs in this strain when the cells are made competent, unlike the wild type. A large majority of LB11 cells surviving the competence regime are killed by exposure to transforming DNA.  相似文献   

3.
An endonuclease purified from Micrococcus luteus makes single-strand breaks in ultraviolet (UV)-irradiated, native deoxyribonucleic acid (DNA). The purified endonuclease is able to reactivate UV-inactivated transforming DNA of Haemophilus influenzae, especially when the DNA is assayed on a UV-sensitive mutant of H. influenzae. After extensive endonuclease action, there is a loss of transforming DNA when assayed on both UV-sensitive and -resistant cells. The endonuclease does not affect unirradiated DNA. The results indicate that the endonuclease function is involved in the repair of biological damage resulting from UV irradiation and that the UV-sensitive mutant is deficient in this step. We interpret the data as indicating that the various steps in the repair of DNA must be well coordinated if repair is to be effective.  相似文献   

4.
The repair of ultraviolet (UV) damage in Bacillus subtilis W23T(-) has been studied by transformation with deoxyribonucleic acid (DNA) extracted from irradiated cells before and after repair. The extent of repair of genetic markers by donor cells after low or moderate doses of UV was found to be related only to the initial degree of inactivation. After a very high dose, further inactivation occurred, also in proportion to initial damage. In addition, the competent recipient cells were shown to repair approximately 75% of the damage in transforming DNA. The sensitivities of markers irradiated either in vivo or in vitro appeared to be related to map position, the more proximal markers showing a greater resistance to UV inactivation.  相似文献   

5.
Seven mutants of Haemophilus influenzae were isolated by the criterion of sensitivity to ultraviolet (UV) inactivation of colony formation. These mutants and the wild type were characterized with regard to X-ray inactivation of colony formation, UV induction of division inhibition, the ability of the eight strains to act as recipients to UV-irradiated H. influenzae phage and transforming deoxyribonucleic acid (DNA), and the influence of acriflavine on the survival of UV-irradiated transforming DNA with these strains as recipients. The photoreactivable sector of transforming DNA with yeast photoreactivating enzyme was measured for the most UV-sensitive mutant and was found to be greater than that of wild type. Judged by the above criteria, the order of the strains' sensitivities shows some, but by no means complete, correlation from one type of sensitivity characterization to another, indicating that a minimum of two variables is needed to explain the differences in the strains. Acriflavine increases the UV sensitivity of transforming DNA except in the most sensitive mutant. This effect is usually, but not always, more pronounced in the case of the more UV-resistant marker. The acriflavine effect is postulated to be the result of at least two factors: (i) interference with repair of transforming DNA in the host cell, and (ii) interference with the probability of recombination between transforming DNA and host DNA.  相似文献   

6.
Radioimmunoassays were used to monitor the removal of antibody-binding sites associated with the two major UV radiation-induced DNA photoproducts [cyclobutane dimers and (6-4) photoproducts]. Unlike with cultured human cells, where (6-4) photoproducts are removed more rapidly than cyclobutane dimers, the kinetics of repair were similar for both lesions. Repair capacity in wild type diminished throughout development. The radioimmunoassays were also employed to confirm the absence of photoreactivation in C. elegans. In addition, three radiation-sensitive mutants (rad-1, rad-2, rad-7) displayed normal repair capacities. An excision defect was much more pronounced in larvae than embryos in the fourth mutant tested (rad-3). This correlates with the hypersensitivity pattern of this mutant and suggests that DNA repair may be developmentally regulated in C. elegans. The mechanism of DNA repair in C. elegans as well as the relationship between the repair of specific photoproducts and UV radiation sensitivity during development are discussed.  相似文献   

7.
We have employed the Chinese hamster ovary (CHO) UV-sensitive mutant cell lines, UV5 and UV20, to determine whether ionizing and ultraviolet irradiation enhance the efficiency of DNA-mediated gene transfer in cells deficient in excision repair. Confluent AA8 (wild type), UV5, and UV20 cells were transfected (via polybrene and dimethyl sulfoxide treatments) with the recombinant DNA plasmid, pSV2-gpt, trypsinized, irradiated with either X rays or ultraviolet in suspension, and then plated into flasks. After a 48-h expression time, cells were trypsinized, counted, and plated in XMAT media to select for pSV2-gpt transformation. We report that X-ray irradiation enhances gene transfer in wild-type AA8 and in both UV-sensitive cell lines. Ultraviolet irradiation enhances gene transfer in AA8 and UV20, but not in UV5. Since both UV20 and UV5 are deficient in excision repair, we suggest that ultraviolet-enhanced gene transfer may involve a postreplication repair mechanism deficient in UV5.  相似文献   

8.
Radiobiological Inactivation of Epstein-Barr Virus   总被引:4,自引:4,他引:0       下载免费PDF全文
Lymphocyte transforming properties of B95-8 strain Epstein-Barr virus (EBV) are very sensitive to inactivation by either UV or X irradiation. No dose of irradiation increases the transforming capacity of EBV. The X-ray dose needed for inactivation of EBV transformation (dose that results in 37% survival, 60,000 rads) is similar to the dose required for inactivation of plaque formation by herpes simplex virus type 1 (Fischer strain). Although herpes simplex virus is more sensitive than EBV to UV irradiation, this difference is most likely due to differences in the kinetics or mechanisms of repair of UV damage to the two viruses. The results lead to the hypothesis that a large part, or perhaps all, of the EBV genome is in some way needed to initiate transformation. The abilities of EBV to stimulate host cell DNA synthesis, to induce nuclear antigen, and to immortalize are inactivated in parallel. All clones of marmoset cells transformed by irradiated virus produce extracellular transforming virus. These findings suggest that the abilities of the virus to transform and to replicate complete progeny are inactivated together. The amounts of UV and X irradiation that inactivate transformation by B95-8 virus are less than the dose needed to inactivate early antigen induction by the nontransforming P(3)HR-1 strain of EBV. Based on radiobiological inactivation, 10 to 50% of the genome is needed for early antigen induction. Inactivation of early antigen induction is influenced by the cells in which the assay is performed. Inactivation proceeds more rapidly in EBV genome-free cells than in genome carrier Raji or in P(3)HR-1 converted EBV genome-free cells clone B(1). These results indicate that the resident EBV genome participates in the early antigen induction process. Variation in radio-biological killing of B95-8 and P(3)HR-1 EBV is not attributable to variations in the repair capacities of the cells in which the viruses were assayed, since inactivation of HSV was the same in primary lymphocytes and in all lymphoid cell lines tested.  相似文献   

9.
耐辐射球菌(Deinococcus radiodurans R1)有着极强的辐射抗性.研究其抗辐射的机理对于处理放射性废料有着潜在的应用价值.在耐辐射球菌的基因组中,许多序列的功能未知.其中DRB0099尤为引人注意.将DRB0099缺失突变构建该基因的突变株.对野生型和突变体进行比较后发现,在正常生长条件下的前期阶段(0~16 h),突变体生长速度比野生型慢.16 h以后,野生型逐渐进入稳定生长期.这时,突变株的生长速度高于野生型.但是,野生型的浓度一直高于突变株.表明在DRB0099被删除后,耐辐射球菌的生长可能受到了阻滞.在紫外线照射的条件下,尽管野生型随着照射剂量的增加,存活率越来越低,但是要比突变体高许多.野生型具有比突变体更强的修复DNA双链断裂的能力.DRB0099可能直接参与了对DNA的修复.突变体对H2O2的敏感程度高于野生型,表明野生型耐辐射球菌在对抗活性氧保护其蛋白质、DNA或者DNA修复方面具有比突变体更强的功能.在低浓度H2O2处理条件下,尽管野生型和突变体的存活率都出现下降趋势,但二者的差值并不大.随着H2O2剂量的增加,二者的差值越来越大.表明随着活性氧浓度的增加,蛋白质和DNA损伤的数量增加,失去DRB0099基因功能的突变体比野生型更容易受到损伤.在紫外线照射处理或者H2O2处理条件下,DRB0099能够保护蛋白质和DNA.  相似文献   

10.
The present study was designed to determine the extent to which herpes simplex virus (HSV) may be utilized to study the repair of DNA damaged by ionizing radiation. We investigated the survival of 60Co-irradiated HSV in cell strains derived from 2 normal controls and 13 patients with a broad range of diseases associated with possible DNA repair deficiencies. Irradiation was performed under two conditions to vary the type of damage incurred by the virus. HSV survival was greatly enhanced when the virus was irradiated in such a way that the indirect effects of ionizing radiation were minimized. We found no correlation between cellular hypersensitivity to ionizing radiation and survival of irradiated HSV. Reduced levels of virus survival were found in only 1 cell strain. When cells were treated with ionizing radiation or UV light prior to infection, no enhancement of virus survival was observed.  相似文献   

11.
The processing of damaged DNA was altered in a mitomycin C-sensitive mutant (mtcA) of Micrococcus radiodurans. Even though the mutant retained resistance to 254-nm UV radiation, it did not, in contrast to the wild-type strain, show any excessive DNA degradation or cell death when incubated with chloramphenicol after sublethal doses of either UV light or mitomycin C. The results suggest the constitutive synthesis of an enzyme system responsible for wild-type proficiency in the repair of mitomycin C-induced damage. An alternative system able to repair damage caused by mitomycin C was demonstrated in the mtcA background. In this strain, additional damage inflicted upon the cellular DNA effected a massive rescue of cells previously inactivated by mitomycin C. Rescue was provoked by ionizing radiation, by UV light, or by simple alkylating agents. Cells treated with psoralen plus near-UV radiation could be rescued only when inactivation was due primarily to psoralen-DNA interstrand cross-links rather than to monoadducts. The rescue of inactivated cells was prevented in the presence of chloramphenicol. These results can be interpreted most readily in terms of an alternative repair system able to overcome DNA interstrand cross-links produced by mitomycin C or psoralen plus near-UV light, but induced only by the more abundant number of damages produced by radiation or simple alkylating agents.  相似文献   

12.
A mutant of micrococcus radiodurans which is deficient in recombination has been isolated after treatment of the wild type with N-methyl-N'-nitro-N-nitrosoguanidine. We have called this mutant Micrococcus radiodurans rec30. The efficiency of recombination in this mutant, as measured by transformation, is less than 0.01% that of the wild type. It is 15 times more sensitive to the lethal action of ultraviolet radiation, 120 times more sensitive to ionizing radiation, and 300 times more sensitive to mitomycin C (MMC) than the wild type. It is probably inactivated by a single MMC-induced deoxyribonucleic acid cross-link per genome. The excision of ultraviolet-induced pyrimidine dimers is normal. There is no radiation-induced degradation of deoxyribonucleic acid. All spontaneous revertants selected for resistance to low levels of MMC had wild-type resistance to radiation and MMC, and the same efficiency of recombination as the wild type, suggesting that the recombination deficiency of the strain is due to a single mutation. Deoxyribonucleic acid from this mutant can transform M. radiodurans UV17 presumed deficient in an exr type gene to wild type.  相似文献   

13.
Flap endonuclease 1 (FEN-1) is a 5'-3' flap exo-/endonuclease that plays an important role in Okazaki fragment maturation, nonhomologous end joining of double-stranded DNA breaks, and long patch base excision repair. Here, we demonstrate that the wild type FEN-1 binds tightly to chromatin in conjunction with proliferating cell nuclear antigen (PCNA) recruitment after MMS treatment, and the nuclease-defective FEN-1 increased the sensitivity of the cells to methylmethane sulfonate (MMS) and to UV light but not to ionizing radiation. In contrast, the cells expressing the nuclease-defective and PCNA binding-defective double mutant FEN-1 exhibited sensitivities similar to those in the cells expressing the wild type FEN-1. MMS treatment caused a prolonged delay of S phase progression and impairment in colony-forming activity of cells expressing nuclease-defective FEN-1. A comet assay demonstrated that DNA repair after MMS or UV treatment was impaired in the cells expressing nuclease-deficient FEN-1 but not in the cells with double-mutated FEN-1. Taken together, these findings suggest that FEN-1 plays an essential role in the DNA repair processes in mammalian cells and that this activity of FEN-1 is PCNA-dependent.  相似文献   

14.
Deprivation of amino acids required for growth or treatment with chloramphenicol or puromycin after irradiation reduced the survival of Rec(+) cells of Escherichia coli K-12 which had been exposed to either ultraviolet (UV) or X radiation. In contrast, these treatments caused little or no reduction in the survival of irradiated recA or recB mutants. The effect of chloramphenicol on the survival of X-irradiated cells was correlated with an inhibition of repair of single-strand breaks in irradiated deoxyribonucleic acid (DNA), previously shown to be controlled by recA and recB. In UV-irradiated cells no effect of chloramphenicol was detected on the repair of single-strand discontinuities in DNA replicated from UV-damaged templates, a process controlled by recA but not by recB. From this we concluded that inhibiting protein synthesis in UV or X-irradiated cells may interfere with some biochemical step in repair dependent upon the recB gene. When irradiated Rec(+) cells were cultured for a sufficient period of time in minimal growth medium before chloramphenicol treatment their survival was no longer decreased by the drug. After X irradiation this occurred in less than one generation time of the unirradiated control cells. After UV irradiation it occurred more slowly and was only complete after several generation times of the unirradiated controls. These observations indicated that replication of the entire irradiated genome was probably not required for rec-dependent repair of X-irradiated cells, although it might be required for rec-dependent repair of UV-irradiated cells.  相似文献   

15.
Aims: To identify structural components of Bacillus subtilis spores serving as targets for sterilization with microwave induced low‐pressure, low‐temperature nitrogen‐oxygen plasma. Methods and Results: The inactivation of spores followed a biphasic kinetics consisting of a log‐linear phase with rapid inactivation followed by a slow inactivation phase. In the course of plasma treatment, damage to DNA, proteins and spore membranes were observed by monitoring the occurrence of auxotrophic mutants, inactivation of catalase (KatX) activity and the leakage of dipicolinic acid, respectively. Spores of the wild‐type strain showed the highest resistance to plasma treatment. Spores of mutants defective in nucleotide excision repair (uvrA) and small acid‐soluble proteins (ΔsspA ΔsspB) were more sensitive than those defective in the coat protein CotE or spore photoproduct repair (splB). Exclusion of reactive particles and spectral fractions of UV radiation from access to the spores revealed that UV‐C radiation is the most effective inactivation agent in the plasma, whereby the splB and ΔcotE mutant spores were equally and slightly less sensitive, respectively, than the wild‐type spores. Finally, the extent of damages in the spore DNA determined by quantitative PCR correlated with the spore inactivation. Conclusions: Spore inactivation was efficiently mediated by a combination of DNA damage and protein inactivation. DNA was identified to be the primary target for spore inactivation by UV radiation emitted by the plasma. Coat proteins were found to constitute a protective layer against the action of the plasma. Significance and Impact of the Study: The results provide new evidence to the understanding of plasma sterilization processes. This knowledge supports the identification of useful parameters for novel plasma sterilization equipment to control process safety.  相似文献   

16.
Cis-diamminedichloroplatinum II (cisplatin) is a DNA inter- and intrastrand crosslinking agent which can sensitize prokaryotic and eukaryotic cells to killing by ionizing radiation. The mechanism of radiosensitization is unknown but may involve cisplatin inhibition of repair of DNA damage caused by radiation. Repair proficient wild type and repair deficient (rad52, recombinational repair or rad3, excision repair) strains of the yeast Saccharomyces cerevisiae were used to determine whether defects in DNA repair mechanisms would modify the radiosensitizing effect of cisplatin. We report that cisplatin exposure could sensitize yeast cells with a competent recombinational repair mechanism (wild type or rad3), but could not sensitize cells defective in recombinational repair (rad52), indicating that the radiosensitizing effect of cisplatin was due to inhibition of DNA repair processes involving error free RAD52-dependent recombinational repair. The presence or absence of oxygen during irradiation did not alter this radiosensitization. Consistent with this result, cisplatin did not sensitize cells to mutation that results from lesion processing by an error prone DNA repair system. However, under certain circumstances, cisplatin exposure did not cause radiosensitization to killing by radiation in repair competent wild type cells. Within 2 h after a sublethal cisplatin treatment, wild type yeast cells became both thermally tolerant and radiation resistant. Cisplatin pretreatment also suppressed mutations caused by exposure to N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), a response previously shown in wild type yeast cells following radiation pretreatment. Like radiation, the cisplatin-induced stress response did not confer radiation resistance or suppress MNNG mutations in a recombinational repair deficient mutant (rad52), although thermal tolerance was still induced. These results support the idea that cisplatin adducts in DNA interfere with RAD52-dependent recombinational repair and thereby sensitize cells to killing by radiation. However, the lesions can subsequently induce a general stress response, part of which is induction of RAD52-dependent error free recombinational repair. This stress response confers radiation resistance, thermal tolerance, and mutation resistance in yeast.  相似文献   

17.
Genetic Control of Radiation Sensitivity in SCHIZOSACCHAROMYCES POMBE   总被引:17,自引:1,他引:17  
A. Nasim  B. P. Smith 《Genetics》1975,79(4):573-582
Genetic analysis of a large number of radiation-sensitive mutants of S. pombe, isolated in different laboratories, showed that these isolates represent 22 non-allelic loci. The mutants were shown to fall into three distinct classes concerning response to UV and ionizing radiation, including two mutants which are primarily sensitive to ionizing radiation but not to UV. Single-gene mutants were crossed to obtain supersensitive double mutants. Such double mutants showed a marked increase in sensitivty to a variety of inactivating agents as compared to the parental strains. The isolation of three classes of radiation-sensitive mutants and the construction of double mutants implies the presence of multiple pathways in S. pombe for repair of radiation-induced damage. The bearing of these data on cellular repair mechanisms in eukaryotes is discussed.  相似文献   

18.
The effect of low doses of ionizing and nonionizing radiation on the radiation response of yeast Saccharomyces cerevisiae toward ionizing and nonionizing radiation was studied. The wild-type strain D273-10B on exposure to 54 Gy gamma radiation (resulting in about 10% cell killing) showed enhanced resistance to subsequent exposure to UV radiation. This induced UV resistance increased with the incubation time between the initial gamma radiation stress and the UV irradiation. Exposure to low doses of UV light on the other hand showed no change in gamma or UV radiation response of this strain. The strains carrying a mutation at rad52 behaved in a way similar to the wild type, but with slightly reduced induced response. In contrast to this, the rad3 mutants, defective in excision repair, showed no induced UV resistance. Removal of UV-induced pyrimidine dimers in wild-type yeast DNA after UV irradiation was examined by analyzing the sites recognized by UV endonuclease from Micrococcus luteus. The samples that were exposed to low doses of gamma radiation before UV irradiation were able to repair the pyrimidine dimers more efficiently than the samples in which low gamma irradiation was omitted. The nature of enhanced repair was studied by scoring the frequency of induced gene conversion and reverse mutation at trp and ilv loci respectively in strain D7, which showed similar enhanced UV resistance induced by low-dose gamma irradiation. The induced repair was found to be essentially error-free. These results suggest that irradiation of strain D273-10B with low doses of gamma radiation enhances its capability for excision repair of UV-induced pyrimidine dimers.  相似文献   

19.
D Billen 《Radiation research》1987,111(2):354-360
When cells are exposed to ionizing radiation, they suffer lethal damage (LD), potentially lethal damage (PLD), and sublethal damage (SLD). All three forms of damage may be caused by direct or indirect radiation action or by the interaction of indirect radiation products with direct DNA damage. In this report I examine the expression of LD and PLD caused by the indirect action of X rays in isogenic, repair-deficient Escherichia coli. The radiosensitivity of a recA mutant, deficient both in pre- and post replication recombination repair and SOS induction (inducible error-prone repair), was compared to that of a recB mutant which is recombination deficient but SOS proficient and to a previously studied DNA polymerase 1-deficient mutant (polA) which lacks the excision repair pathway. Indirect damage by water radicals (primarily OH radicals) was circumvented by the presence of 2 M glycerol during irradiation. Indirect X-ray damage by water radicals accounts for at least 85% of the PLD found in exposed repair-deficient cells. The DNA polymerase 1-deficient mutant is most sensitive to indirect damage with the order of sensitivity polA1 greater than recB greater than or equal to recA greater than wild type. For the direct effects of X rays the order of sensitivity is recA greater than recB greater than polA1 greater than wild type. The significance of the various repair pathways in mitigating PLD by direct and indirect damage is discussed.  相似文献   

20.
In Vitro Packaging of UV Radiation-Damaged DNA from Bacteriophage T7   总被引:11,自引:3,他引:8       下载免费PDF全文
When DNA from bacteriophage T7 is irradiated with UV light, the efficiency with which this DNA can be packaged in vitro to form viable phage particles is reduced. A comparison between irradiated DNA packaged in vitro and irradiated intact phage particles shows almost identical survival as a function of UV dose when Escherichia coli wild type or polA or uvrA mutants are used as the host. Although uvrA mutants perform less host cell reactivation, the polA strains are identical with wild type in their ability to support the growth of irradiated T7 phage or irradiated T7 DNA packaged in vitro into complete phage. An examination of in vitro repair performed by extracts of T7-infected E.coli suggests that T7 DNA polymerase may substitute for E. coli DNA polymerase I in the resynthesis step of excision repair. Also tested was the ability of a similar in vitro repair system that used extracts from uninfected cells to restore biological activity of irradiated DNA. When T7 DNA damaged by UV irradiation was treated with an endonuclease from Micrococcus luteus that is specific for pyrimidine dimers and then was incubated with an extract of uninfected E. coli capable of removing pyrimidine dimers and restoring the DNA of its original (whole genome size) molecular weight, this DNA showed a higher packaging efficiency than untreated DNA, thus demonstrating that the in vitro repair system partially restored the biological activity of UV-damaged DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号