首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine (TCEP), indicating the possible involvement of disulfide bridge(s). Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface.  相似文献   

2.
Rat prothyrotropin releasing hormone (proTRH) is processed in the regulated secretory pathway (RSP) of neuroendocrine cells yielding five TRH peptides and several non-TRH peptides. It is not understood how these peptides are targeted to the RSP. We show here that a disulfide bond in the carboxy-terminus of proTRH plays an important role in the trafficking of this prohormone. Recombinant proTRH was observed to migrate faster on a native gel when treated with dithiothreitol (DTT) suggesting the presence of a disulfide bond. In vitro disulfide bond formation was prevented either by DTT treatment or by mutating cysteines 213 and 219 to glycines. In both cases the peptides derived from these mutants exhibited increased constitutive release and processing defects when expressed in AtT20 cells, a neuroendocrine cell line used in our prior studies on proTRH processing. Immunocytochemistry revealed that wild-type proTRH and mutant proTRH localized in a punctate pattern typical of proteins sorted to the regulated secretory pathway. These data suggest that the proposed disulfide bond of proTRH is involved in sorting of proTRH-derived peptides and in their retention within maturing secretory granules. This is the first evidence of structural motifs being important for the sorting of proTRH.  相似文献   

3.
The angiotensin II (AngII) receptor family is comprised of two subtypes, type 1 (AT(1)) and type 2 (AT(2)). Although sharing low homology (only 34%), mutagenesis has identified some key residues that are conserved between both subtypes, including four extracellular cysteines. Previous AT(1) mutagenesis demonstrated that the cysteines form two disulfide bonds, one linking the first and second extracellular loops and another connecting the amino terminus to the third extracellular loop. The importance of these AT(1) disulfides in ligand binding is supported by the effect of dithiothreitol (DTT). DTT breaks disulfide bonds, thereby strongly inhibiting ligand binding in AT(1) receptors. Despite retaining the same cysteines, AT(2) receptor ligand binding is paradoxically enhanced by DTT. Thus, we constructed a series of AT(2) cysteine mutations, either individually or paired, to establish the role of the cysteines and the source of DTT's effects. The AT(2) cysteine mutants surprisingly confirmed that the cysteines form disulfide bonds in the same manner as in the AT(1) subtype. However, breaking the AT(2) disulfide bridges yielded two responses. As in AT(1) receptors, mutations disrupting the disulfide bond between the first and second extracellular loops reduced AT(2) binding by 4-fold. In contrast, mutations breaking the disulfide bridge between the amino terminus and the third extracellular loop increased AT(2) binding, mimicking DTT's effect on this subtype. Further analysis of AT(1)/AT(2) chimeric exchange mutants of these domains suggested that the AT(2) amino terminus and third extracellular loop may possess latent binding epitopes that are only uncovered after DTT exposure.  相似文献   

4.
OPHC2, a methyl parathion hydrolase (MPH) from Pseudomonas pseudoalcaligenes C2-1 (CGMCC 1150), can degrade a wide range of organophosphate pesticides. Compared with other MPHs, OPHC2 exhibits high thermostability. Its thermostability mechanism, however, remains unknown. In the present study, sequence analysis demonstrated that two cysteines (Cys110 and Cys146) exist in OPHC2, but not in other MPHs. The three-dimensional structural model of OPHC2 performed by computer-assisted homology modelling revealed a potential stacking network with residues Cys110 and Cys146, which probably formed an intramolecular disulfide bond. Furthermore, both sodium dodecyl sulphate-polyacrylamide gel electrophoresis and thiol-titration analyses indicated that OPHC2 contains a disulfide bond. Substitution of the disulfide bond-forming cysteines with alanine, leucine or methionine residues substantially decreased the thermostability of OPHC2, suggesting that disulfide bond formation affects conformational stability. These results, combined with three-dimensional structural modelling, demonstrated that the formation of a C110-C146 disulfide bond may stabilise the conformation of OPHC2, contributing to its thermostability.  相似文献   

5.
Guo ZY  Chang CC  Lu X  Chen J  Li BL  Chang TY 《Biochemistry》2005,44(17):6537-6546
Acyl-coenzyme A:cholesterol acyltransferase (ACAT) is a membrane protein located in the endoplasmic reticulum (ER). It plays important roles in cellular cholesterol homeostasis. Human ACAT1 (hACAT1) contains nine cysteines (C). To quantify and map its disulfide linkage, we performed thiol-specific modifications by mPEG(5000)-maleimide (PEG-mal) and iodoacetamide (IA) under denatured condition, using extracts that contain wild-type or various single C to A mutant hACAT1s. With the wild-type enzyme, seven Cs could be modified before dithiothreitol (DTT) treatment; nine Cs could be modified after DTT treatment. With the C528A or the C546A enzyme, all eight Cs could be modified before or after DTT treatment. With all other remaining single C to A mutant enzymes, six Cs could be modified before DTT treatment, and eight Cs could be modified after DTT treatment. We next performed Lys-C protease digestion on hACAT1 with a hemagglutinin (HA) tag at the C-terminus. The digests were treated with or without DTT and analyzed by SDS-PAGE and Western blotting. The two predicted C-terminal fragments (K496-K531 and N532-F550-HA tag) were trapped as a single peptide band, but only when the digests were treated without DTT. Thus, C528 and C546 near the enzyme's C-terminus form a disulfide. PEG-mal is impermeable to ER membranes. We used PEG-mal to map the localizations of the seven free sulfhydryls and the disulfide bond of hACAT1 present in microsomal vesicles. The results show that C92 is located on the cytoplasmic side of the ER membrane and the disulfide is located in the ER lumen, while all other free Cs are located within the hydrophobic region(s) of the enzyme.  相似文献   

6.
Ikushiro S  Emi Y  Iyanagi T 《Biochemistry》2002,41(42):12813-12820
UDP-glucuronosyltransferase- (UGT-) dependent glucuronidation is an important detoxification process for many endogenous and exogenous compounds in mammals. Treatment of rat hepatic microsomes with the reducing reagent dithiothreitol (DTT) resulted in a significant increase in p-nitrophenol (p-NP) glucuronidation in a time- and concentration-dependent manner. The DTT-dependent activation of glucuronidation was specific for planar phenols but not for bilirubin or testosterone without membrane perturbation of the microsomes. p-NP glucuronidation in Gunn rat hepatic microsomes lacking UGT1 isozymes was not affected by DTT, indicating that UGT1A6 in the microsomes is mainly involved in the activation. The DTT-dependent activation was inhibited by 1,6-bis(maleimido)hexane (BMH) but not by N-ethylmaleimide, indicating that cross-linking between cysteine residues in UGT1A6 is responsible for the activation. Immunoblot analysis of rat hepatic microsomes on nonreducing SDS-PAGE gels revealed that most of the UGT1A6 migrated as a monomer, suggesting that DTT could affect an intramolecular disulfide bond in the UGT1A6 that may be responsible for the activation. To identify which of the ten cysteines in UGT1A6 are involved in the disulfide bond, rat UGT1A6 wild type and a set of mutants, each with a cysteine to serine substitution, were constructed and expressed in COS cells. Treatment of COS microsomes with DTT had no effect on the activity of the wild type but BMH showed significant inhibition, suggesting that UGT1A6 expressed in COS cells may be in the reduced and activated state. Replacement of either Cys 121 or Cys 125 with serine showed insensitivity to the BMH-dependent inhibition. These results demonstrate that both Cys 121 and Cys 125 are responsible for the activation of the activity through the disulfide bond in rat UGT1A6.  相似文献   

7.
Miller D  Xu H  White RH 《Biochemistry》2012,51(14):3067-3078
Here we report that the Methanocaldococcus jannaschii enzyme derived from the MJ0309 gene is an Fe(II) dependent agmatinase (SpeB). This is the first report of an iron-dependent agmatinase. We demonstrate that aerobically isolated recombinant enzyme contains two disulfide bonds and only a trace amount of any metal and requires the presence of both dithiothreitol (DTT) and 4 equiv of Fe(II) for maximum activity. The DTT activation could be indicative of the presence of a redox system, which would regulate the activity of this as well as other enzymes in the methanogens. Site-directed mutagenesis of the four conserved cysteines C71, C136, C151, and C229 to alanine or serine showed that only the C71 and C151 mutants showed a significant drop in activity indicating that the disulfide bond responsible for regulating activity was likely between C136 and C229. We propose that the C71 and C151 cysteine thiols, produced by the DTT-dependent reduction of their disulfide, are two additional metal binding ligands that alter the metal specificity of the M. jannaschii agmatinase from Mn(II) to Fe(II).  相似文献   

8.
Rat 3-mercaptopyruvate sulfurtransferase (MST) contains three exposed cysteines as follows: a catalytic site cysteine, Cys(247), in the active site and Cys(154) and Cys(263) on the surface of MST. The corresponding cysteine to Cys(263) is conserved in mammalian MSTs, and Cys(154) is a unique cysteine. MST has monomer-dimer equilibrium with the assistance of oxidants and reductants. The monomer to dimer ratio is maintained at approximately 92:8 in 0.2 m potassium phosphate buffer containing no reductants under air-saturated conditions; the dimer might be symmetrical via an intersubunit disulfide bond between Cys(154) and Cys(154) and between Cys(263) and Cys(263), or asymmetrical via an intersubunit disulfide bond between Cys(154) and Cys(263). Escherichia coli reduced thioredoxin (Trx) cleaved the intersubunit disulfide bond to activate MST to 2.3- and 4.9-fold the levels of activation of dithiothreitol (DTT)-treated and DTT-untreated MST, respectively. Rat Trx also activated MST. On the other hand, reduced glutathione did not affect MST activity. E. coli C35S Trx, in which Cys(35) was replaced with Ser, formed some adducts with MST and activated MST after treatment with DTT. Thus, Cys(32) of E. coli Trx reacted with the redox-active cysteines, Cys(154) and Cys(263), by forming an intersubunit disulfide bond and a sulfenyl Cys(247). A consecutively formed disulfide bond between Trx and MST must be cleaved for the activation. E. coli C32S Trx, however, did not activate MST. Reduced Trx turns on a redox switch for the enzymatic activation of MST, which contributes to the maintenance of cellular redox homeostasis.  相似文献   

9.
Using cysteine cross-linking, we demonstrated previously that the dopamine transporter (DAT) is at least a homodimer, with the extracellular end of transmembrane segment (TM) 6 at a symmetrical dimer interface. We have now explored the possibility that DAT exists as a higher order oligomer in the plasma membrane. Cysteine cross-linking of wild type DAT resulted in bands on SDS-PAGE consistent with dimer, trimer, and tetramer, suggesting that DAT forms a tetramer in the plasma membrane. A cysteine-depleted DAT (CD-DAT) into which only Cys243 or Cys306 was reintroduced was cross-linked to dimer, suggesting that these endogenous cysteines in TM4 and TM6, respectively, were cross-linked at a symmetrical dimer interface. Reintroduction of both Cys243 and Cys306 into CD-DAT led to a pattern of cross-linking indistinguishable from that of wild type, with dimer, trimer, and tetramer bands. This indicated that the TM4 interface and the TM6 interface are distinct and further suggested that DAT may exist in the plasma membrane as a dimer of dimers, with two symmetrical homodimer interfaces. The cocaine analog MFZ 2-12 and other DAT inhibitors, including benztropine and mazindol, protected Cys243 against cross-linking. In contrast, two substrates of DAT, dopamine and tyramine, did not significantly impact cross-linking. We propose that the impairment of cross-linking produced by the inhibitors results from a conformational change at the TM4 interface, further demonstrating that these compounds are not neutral blockers but by themselves have effects on the structure of the transporter.  相似文献   

10.
Thiriot DS  Sievert MK  Ruoho AE 《Biochemistry》2002,41(20):6346-6353
The vesicle monoamine transporter (VMAT2) concentrates monoamine neurotransmitter into synaptic vesicles. To obtain structural information regarding this large membrane protein by analysis of disulfide bonds and other intramolecular cross-links, we engineered a strategic thrombin cleavage site into deglycosylated, HA-tagged human VMAT2. Insertion of this protease site did not disrupt ligand binding or serotonin transport. Thrombin cleavage at an engineered site in the predicted cytoplasmic loop between transmembrane (TM) domains 6 and 7 (loop 6/7) was rapid and quantitative in the absence of any detergent. The loop 6/7 thrombin site allowed assessment of an intramolecular disulfide bond between the N- and C-terminal halves of the transporter. Consistent with this hypothesis, after quantitative loop 6/7 thrombin cleavage, in the absence of reducing agent, VMAT2 migrated on SDS-polyacrylamide gels as a full-length transporter. Addition of dithiothreitol resulted in complete conversion from full-length to thrombin-cleaved size, demonstrating a DTT-reversible covalent bond. The identity of the disulfide-bound cysteine pair was suggested by the observation that replacement of Cys 126 or Cys 333 with serine both reduced [(3)H]serotonin transport. Replacement of either Cys 126 or Cys 333 was found to eliminate the DTT-reversible intramolecular covalent bond. We conclude that human VMAT2 Cys 126 in loop 1/2 and Cys 333 in loop 7/8 form a disulfide bond which contributes to efficient monoamine transport.  相似文献   

11.
Glycoprotein D (gD) is a structural component of the herpes simplex virus envelope which is essential for virus penetration. The function of this protein is highly dependent on its structure, and its structure is dependent on maintenance of three intact disulfide bonds. gD contains six cysteines in its ectodomain whose spacing is conserved among all its homologs in other alphaherpesviruses as well as Marek's disease virus. For other proteins, conservation of cysteine spacing correlates with conservation of disulfide bond structure. We have now solved the disulfide bond structure of gD-1 and gD-2 of herpes simplex virus types 1 and 2, respectively. Two approaches were used. First, we constructed 15 double-Cys mutants of gD-1, representing all possible disulfide pairs. In each case, codons for cysteines were changed to serine. We reasoned that if two cysteines normally form a disulfide bond, double mutations which eliminate one proper bond should be less harmful to gD structure than double mutations which eliminate two disulfide bonds. The mutated genes were cloned into a eucaryotic expression vector, and the proteins were expressed in transiently transfected cells. Three double mutations, Cys-1,5, Cys-2,6, and Cys-3,4 permitted gD-1 folding, processing, transport to the cell surface, and function in virus infection, whereas 12 other double mutations each produced a malfolded and nonfunctional protein. Thus, the three functional double-Cys mutants may represent the actual partners in disulfide bond linkages. The second approach was to define the actual disulfide bond structure of gD by biochemical means. Purified native gD-2 was cleaved by CNBr and proteases, and the peptides were separated by high-performance liquid chromatography. Disulfide-linked peptides were subjected to N-terminal amino acid sequencing. The results show that cysteine 1 (amino acid [aa] 66) is bonded to cysteine 5 (aa 189), cysteine 2 (aa 106) is bonded to cysteine 6 (aa 202), and cysteine 3 (aa 118) is bonded to cysteine 4 (aa 127). Thus, the biochemical analysis of gD-2 agrees with the genetic analysis of gD-1. A similar disulfide bond arrangement is postulated to exist in other gD homologs.  相似文献   

12.
Evidence is presented for a role of disulfide bridging in forming the ligand binding site of the beta 2-adrenergic receptor (beta AR). The presence of disulfide bonds at the ligand binding site is indicated by "competitive" inhibition by dithiothreitol (DTT) in radioligand binding assays, by specific protection by beta-adrenergic ligands of these effects, and by the requirement of disulfide reduction for limit proteolysis of affinity ligand labeled receptor. The kinetics of binding inhibition by DTT suggest at least two pairs of disulfide-bonded cysteines essential for normal binding. Through site-directed mutagenesis, we indeed were able to identify four cysteines which are critical for normal ligand binding affinities and for the proper expression of functional beta AR at the cell surface. Unexpectedly, the four cysteines required for normal ligand binding are not those located within the hydrophobic transmembrane domains of the receptor (where ligand binding is presumed to occur) but lie in the extracellular hydrophilic loops connecting these transmembrane segments. These findings indicate that, in addition to the well-documented involvement of the membrane-spanning domains of the receptor in ligand binding, there is an important and previously unsuspected role of the hydrophilic extracellular domains in forming the ligand binding site.  相似文献   

13.
We have examined the functional importance of the two disulfide bonds formed by the four conserved cysteines of human interleukin (IL-6). Using a bacterial expression system, we have synthesized a series of recombinant IL-6 mutants in which the constituent cysteines of the first (Cys45-Cys51), second (Cys74-Cys84), or both disulfide bonds of recombinant human interleukin-6 were replaced by other amino acids. Each mutant was partially purified and tested in four representative bioassays. While mutants lacking Cys45 and Cys51 retained activity similar to nonmutated recombinant IL-6, the activity of mutants lacking Cys74 and Cys84 was significantly reduced, especially in assays involving human cell lines. These results indicate that the first disulfide bond of human interleukin-6 is not required for maintenance of normal biologic activity. However, the fact that mutants lacking Cys45 and Cys51 were more active than corresponding cysteine-free mutants indicates that the disulfide bond formed by these residues contributes to biologic activity in the absence of the second disulfide bond. Competition binding studies with representative mutants indicate that their affinity for the human IL-6 receptor parallels their biologic activities on human cells.  相似文献   

14.
Feng YH  Saad Y  Karnik SS 《FEBS letters》2000,484(2):133-138
Dithiothreitol (DTT) treatment of angiotensin II (Ang II) type 2 (AT(2)) receptor potentiates ligand binding, but the underlying mechanism is not known. Two disulfide bonds proposed in the extracellular domain were examined in this report. Based on the analysis of ligand affinity of cysteine (Cys, C) to alanine (Ala, A) substitution mutants, we provide evidence that Cys(35)-Cys(290) and Cys(117)-Cys(195) disulfide bonds are formed in the wild-type AT(2) receptor. Disruption of the highly conserved Cys(117)-Cys(195) disulfide bond linking the second and third extracellular segments leads to inactivation of the receptor. The Cys(35)-Cys(290) bond is highly sensitive to DTT. Its breakage results in an increased binding affinity for both Ang II and the AT(2) receptor-specific antagonist PD123319. Surprisingly, in the single Cys mutants, C35A and C290A, a labile population of receptors is produced which can be re-folded to high-affinity state by DTT treatment. These results suggest that the free -SH group of Cys(35) or Cys(290) competes with the disulfide bond formation between Cys(117) and Cys(195). This Cys-disulfide bond exchange results in production of the inactive population of the mutant receptors through formation of a non-native disulfide bond.  相似文献   

15.
A common polymorphism in the human gene for catechol-O-methyltransferase results in replacement of Val-108 by Met in the soluble form of the protein (s-COMT) and has been linked to breast cancer and neuropsychiatric disorders. The 108M and 108V variants are reported to differ in their thermal stability, with 108M COMT losing catalytic activity more rapidly. Because human s-COMT contains seven cysteine residues and includes CXXC and CXXS motifs that are associated with thiol-disulfide redox reactions, we examined the effects of reducing and oxidizing conditions on the enzyme. In the absence of a reductant 108M s-COMT lost activity more rapidly than 108V, whereas in the presence of 4 mm dithiothreitol (DTT) we found no significant differences in the stability of the two variants at 37 degrees C. DTT also restored most of the activity that was lost upon incubation at 37 degrees C in the absence of DTT. Mass spectrometry showed that cysteines 188 and 191 formed an intramolecular disulfide bond when s-COMT was incubated with oxidized glutathione, whereas cysteines 69, 95, 157, and 173 formed protein-glutathione adducts. Replacing Cys-95 by serine protected 108M s-COMT against inactivation in the absence of a reductant; C33S and Cys-188 mutations had little effect, and C69S was destabilizing. The sequences surrounding the reactive cysteine residues of human s-COMT and other proteins that form glutathione adducts at identified sites all include Pro and/or Gly and most include a hydrogen-bonding residue, suggesting that glutathiolation at conserved sites plays a physiologically important role.  相似文献   

16.
Rotavirus undergoes a unique mode of assembly in the rough endoplasmic reticulum (RER) of infected cells. Luminal RER proteins undergo significant cotranslational and posttranslational modifications, including disulfide bond formation. Addition of a reducing agent (dithiothreitol [DTT]) to rotavirus-infected cells did not significantly inhibit translation or disrupt established disulfide bonds in rotavirus proteins but prevented the formation of new disulfide bonds and infectious viral progeny. In DTT-treated, rotavirus-infected cells, all vp4, vp6, and ns28 epitopes but no vp7 epitopes were detected by immunohistochemical staining with a panel of monoclonal antibodies. When oxidizing conditions were reestablished in DTT-treated cells, intramolecular disulfide bonds in vp7 were rapidly and correctly established with the restoration of antigenicity, although prolonged DTT treatment led to the accumulation of permanently misfolded vp7. Electron microscopy revealed that cytosolic assembly of single-shelled particles and budding into the ER was not affected by DTT treatment but that outer capsid assembly was blocked, leading to the accumulation of single-shelled and enveloped intermediate subviral particles in the RER lumen.  相似文献   

17.
E Chanat  U Weiss  W B Huttner    S A Tooze 《The EMBO journal》1993,12(5):2159-2168
The role of the single, highly conserved disulfide bond in chromogranin B (secretogranin I) on the sorting of this regulated secretory protein to secretory granules was investigated in the neuroendocrine cell line PC12. Treatment of PC12 cells with dithiothreitol (DTT), a membrane permeable thiol reducing agent known to prevent disulfide bond formation in intact cells, resulted in the secretion of newly synthesized chromogranin B, but only slightly decreased the intracellular storage of newly synthesized secretogranin II, a regulated secretory protein devoid of cysteines. The secretion of newly synthesized chromogranin B in the presence of DTT occurred with similar kinetics to those of a heparan sulfate proteoglycan, a known marker of the constitutive secretory pathway in PC12 cells. Analysis of the various secretory vesicles derived from the trans-Golgi network (TGN) indicated that DTT treatment diverted newly synthesized chromogranin B to constitutive secretory vesicles, whereas the packaging of secretogranin II into immature secretory granules was unaffected by the reducing agent. The chromogranin B molecules diverted to constitutive secretory vesicles, in contrast to those stored in secretory granules, were found to contain free sulfhydryl residues. The effect of DTT on chromogranin B occurred in the TGN rather than in the endoplasmic reticulum. We conclude that the sorting of CgB in the TGN to secretory granules is dependent upon the integrity of its single disulfide bond.  相似文献   

18.
Each subunit of the nicotinic acetylcholine receptor (AChR) contains two conserved cysteine residues, which are known to form a disulfide bond, in the N-terminal extracellular domain. The role of this retained structural feature in the biogenesis of the AChR was studied by expressing site-directed mutant alpha and beta subunits together with other normal subunits from Torpedo californica AChR in Xenopus oocytes. Mutation of the cysteines at position 128 or 142 in the alpha subunit, or in the beta subunit, did not prevent subunit assembly. All Cys128 and Cys142 mutants of the alpha and beta subunits were able to associate with coexpressed other normal subunits, although associational efficiency of the mutant alpha subunits with the delta subunit was reduced. Functional studies of the mutant AChR complexes showed that the mutations in the alpha subunit abolished detectable 125I-alpha-bungarotoxin (alpha-BuTX) binding in whole oocytes, whereas the mutations in the beta subunit resulted in decreased total binding of 125I-alpha-BuTX and no detectable surface 125I-alpha-BuTX binding. Additionally, all mutant subunits, when co-expressed with the other normal subunits in oocytes, produced small acetylcholine-activated membrane currents, suggesting incorporation of only small numbers of functional mutant AChRs into the plasma membrane. The functional acetylcholine-gated ion channel formed with mutant alpha subunits, but not mutant beta subunits, could not be blocked by alpha-BuTX. Thus, a disulfide bond between Cys128 and Cys142 of the AChR alpha or beta subunits is not needed for acetylcholine-binding. However, this disulfide bond on the alpha subunit is necessary for formation of the alpha-BuTX-binding site. These results also suggest that the most significant effect caused by disrupting the conserved disulfide loop structure is intracellular retention of most of the assembled AChR complexes.  相似文献   

19.
20.
In heterologous and endogenous expression systems, we studied the role of ERp44 and its complex partner endoplasmic reticulum (ER) oxidase 1-α (Ero1-Lα) in mechanisms regulating disulfide bond formation for serotonin transporter (SERT), an oligomeric glycoprotein. ERp44 is an ER lumenal chaperone protein that favors the maturation of disulfide-linked oligomeric proteins. ERp44 plays a critical role in the release of proteins from the ER via binding to Ero1-Lα. Mutation in the thioredoxin-like domain hampers the association of ERp44C29S with SERT, which has three Cys residues (Cys-200, Cys-209, and Cys-109) on the second external loop. We further explored the role of the protein chaperones through shRNA knockdown experiments for ERp44 and Ero1-Lα. Those efforts resulted in increased SERT localization to the plasma membrane but decreased serotonin (5-HT) uptake rates, indicating the importance of the ERp44 retention mechanism in the proper maturation of SERT proteins. These data were strongly supported with the data received from the N-biotinylaminoethyl methanethiosulfonate (MTSEA-biotin) labeling of SERT on ERp44 shRNA cells. MTSEA-biotin only interacts with the free Cys residues from the external phase of the plasma membrane. Interestingly, it appears that Cys-200 and Cys-209 of SERT in ERp44-silenced cells are accessible to labeling by MTSEA-biotin. However, in the control cells, these Cys residues are occupied and produced less labeling with MTSEA-biotin. Furthermore, ERp44 preferentially associated with SERT mutants (C200S, C209S, and C109A) when compared with wild type. These interactions with the chaperone may reflect the inability of Cys-200 and Cys-209 SERT mutants to form a disulfide bond and self-association as evidenced by immunoprecipitation assays. Based on these collective findings, we hypothesize that ERp44 together with Ero1-Lα plays an important role in disulfide formation of SERT, which may be a prerequisite step for the assembly of SERT molecules in oligomeric form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号