首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Two-year-old beech seedlings were kept from germination to bioassays with Lymantria dispar under the following conditions: ambient CO2/low N, elevated CO2/low N, ambient CO2/elevated N, and elevated CO2/elevated N. The effect of these growing conditions of the trees on the performance of the defoliator L. dispar was studied 2 years after initiating the tree cultivation. The developmental success of third-instar larvae of L. dispar was characterized by the weight gained, percentage of weight gain, relative growth rate (RGR), relative consumption rate (RCR), and efficiency of conversion of ingested food into body substance (ECI). Contrary to our expectations, additional N-fertilization did not increase and elevated CO2 did not delay larval growth rate. However, the environmental treatments of the beech seedlings were found to affect the larval performance. Larvae consumed significantly higher amounts of foliage (RCR) on beech trees under controlled conditions (ambient CO2 and low N) compared to those under elevated CO2 and enhanced N. The opposite was true for ECI. The lowest efficacy to convert consumed food to body substance was observed under control conditions and the highest when the larvae were kept on beech trees grown under elevated CO2 and additional N-fertilization. These opposite effects resulted in the weight gain-based parameters (absolute growth, percentage of growth, and RGR) of the gypsy moth larvae remaining unaffected. The results indicate that the gypsy moth larvae are able to change their ECI and RCR to obtain a specific growth rate. This is discussed as an adaptation to specific food qualities.  相似文献   

2.
Seedlings of loblolly pine, Pinus taeda , were grown in open-topped chambers under four levels of CO2: two ambient and two elevated. Larvae of the red-headed pine sawfly, Neodiprion lecontei , were reared from early instar to pupation, primarily on branches within chambers. Larval growth and mortality were assessed and leaf phytochemistry samples of immature and mature leaves collected weekly. Mature leaves grown under elevated CO2 had significant reductions in leaf nitrogen and increases in non-structural carbohydrate contents, resulting in foliage being a poorer food source for larvae, i.e. higher carbohydrate:nitrogen ratio. Nutritional constituents of immature needles were unaffected by seedling CO2 treatment. Volatile mono- and sesquiterpenes were unrelated to plant CO2 treatments for either leaf age class. Larval consumption of immature needles significantly increased on seedlings grown under CO2 enrichment, while mature needle consumption was not different between the treatments. The average weight gain per larva significantly declined in late instar larvae consuming elevated CO2-grown needles. In spite of this reduced growth, neither the days to pupation nor pupal weights were different among the CO2 treatments. This study suggests that enriched CO2-induced alterations in pine needle phytochemistry can affect red-headed pine sawfly performance. However, compensatory measures by larvae, such as choosing to consume more nutritious immature needles, apparently helps offset enriched CO2-induced reductions in the leaf quality of mature needles.  相似文献   

3.
Individual quaking aspen trees vary greatly in foliar chemistry and susceptibility to defoliation by gypsy moths and forest tent caterpillars. To relate performance of these insects to differences in foliar chemistry, we reared larvac from egg hatch to pupation on leaves from different aspen trees and analyzed leaf samples for water, nitrogen, total nonstructural carbohydrates, phenolic glycosides, and condensed tannins. Larval performance varied markedly among trees. Pupal weights of both species were strongly and inversely related to phenolic glycoside concentrations. In addition, gypsy moth performance was positively related to condensed tannin concentrations, whereas forest tent caterpillar pupal weights were positively associated with leaf nitrogen concentrations. A subsequent study with larvae fed aspen leaves supplemented with the phenolic glycoside tremulacin confirmed that the compound reduces larval performance. Larvae exhibited increased stadium durations and decreased relative growth rates and food conversion efficiencies as dietary levels of tremulacin increased. Differences in performance were more pronounced for gypsy moths than for forest tent caterpillars. These results suggest that intraspecific variation in defensive chemistry may strongly mediate interactions between aspen, gypsy moths and forest tent caterpillars in the Great Lakes region, and may account for differential defoliation of aspen by these two insect species.  相似文献   

4.
The stomatal response to CO2 is linked to changes in guard cell zeaxanthin*   总被引:4,自引:2,他引:2  
The mechanisms mediating CO2 sensing and light–CO2 interactions in guard cells are unknown. In growth chamber-grown Vicia faba leaves kept under constant light (500 μ mol m–2 s–1) and temperature, guard cell zeaxanthin content tracked ambient [CO2] and stomatal apertures. Increases in [CO2] from 400 to 1200 cm3 m–3 decreased zeaxanthin content from 180 to 80 mmol mol–1 Chl and decreased stomatal apertures by 7·0 μ m. Changes in zeaxanthin and aperture were reversed when [CO2] was lowered. Guard cell zeaxanthin content was linearly correlated with stomatal apertures. In the dark, the CO2-induced changes in stomatal aperture were much smaller, and guard cell zeaxanthin content did not change with chamber [CO2]. Guard cell zeaxanthin also tracked [CO2] and stomatal aperture in illuminated stomata from epidermal peels. Dithiothreitol (DTT), an inhibitor of zeaxanthin formation, eliminated CO2-induced zeaxanthin changes in guard cells from illuminated epidermal peels and reduced the stomatal CO2 response to the level observed in the dark. These data suggest that CO2-dependent changes in the zeaxanthin content of guard cells could modulate CO2-dependent changes of stomatal apertures in the light while a zeaxanthin-independent CO2 sensing mechanism would modulate the CO2 response in the dark.  相似文献   

5.
When grown under elevated atmospheric carbon dioxide (CO2), leaf nitrogen content decreases less for legumes than for nonlegume C3 plants. Given that elevated CO2 adversely affects insect herbivores primarily through dilution of plant nitrogen, it is reasonable to expect that legume-feeding herbivores will be relatively buffered against CO2-induced reduction in performance. However, despite their ecological and economic importance, very few studies have addressed the effects of elevated CO2 on legume-feeding herbivores. Unlike the responses of the vast majority of nonlegume C3 plants, when the legumes Trifolium pratense and Melilotus alba were grown under elevated (742 ppm) CO2, leaf nitrogen and carbon contents and C : N ratios did not change. For Colias philodice larvae fed T. pratense , elevated CO2 had little or no effect on consumption, digestion, or conversion of whole food or nitrogen and, consequently, no effect on growth rate, instar duration, or pupal weight. For larvae fed M. alba , elevated CO2 had little or no effect on consumption of whole food or nitrogen, increased digestion but decreased conversion of both and, consequently, had no effect on growth rate, instar duration or pupal weight. These results suggest that, relative to herbivores of nonlegume C3 plants, legume-feeding herbivores will be less affected as atmospheric CO2 continues to rise.  相似文献   

6.
We examined the effects of CO2-mediated changes in the foliar chemistry of paper birch (Betula papyrifera) and white pine (Pinus strobus) on performance of the gypsy moth (Lymantria dispar). Trees were grown under ambient or enriched CO2 conditions, and foliage was subjected to plant chemical assays and insect bioassays. Enriched CO2 atmospheres reduced foliar nitrogen levels and increased condensed tannin levels in birch but not in pine. Foliar carbohydrate concentrations were not markedly altered by CO2 environment. Gypsy moth performance was significantly affected by CO2 level, species, and the CO2 x species interaction. Under elevated CO2 conditions, growth was reduced for larvae fed birch, while development was prolonged for larvae fed pine. Although gypsy moths performed better overall on birch than pine, birch-fed larvae were influenced more by CO2-mediated changes in host quality.  相似文献   

7.
Up to 99% of the carbon fuelling the food webs of temperate woodland streams is derived from inputs of terrestrial leaf litter. Aquatic bacteria, fungi, and detritivore invertebrates directly utilize these inputs, transferring this energy to other components of the food web. Increases in atmospheric CO2 could indirectly impact woodland stream food webs by chemically altering leaf litter. This study evaluated CO2-induced chemical changes in aspen ( Populus tremuloides ) leaf litter, and the corresponding effects on stream bacteria, fungi and leaf-shredding cranefly larvae ( Tipula abdominalis : Diptera). Leaf litter from plants grown under elevated CO2 had decreased nutritional value to aquatic decomposers and detritivores because of higher levels of structural compounds and lower nitrogen content. Consequently, elevated CO2-grown leaf litter supported 59% lower bacterial production in a stream than litter grown at ambient CO2 levels, while not affecting fungal biomass. Larval craneflies fed elevated CO2-grown microbially colonized leaves consumed less, assimilated less, and grew 12 times slower than their ambient fed counterparts.  相似文献   

8.
We compared the foliar antioxidant status of native Agrostis stolonifera L. communities growing at two distinct CO2‐enriched sites of geothermal origin (E) and at a control field location with normal CO2. Compared to the control, plants from both E‐sites showed an increased size of the GSH pool, essentially due to enhanced GSSG levels, and a consequent decrease in the ratio between reduced and oxidised glutathione forms. Such differences were maintained and even enhanced in the vegetatively‐propagated progenies of control and E‐plants, grown under both greenhouse conditions and normal CO2 levels. The above results confirmed previous observations on native and crop plants exposed to elevated CO2. It is therefore suggested that changes in the glutathione redox balance might be of adaptive significance under conditions of permanent exposure to high CO2.  相似文献   

9.
We tested the hypothesis that acclimation of foliar dark respiration to CO2 concentration and temperature is associated with adjustments in leaf structure and chemistry. Populus tremuloides Michx. , Betula papyrifera Marsh. , Larix laricina (Du Roi) K. Koch , Pinus banksiana Lamb., and Picea mariana (Mill.) B.S.P. were grown from seed in combined CO2 (370 or 580 μ mol mol–1) and temperature treatments (18/12, 24/18, or 30/24 °C). Temperature and CO2 effects were predominately independent. Specific respiration rates partially acclimated to warmer thermal environments through downward adjustment in the intercept, but not Q 10 of the temperature–response functions. Temperature acclimation of respiration was larger for conifers than broad-leaved species and was associated with pronounced reductions in leaf nitrogen concentrations in conifers at higher growth temperatures. Short-term increases in CO2 concentration did not inhibit respiration. Growth in the elevated CO2 concentration reduced leaf nitrogen and increased non-structural carbohydrate concentrations. However, for a given nitrogen concentration, respiration was higher in leaves grown in the elevated CO2 concentration, as rates increased with increasing carbohydrates. Across species and treatments, respiration rates were a function of both leaf nitrogen and carbohydrate concentrations ( R 2 = 0·71, P < 0·0001). Long-term acclimation of foliar dark respiration to temperature and CO2 concentration is largely associated with changes in nitrogen and carbohydrate concentrations.  相似文献   

10.
Carbon dioxide induces increases in guard cell cytosolic free calcium   总被引:10,自引:0,他引:10  
The hypothesis that increases in cytosolic free calcium ([Ca2+]i) are a component of the CO2 signal transduction pathway in stomatal guard cells of Commelina communis has been investigated. This hypothesis was tested using fura-2 fluorescence ratio photometry to measure changes in guard cell [Ca2+]i in response to challenge with 700 µl l−1 CO2. Elevated CO2 induced increases in guard cell [Ca2+]i which were similar to those previously reported in response to abscisic acid. [Ca2+]i returned to resting values following removal of the CO2 and further application of CO2 resulted in a second increase in [Ca2+]i. This demonstrated that the CO2-induced increases in [Ca2+]i were stimulus dependent. Removal of extracellular calcium both prevented the CO2-induced increase in [Ca2+]i and inhibited the associated reduction in stomatal aperture. These data suggest that Ca2+ acts as a second messenger in the CO2 signal transduction pathway and that an increase in [Ca2+]i may be a requirement for the stomatal response to CO2.  相似文献   

11.
This study was conducted to examine the effects of CO2-mediated changes in tree chemistry on the performance of the gypsy moth ((Lymantria dispar L.) and the parasitold Cotesia melanoscela (Ratz.). We used carbon-nutrient balance theory to develop hypotheses regarding changes in tree chemistry and the performance of both insects under elevated CO2. As predicted, levels of foliar nitrogen declined and concentrations of carbon-based compounds (e.g. starch and phenolics) increased under elevated CO2. Gypsy moth performance (e.g. growth, development) was altered by CO2-mediated changes in foliar chemistry, but the magnitude was small and varied across tree species. Larvae feeding on high CO2 aspen exhibited the largest reduction in performance, relative to larvae feeding on birch, oak, or maple. Parasitism by C. melanoscela significantly prolonged gypsy moth development and reduced growth rates. Overall, the effect of parasitism on gypsy moth performance did not differ between CO2 treatments. Altered gypsy moth performance on high CO2 foliage in turn affected parasitoid performance, but the response was variable: parasitoid mortality increased and adult female size declined slightly under high CO2, while development time and adult male size were unaffected. Our results suggest that CO2-induced changes in plant chemistry were buffered to the extent that effects on third trophic level interactions were weak to non-existent for the system examined in this study.  相似文献   

12.
The phenology of Fagus sylvatica was unaffected by exposure to an atmosphere of elevated CO2 (600 μL L-1) after two years of fumigation. Non-significant changes in nitrogen and phenolic content of the leaves decreased the nutritional status of beech for female larvae in elevated CO2 such that they responded by eating in a compensatory manner; males were unaffected. Rates of development, mortality and adult biomass of Rhynchaenus fagi were no different from those in ambient CO2 concentrations (355 μL L -1). It is possible that, with the changes in leaf chemistry affecting the females, fecundity will be altered, with important consequences for populations of beech weevil.  相似文献   

13.
Abstract.  Recent studies have shown that root-feeding insects can be of considerable importance in terms of agricultural damage, their indirect impacts on above-ground herbivores and their efficacy as biocontrol agents of weeds. To date, isolated studies have made it difficult to identify the mechanisms by which soil-dwelling insects locate and select host-plant roots. This review synthesizes 78 studies describing root location and selection. Soil insect herbivores do not rely on encountering roots at random, but orientate towards them using semiochemicals that enable specialist insects to distinguish host-plants from unsuitable plants. Secondary plant metabolites released into the rhizosphere (alcohols, esters and aldehydes representing 37% of reported examples) underpin host-plant location and recognition, with 80% having 'attractant' properties. Insects feeding on a limited range of plants tend to exploit host-specific secondary metabolites, whereas nonspecialist feeders appear to use more general semiochemicals. When insects reach the roots, contact chemosensory cues act as either 'phagostimulants' (48% of the compounds being sugars) or feeding 'deterrents' (notably phenolic compounds). Twenty studies conclude that CO2 is the major primary plant metabolite that allows insects to locate to roots. However, several features of CO2 emissions from roots mitigate against it as a precise location cue. In addition to its lack of specificity, gradients of root emitted CO2 do not persist for long periods and vertical gradients of CO2 in the soil tend to be stronger than horizontal gradients. A conceptual model is presented, emphasizing the importance of soil properties (e.g. porosity, moisture) on chemical diffusion and insect motility.  相似文献   

14.
Preliminary studies have indicated that after addition of C2H2 there is a rapid decline in nitrogenase activity in the nodules of Datisca glomerata . The present work was undertaken to determine whether (1) there is also a decline in respiration and (2) the decline is associated with the cessation of ammonia production. The rates of C2H4 and CO2 evolution by nodulated root systems of Datisca were measured as a function of time after exposure to C2H2. The peak rate of C2H4 evolution occurred at 30 s after C2H2 exposure, while the rate of CO2 evolution started to decline at 60 s after exposure to C2H2. Incubation of nodules in a gas mixture containing Ar also caused a decline in CO2 evolution. Further, pretreatment with Ar eliminated most of the C2H2-induced decline in nitrogenase activity and CO2 evolution. These C2H2- and Ar-induced declines in Datisca nodules are more rapid than those reported in any other nodules. They are evidence that continued ammonia formation is essential for maintenance of normal nitrogenase activity in Datisca nodules.  相似文献   

15.
In future elevated CO2 environments, chewing insects are likely to perform less well than at present because of the effects of increased carbon fixation on their host plants. When the aphid, Aulacorthum solani was reared on bean ( Vicia faba ) and tansy ( Tanacetum vulgare ) plants under ambient and elevated CO2, performance was enhanced on both hosts at elevated CO2. The nature of the response was different on each plant species suggesting that feeding strategy may influence an insect's response to elevated CO2. On bean, the daily rate of production of nymphs was increased by 16% but there was no difference in development time, whereas on tansy, development time was 10% shorter at elevated CO2 but the rate of production of nymphs was not affected. The same aphid clone therefore responded differently to elevated CO2 on different host plants. This increase in aphid performance could lead to larger populations of aphids in a future elevated CO2 environment.  相似文献   

16.
Abstract: The concentration dependency of the impact of elevated atmospheric CO2 concentrations on Arabidopsis thaliana L. was studied. Plants were exposed to nearly ambient (390), 560, 810, 1240 and 1680 μl I-1 CO2 during the vegetative growth phase for 8 days. Shoot biomass production and dry matter content were increased upon exposure to elevated CO2. Maximal increase in shoot fresh and dry weight was obtained at 560 μl I-1 CU2, which was due to a transient stimulation of the relative growth rate for up to 3 days. The shoot starch content increased with increasing CO2 concentrations up to two-fold at 1680 μl I-1 CO2, whereas the contents of soluble sugars and phenolic compounds were hardly affected by elevated CO2. The chlorophyll and carotenoid contents were not substantially affected at elevated CO2 and the chlorophyll a/b ratio remained unaltered. There was no acclimation of photosynthesis at elevated CO2; the photosynthetic capacity of leaves, which had completely developed at elevated CO2 was similar to that of leaves developed in ambient air. The possible consequences of an elevated atmospheric CO2 concentration to Arabidopsis thaliana in its natural habitat is discussed.  相似文献   

17.
Sensing of atmospheric CO2 by plants   总被引:15,自引:12,他引:3  
Abstract. Despite recent interest in the effects of high CO2 on plant growth and physiology, very little is known about the mechanisms by which plants sense changes in the concentration of this gas. Because atmospheric CO2 concentration is relatively constant and because the conductance of the cuticle to CO2 is low, sensory mechanisms are likely to exist only for intercellular CO2 concentration. Therefore, responses of plants to changes in atmospheric CO2 will depend on the effect of these changes on intercellular CO2 concentration. Although a variety of plant responses to atmospheric CO2 concentration have been reported, most of these can be attributed to the effects of intercellular CO2 on photosynthesis or stomatal conductance. Short-term and long-term effects of CO2 on photosynthesis and stomatal conductance are discussed as sensory mechanisms for responses of plants to atmospheric CO2. Available data suggest that plants do not fully realize the potential increases in productivity associated with increased atmospheric CO2. This may be because of genetic and environmental limitations to productivity or because plant responses to CO2 have evolved to cope with variations in intercellular CO2 caused by factors other than changes in atmospheric CO2.  相似文献   

18.
In the green alga Chlorella vulgaris UAM 101, a CO2-concentrating mechanism is induced when the cells are growing under low CO2 conditions. We have investigated the effect of glucose on the induction of this mechanism. Cells adapted to low CO2 in the presence of glucose showed a reduced ability to transport and fix external inorganic carbon. This reduction was correlated with a decrease in internal carbonic anhydrase activity. 3- O -methyl-glucose, a nonmetabolizable analog of glucose, caused a more dramatic repression of these phenomena. Immunoblot analyses of total cell protein of Chlorella vulgaris UAM 101 against large subunit of ribulose-1.5-bisphosphate carboxylase/oxygenase and ribulose 1.5-bisphosphate-carboxylase/oxygenase activase polyclonal antibodies showed that the expression of these two polypeptides was affected by neither CO2 level, nor glucose or 3- O -methyl-glucose. Ultrastructure studies showed that the low CO2-induced development of the pyrenoid was also affected by glucose. Immunocytochemical data demonstrated that ribulose-1.5-bisphosphate carboxylase/oxygenase was exclusively located in the pyrenoid matrix. This localization and the density of labeling of the pyrenoid region were affected by neither CO2 level nor the presence of glucose.  相似文献   

19.
Nitrogen nutrition of C3 plants at elevated atmospheric CO2 concentrations   总被引:5,自引:0,他引:5  
The atmospheric CO2 concentration has risen from the preindustrial level of approximately 290 μl l−1 to more than 350 μl l−1 in 1993. The current rate of rise is such that concentrations of 420 μl l−1 are expected in the next 20 years. For C3 plants, higher CO2 levels favour the photosynthetic carbon reduction cycle over the photorespiratory cycle, resulting in higher rates of carbohydrate production and plant productivity. The change in balance between the two photosynthetic cycles appears to alter nitrogen and carbon metabolism in the leaf, possibly causing decreases in nitrogen concentrations in the leaf. This may result from increases in the concentration of storage carbohydrates of high molecular weight (soluble or insoluble) and/or changes in distribution of protein or other nitrogen containing compounds. Uptake of nitrogen may also be reduced at high CO2 due to lower transpiration rates. Decreases in foliar nitrogen levels have important implications for production of crops such as wheat, because fertilizer management is often based on leaf chemical analysis, using standards estimated when the CO2 levels were considerably lower. These standards will need to be re-evaluated as the CO2 concentration continues to rise. Lower levels of leaf nitrogen will also have implications for the quality of wheat grain produced, because it is likely that less nitrogen would be retranslocated during grain filling.  相似文献   

20.
Putative future increase in atmospheric CO2 is expected to adversely affect herbivore growth due to decrease in contents of key nutrients such as nitrogen and phosphorus (P) relative to carbon in primary producers including plant and algal species. However, as many herbivores are polyphagous and as the response of primary producers to elevated CO2 is highly species-specific, effects of elevated CO2 on herbivore growth may differ between feeding conditions with monospecific and multiproducer diets. To examine this possibility, we performed CO2 manipulation experiments under a P-limited condition with a planktonic herbivore, Daphnia , and three algal species, Scenedesmus obliquus (green algae), Cyclotella sp. (diatoms) and Synechococcus sp. (cyanobacteria). Semibatch cultures with single algal species (monocultures) and multiple algal species (mixed cultures) were grown at ambient (360 ppm) and high CO2 levels (2000 ppm) that were within the natural range in lakes. Both in the mono- and mixed cultures, algal steady state abundance increased but algal P : C and N : C ratios decreased when they were grown at high CO2. As expected, Daphnia fed monospecific algae cultured at high CO2 had decreased growth rates despite increased algal abundance. However, when fed mixed algae cultured at high CO2, especially consisting of diatoms and cyanobacteria or the three algal species, Daphnia maintained high growth rates despite lowered P and N contents relative to C in the algal diets. These results imply that algal diets composed of multiple species can mitigate the adverse effects of elevated CO2 on herbivore performance, although the magnitude of this mitigation depends on the composition of algal species involved in the diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号