首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
The synthesis and characterization of a beta-adrenergic photo-affinity label, N-(-2-hydroxy-3-naphthoxypropyl)-N′ (-2-nitro-5-azidophenyl ethylenediamine, (NAP-propranolol) is described. The inhibition constants (Ki) for the NAP-propranolol inhibition of 3H-dihydroalprenolol binding and the inhibition of (?)-isoproterenol-stimulated adenylate cyclase in turkey erythrocytes are 100 nM and 19 nM respectively.  相似文献   

2.
Abstract

Selective modification of oligo (poly) nucleotide phosphomonoester groups in an aqueous medium by N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide in the presence of various nucleophilic agents has been investigated. Optimal conditions of the modification by amino- and hydroxycompounds have been found. Based on these studies a general efficient method for preparation of oligo (poly) nucleotide phosphoamidates and phosphodiesters in an aqueous solution has been developed. The method allows to prepare both oligodeoxyribonucleotide derivatives at 3′- and 5′-terminal phosphate groups and oligoribonucleotide derivatives at 5′-terminal phosphate groups with 80–100% yields.  相似文献   

3.
Abstract

A series of 6- and/or 7-substituted 2,4-quinazoline-dione N-1-deoxyribofuranosides have been synthesized and characterized. The 2′-deoxy-β-D-ribofuranosides 23–28 have been prepared by transformation of the corresponding ribofuranosides by chemical deoxygenation. Direct glycosidation to the β-anomers with a 2′-deoxyribofuranosyl donor to pure anomers failed due to missing diastereoselectivity and difficult separation of the reaction products. The synthesis of the 3′-deoxy-β-D-ribofuranosides 54–58, however, was achieved by glycosidation of the trimethylsilylated 2,4-quinazolinediones 43–47 with an appropriate 3′-deoxyribofuranosyl donor (48). The 2′,3′-dideoxy-β-D-ribofuranosyl derivatives 63–66 were again obtained by chemical deoxygenation of the corresponding 2′-deoxy-β-D-nucleosides, since all experiments of direct glycosidation with a 2′,3′-dideoxyribofuranosyl donor as well as the chemical conversion of the corresponding ribonucleosides into the 2′,3′-dideoxynucleosides failed due to side reactions. The newly synthesized compounds have been identified by UV and 1H-NMR spectra as well as elemental analyses.  相似文献   

4.
Abstract

The synthesis of 2′-deoxy and 2′,3′-dideoxy derivatives of 1-ß-D-ribofuranosyl-1,3,4,7-tetrahydro-2H-1,3-diazepin-2-one (2) was undertaken in order to find new cytidine deaminase (CDA) inhibitors and potential adjuvants in anticancer chemotherapy. Replacement of ribose by a 2-deoxyribose moiety led to compound 9 that appeared slightly more potent than 2 (Ki = 2.5 × 10?8 M). Remarkably, the corresponding α-2′-deoxynucleoside 10 acted as a very potent inhibitor of human placenta CDA, with a Ki = 7.5 × 10?8 M. Attempt to synthesize the 2′,3′-dideoxy derivative of 2 led to N-[4,5-dihydroxy-1-(2-oxo-2,3,4,7-tetrahydro[1,3] diazepin-1-yl)-pentyl]-2,2,2-trifluoroacetamide (13), which is devoid of CDA inhibitory activity.  相似文献   

5.
A new lignan characterised as (-)-4-hydroxy-2,6-di-(4′-hydroxy-3′-methoxy)phenyl-3,7-dioxabicyclo-(3.3.0)octane along with n-10-nonacosanol, scopoletin, syringic acid, β-sitosterol and its glucoside, has been isolated from the aerial parts of Lonicera hypoleuca. The stereochemistry of the lignan has been established by its spectroscopic analysis and those of its derivatives, and by its conversion to (+)-pinoresinol. β-Sitosterol-β-D-glucoside displayed good spasmolytic activity.  相似文献   

6.
The complete structural elucidation of the two caffeic acid sugar esters verbascoside and orobanchoside, has been realized by 1H and 13C NMR studies. It has been demonstrated that verbascoside is β-(3′,4′-dihydroxyphenyl)ethyl-O-α-L-rhamnopyranosyl(1→3)-β-D-(4-O-caffeoyl)-glucopyranoside, and orobanchoside is β-hydroxy-β-(3′,4′-dihydroxyphenyl)-ethyl-O-α-L-rhamnopyranosyl(1→2)-β-D-(4-O-caffeoyl)-glucopyranoside.  相似文献   

7.
Abstract

(E)-3′,5′-Diamino-5-(2-bromovinyl)-2′,3′,5′-trideoxyuridine (5), the diamino analogue of BVDU (1), was synthesized from BVDU. The protonation behavior of 5 has been studied by means of pH-metric measurements and NMR spectroscopy. This study allows the determination of the basicity constants and the stepwise protonation sites. Thus, the main species at physiological pH is the monoprotonated form. The conformational analysis of this nucleoside analogue was also carried out through 1H NMR spectroscopy. In addition, a convenient synthesis of N-3′ and N-5′ acylated derivatives was developed by regioselective enzymatic acylation. Thus, Candida antarctica lipase B (CAL-B) selectively acylated the 5′-amino group, thus furnishing nucleosides 8. On the other hand, immobilized Pseudomonas cepacia lipase (PSL-C) exhibited the opposite selectivity, conferring acylation at the 3′-amino group, thus affording derivatives 9.  相似文献   

8.
When N-(3′,5′-dichlorophenyl)succinimide (DSI)-carbonyI-14C and –pheny-3H were each orally administered to rats, regardless of the label site, most of the dose was readily eliminated. There was no difference in the excretion rate between male and female rats. No radioactive residues were detected in tissues and organs 24 hr after dosing. Urinary metabolites consisted of N-(3′,5′-dichlorophenyl) succinamic acid (DSA), N-(3′,5′-dichlorophe-nyl) malonamic acid (DMA), N-(3′5’-dichlorophenyl)-2-hydroxysuccinamic acid (2-OH-DSA) and 2-OH-DSA derivatives. In dogs, most of the administered dose was excreted in equal amounts in urine and feces. 2-OH-DSA derivatives were main urinary metabolites and most of fecal radiocarbon was due to intact DSL. The results of this study indicate that DSI is a biodegradable compound which is unlikely to leave any persistent residues in animals.

The degradation of DSI to DSA was mediated by an arylamidase-type hydrolase, which was present in the microsomal fraction of rabbit liver. The enzyme activity was found in livers and kidneys of four animal species tested. Depending on the animal species, the enzyme appears to be important for the metabolism of DSI.  相似文献   

9.
A new optically active flavan aglucone, 7-hydroxy-3′,4′-methylenedioxyflavan, and its 7-glucoside have been isolated from the bulbs of Zephyranthes flava, collected at flowering. Additionally, two known flavans, 7,4′-dihydroxy-3′-methoxyflavan and 7-methoxy-2′-hydroxy-4′,5′-methylenedioxyflavan, have been isolated for the first time from this species. The structures of these flavans have been established by comprehensive analyses (UV, IR, 1H NMR, 13C NMR, mass spectrometry, [α]D) of the compounds and their acetates, and also by chemical correlation.  相似文献   

10.
Feeding experiments with 14C-labelled isoflavones in seedlings and pods of bladder senna (Colutea arborescens) have demonstrated that 7-hydroxy-4′-methoxyisoflavone (formononetin), 7,3′-dihydroxy-4′-methoxyisoflavone (calycosin), 7,2′,3′-trihydroxy-4′-methoxyisoflavone (koparin) and 7,2′-dihydroxy-3′,4′-dimethoxyisoflavone are excellent precursors of (3R)-isomucronulatol (7,2′-dihydroxy-3′,4′-dimethoxyisoflavan). 7,2′-Dihydroxy- 4′-methoxyisoflavone (2′-hydroxyformononetin) and 7-hydroxy-3′,4′-dimethoxyisoflavone (cladrin) were, however, poor substrates. Thus, the biosynthetic sequence to isomucronulatol from formononetin involves 3′-hydroxylation, 2′-hydroxylation and then 3′-O-methylation, followed presumably by stereospecific reduction of 7,2′-dihydroxy-3′,4′-dimethoxyisoflavone. Treatment of 2′,3′,4′-trimethoxyisoflavones with aluminium chloride in acetonitrile gives modest yields of 2′,3′-dihydroxy derivatives rather than 2′-monohydroxyisoflavones, and thus provides a convenient access to 2′,3′-dihydroxyisoflavones and related pterocarpans.  相似文献   

11.
Activin is a potent mesoderm inducing factor present in embryos of Xenopus laevis. Recent evidence has implicated activin in the inhibition of neural development in addition to the well-established induction of mesoderm in ectodermal explants. These diverse effects are critically dependent on the concentration of activin yet little is known about the mechanisms regulating the level of activin in the embryo. We report that the 3′ untranslated region (3′ UTR) of activin βB mRNA inhibits the translation of activin in embryos. Microinjection of activin mRNA from which the 3′ UTR has been deleted is 8–10-fold more potent in inducing mesoderm than mRNA containing the 3′ UTR. Truncation of the 3′ UTR also leads to a marked enhancement of activin protein levels in embryos but has no effect when the truncated mRNA is translated in vitro. The 3′ UTR also confers translational inhibition on a heterologous mRNA. These data show that a maternal factor(s) present in X. laevis regulates the translation of injected activin βB mRNA. This factor(s) could be responsible for regulating the levels of endogenous activin βB protein during mesoderm induction and the specification of ectodermal derivatives such as neural and epidermal tissues. © 1995 Wiley-Liss, Inc.  相似文献   

12.
In the present study, a series of 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were synthesized, characterized and evaluated for theirin vitroactivity, i. e., antimicrobial, antioxidant and anti-inflammatory. The target compounds were synthesized by condensation reaction of 3-hydroxy-2-naphthoic acid hydrazide with substituted benzaldehydes which were subjected to cyclization reaction with thioglycolic acid and ZnCl2 to get target compounds. The synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives were examined for their antimicrobial activity and 3-hydroxy-N-(4-oxo-2-(3,4,5-trimethoxyphenyl)thiazolidin-3-yl)-2-naphthamide ( S20 ) exhibited the highest antimicrobial potential. The N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S5 ) displayed good antifungal potential against Rhizopus oryzae, whereas N′-(2,3-dichlorobenzylidene)-3-hydroxy-2-naphthohydrazide ( S20 ) showed the highest antioxidant potential and N-(2-(2,6-dichlorophenyl)-4-oxothiazolidin-3-yl)-3-hydroxy-2-naphthamide ( S16 ) displayed the highest anti-inflammatory activity. The results of molecular docking studies revealed that existence of hydrogen bonding and hydrophobic interactions with their respective proteins. In silico ADMET studies were carried out by Molinspiration, Pre-ADMET and OSIRIS property explorer to predict the pharmacokinetic behaviour of synthesized 3-hydroxy-N-(2-(substituted phenyl)-4-oxothiazolidin-3-yl)-2-napthamide derivatives.  相似文献   

13.
The increasing clinical importance of drug-resistant fungal pathogens has urged additional need to fungal research and new antifungal compound development. For this purpose, some N-(1-benzyl-2-phenylethylidene)-N′-[4-(aryl)thiazol-2-yl]hydrazone (1a-e) and N-(1-phenylbutylidene)-N′-[4-(aryl)thiazol-2-yl]hydrazone (2a-e) derivatives were synthesised and evaluated for antifungal activity. Their antifungal activities against standard and clinical strands of Candida albicans, Candida glabrata, Candida utilis, Candida tropicalis, Candida krusei, Candida zeylanoides, and Candida parapsilosis were investigated. A significant level of activity was observed.  相似文献   

14.
X-ray diffraction studies have been carried out on a single crystal of the photosynthetic inhibitors N-(3,4-dichlorophenyl)-N′-dimethylurea (DCMU) and its newly synthesized spin-labeled analog N-(3,4-dichlorophenyl)-N′-(3,3,5,5-tetramethylpiperidine-4-oxyl)-urea (DTPU). The synthesis of DTPU as well as its crystallographic data are reported. The crystal system of both compounds is monoclinic with a space group P21/c. The cell constants of DCMU are a = 7.759(1), b = 14.737(3), c = 9.233(2) Å, β = 100.99(6)°; of DTPU they are a = 6.976(1), b = 11.998(2), c = 23.585(3) Å, β = 91.38(5)°. Comparison of conformational parameters of DCMU and DTPU reveal differences in the dihedral angle between the aromatic ring and the ureido plane. The measured volumes of DCMU and DTPU are 259.1 and 493.3 Å3, respectively. These figures suggest the size of the binding site of the inhibitors in the photosynthetic membrane.  相似文献   

15.
16.
(2R,3R)-2 3-Dihydro-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-5-benzofuranpropanol 4′-O-β-d-glucopyranoside [dihydrodehydrodiconiferyl alcohol glucoside], (2R,3R)-2 3-dihydro-7-hydroxy-2-(4′-hydroxy-3′-methoxyphenyl)-3-(hydroxymethyl)-5-benzofuranpropanol 4′-O-β-d-glucopyranoside and 4′-O-α-l-rhamnopyranoside, 1-(4′-hydroxy-3′-methoxyphenyl)-2- [2″-hydroxy-4″-(3-hydroxypropyl)phenoxy]-1, 3-propanediol 1-O-β-d-glucopyranoside and 4′-O-β-d-xylopyranoside, 2,3-bis[(4′-hydroxy-3′-methoxyphenyl)-methyl]-1,4-butanediol 1-O-β-d-glucopyranoside [(?)-seco-isolariciresinol glucoside] and (1R,2S,3S)-1,2,3,4-tetrahydro-7-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-6-methoxy-2 3-naphthalenedimethanol α2-O-β-d-xylopyranoside [(?)-isolariciresinol xyloside] have been isolated from needles of Picea abies and identified.  相似文献   

17.
Abstract

An enzymatic method was developed for the preparation of unlabeled and [β-32P]-labeled β-L-2′,3′-dd-5′ATP from the monophosphate with near quantitative yields. β-L-2′,3′-dd-5′ATP was a competitive and potent inhibitor of adenylyl cyclases (IC5 ~ 30 nM). Upon uvirradiation β-L-2′,3′-dd-[β-32P]-5′ATP directly crosslinked to a chimeric construct of this enzyme. Data suggest that this is a pre-transition state inhibitor and contrasts with the equipotent 2′,5′-dd-3′ATP, a post-transition state, noncompetitive inhibitor.  相似文献   

18.
Abstract

Guanosine and 2′-deoxyguanosine have been converted into the corresponding N-2-methyl and N-2-ethyl derivatives in a simple, three-step procedure by N-5-alkylation of N-4-desmethylwyosines (4,5) and subsequent deprotection with N-bromosuccinimide.  相似文献   

19.
Microtubules are dynamic polymers that occur in eukaryotic cells and play important roles in cell division, motility, transport and signaling. They form during the process of polymerization of α- and β-tubulin dimers. Tubulin is a significant and heavily researched molecular target for anticancer drugs. Combretastatins are natural cis-stilbenes that exhibit cytotoxic properties in cultured cancer cells in vitro. Combretastatin A-4 (3′-hydroxy-3,4,4′, 5-tetramethoxy-cis-stilbene; CA-4) is a potent cytotoxic cis-stilbene that binds to β-tubulin at the colchicine-binding site and inhibits tubulin polymerization. The prodrug CA-4 phosphate is currently in clinical trials as a chemotherapeutic agent for cancer treatment. Numerous series of stilbene analogs have been studied in search of potent cytotoxic agents with the requisite tubulin-interactive properties. Microtubule-interfering agents include numerous CA-4 and transresveratrol analogs and other synthetic stilbene derivatives. Importantly, these agents are active in both tumor cells and immature endothelial cells of tumor blood vessels, where they inhibit the process of angiogenesis. Recently, computer-aided virtual screening was used to select potent tubulin-interactive compounds. This review covers the role of stilbene derivatives as a class of antitumor agents that act by targeting microtubule assembly dynamics. Additionally, we present the results of molecular modeling of their binding to specific sites on the α- and β-tubulin heterodimer. This has enabled the elucidation of the mechanism of stilbene cytotoxicity and is useful in the design of novel agents with improved anti-mitotic activity. Tubulin-interactive agents are believed to have the potential to play a significant role in the fight against cancer.  相似文献   

20.
A new minor carotenoid, β-citraurin epoxide (3-hydroxy-5,6-epoxy-5,6-dihydro-8′-apo-β-caroten-8′-al) and several isomers of violaxanthin (5,6,5′,6′-diepoxy-5,6,5′,6′-tetrahydro-β,β-caroten-3,3′-diol) have been identified in Valencia orange peel. The previously reported occurrence of apo-10′-violaxanthal (3-hydroxy- 5,6-epoxy-5,6-dihydro-10′-apo-β-caroten-10′-al) and apo-12′-violaxanthal (3-hydroxy-5,6-epoxy-5,6-dihydro- 12′-apo-β-caroten-12′-al) has been confirmed, and their syntheses are described. The quantitative determination of the carotenoids has also been performed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号