首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three different commercial monocomponent endoglucanases, with and without a cellulose-binding domain (CBD) and differences in their glycosidic hydrolysis mechanisms, were compared with respect to their ability to enhance the accessibility and reactivity of dissolving-grade pulps for viscose production. Hardwood (eucalyptus) and softwood (mixture of Norway spruce and Scots pine) commercial dried and never-dried bleached sulfite dissolving pulps were used for this purpose. The effects of the enzymatic treatments on pulps were studied by reactivity, according to Fock's method, and viscosity measurements, and recording of molecular weight distributions. Among the different assayed enzymes, endoglucanase with a CBD and an inverting hydrolysis mechanism was found to be the most effective in increasing the reactivity of both pulps. Simultaneously, the viscosity decreased, being more marked for softwood dissolving pulp. A narrower molecular weight distribution, with a great reduction in the amount of long-chain cellulose molecules was observed in both pulps, being more pronounced for softwood dissolving pulp. By contrast, endoglucanase without a CBD and a retaining hydrolysis mechanism showed a barley enhancement of the studied properties. The effects of the different endoglucanase treatments were more pronounced when never-dried dissolving pulps were used.  相似文献   

2.
Fluorescence labeling with the marker carbazole-9-carboxylic acid [2-(2-aminooxyethoxy)ethoxy]amide was shown to be a promising approach toward the accurate determination of carbonyls in cellulosic materials. Combined with gel permeation chromatography in DMAc/LiCl with fluorescence/multiple-angle laser light scattering/refractive index detection, the method yields carbonyl profiles relative to the molecular weight of the cellulosic material. The derivatization procedure can be carried out either homogeneously in DMAc/LiCl or advantageously as heterogeneous derivatization in aqueous buffer. The heterogeneous carbonyl group determination, offering shorter reaction times and increased simplicity as compared to the homogeneous approach, was comprehensively validated. The carbonyl content in numerous dissolving pulps of different provenience has been determined, including pulps with carbonyl contents additionally increased by oxidative treatment. The method was also applied to follow bleaching sequences and oxidative treatments of pulps.  相似文献   

3.
The white rot fungus Trametes (Coriolus) versicolor can delignify and brighten unbleached hardwood kraft pulp within a few days, but softwood kraft pulps require longer treatment. To determine the contributions of higher residual lignin contents (kappa numbers) and structural differences in lignins to the recalcitrance of softwood kraft pulps to biobleaching, we tested softwood and hardwood pulps cooked to the same kappa numbers, 26 and 12. A low-lignin-content (overcooked) softwood pulp resisted delignification by T. versicolor, but a high-lignin-content (lightly cooked) hardwood pulp was delignified at the same rate as a normal softwood pulp. Thus, the longer time taken by T. versicolor to brighten softwood kraft pulp than hardwood pulp results from the higher residual lignin content of the softwood pulp; possible differences in the structures of the residual lignins are important only when the lignin becomes highly condensed. Under the conditions used in this study, when an improved fungal inoculum was used, six different softwood pulps were all substantially brightened by T. versicolor. Softwood pulps whose lignin contents were decreased by extended modified continuous cooking or oxygen delignification to kappa numbers as low as 15 were delignified by T. versicolor at the same rate as normal softwood pulp. More intensive O2 delignification, like overcooking, decreased the susceptibility of the residual lignin in the pulps to degradation by T. versicolor.  相似文献   

4.
Preparation of superabsorbent cellulosic hydrogels   总被引:1,自引:0,他引:1  
In this work, milled softwood (SW) bleached kraft fibers were crosslinked by esterification with poly(vinyl methyl ether-co-maleic acid) (PVMEMA) and polyethylene glycol (PEG). The effects of fiber length, crosslinking reaction time, and dosage of PVMEMA on water absorption and retention value (WAARV) for the crosslinked fibers were determined. The results show that as the softwood fiber length is mechanically decreased from 2.41 to 0.50 mm and employing a weight ratio of fiber to polymers equivalent to 1.00:1.28 the WAARV increased from 86.50 to 189.20 g/g. Analysis of the crosslinked fibers by SEM and light microscope indicated that the polymers and fibers form a crosslinked fibrous matrix. FT-IR spectroscopy was employed to detect the ester linkage between PVMEMA and PEG/SW kraft pulp fibers. The results suggested that the ester crosslinked pulps exhibit excellent water absorbent properties and have the potential of utilizing milled bleached SW kraft fibers, such as refiner dust or pulp fines, for novel water absorbent applications.  相似文献   

5.
In kraft pulping, a comparatively large amount of lignin remains in the fibres after the cook. Based on various analytical techniques for lignin, such as thioacidolysis, GPC and NMR, it is suggested that lignin condensation reactions take place during the cook. The reaction seems, however, not to involve ionic intermediates as has been suggested previously but rather a one-electron mechanism with elemental sulphur as the initiator. Support for such a reaction has been found through kraft cooks in the presence of an added phenol, 2,6-xylenol, as well as through NMR analysis of kraft lignin. It was found that the added phenol is incorporated in the pulp lignin with linkages indicative of radical coupling. Furthermore, kraft lignin was found to contain substantial amounts of chemically linked fatty acids. By complementary analyses of sulphur and polysulphide in an industrial black liquor, the presence of these compounds throughout a kraft cook was demonstrated.  相似文献   

6.
A comparative study on TCF (totally chlorine-free) bleachability of organosolv pulps from the annual fibre crop Arundo donax L. (giant reed) was carried out using a simple three-stage peroxide bleaching sequence without oxygen pre-bleaching. ASAM (alkali-sulfite-anthraquinone-methanol), Organocell (alkali-anthraquinone-methanol) and ethanol-soda organosolv pulps were bleached and compared with kraft pulp, as a reference. The final brightness of 76-78% ISO was attained for all tested pulps. The chemical charge required to reach this level of brightness varied for different pulps (despite the equal initial content of the residual lignin) and directly related to starting brightness values. No direct correlation between brightness improvement and lignin removal during bleaching was found, indicating the influence of the specific pulp properties introduced by pulping process on bleaching chemistry. The general higher bleaching response of organosolv pulps from A. donax was noted in comparison with kraft.  相似文献   

7.
UV-Resonance Raman (UV-RR) coupled with UV-visible Diffuse Reflectance (UV-vis DR) spectroscopy was applied to a solid-state study of chromophores in Eucalyptus globulus kraft cellulosic pulps bleached by chlorine dioxide and hydrogen peroxide. The UV-RR spectra were acquired at 325 nm laser beam excitation, which was shown to be appropriate for selective analysis of chromophore structures in polysaccharides. The proposed approach allowed the monitoring of chromophores in pulps and to track the extent of polysaccharide oxidation. However, precaution was suggested while performing a quantitative analysis of chromophores at the characteristic band of ∼1600 cm−1 because of charge transfer complexes (CTCs) that exist in the pulp. These CTCs can affect the intensity of the aforementioned band by diminishing the conjugate state in the chromophore moieties. The amount of carbonyl and carboxyl groups in polysaccharides correlated with the intensity of the band at 1093 cm−1. The analysis of UV-RR spectra revealed xylan as an important source of chromophores in eucalypt kraft pulp.  相似文献   

8.
The reinforcement of natural biopolymers with cellulosic whiskers has been shown to be beneficial for physical strength properties including xylan films. This study examines the water transmission properties of xylan films reinforced with cellulosic whiskers prepared from kraft pulp hydrolyzed with sulfuric acid. Measurements of water transmission rate (WVTR) were accomplished by a modification of wet cup method described by ASTM E 96-95. The results showed that films prepared by xylan reinforced by 10% sulfonated whiskers exhibited a 74% reduction in specific water transmission properties with respect to xylan film and a 362% improvement with respect to xylan films reinforced with 10% softwood kraft fibers.  相似文献   

9.
Chemical force microscopy of cellulosic fibers   总被引:2,自引:0,他引:2  
Atomic force microscopy with chemically modified cantilever tips (chemical force microscopy) was used to study the pull-off forces (adhesion forces) on cellulose model surfaces and bleached softwood kraft pulp fibers in aqueous media. It was found that for the –COOH terminated tips, the adhesion forces are dependent on pH, whereas for the –CH3 and –OH terminated tips adhesion is not strongly affected by pH. Comparison between the cellulose model surfaces and cellulosic fibers under our experimental conditions reveal that surface roughness does not affect adhesion strongly. X-ray photoelectron spectroscopy (XPS) and Fourier Transformed Infrared (FTIR) spectroscopy reveal that both substrate surfaces have homogeneous chemical composition. The results show that chemical force microscopy can be used for the chemical characterization of cellulose surfaces at a nano-level.  相似文献   

10.
The aim of this work was to study the effect of adding PS, AQ and NaBH(4) into kraft pulping with special attention given to NaBH(4). Kraft, kraft-AQ, PS, and kraft-NaBH(4) pulps were produced under the same cooking conditions and the pulps produced were compared in terms of pulp and paper properties. Kraft method was modified by adding 0.1% AQ, 4% PS and 2% and 4% NaBH(4) and the resultant pulps displayed an increase in pulp yield and reduction in both kappa number and screening rejects. On the other hand, there observed an increase in both pulp yield and kappa number when the kraft was modified to PS method. The benefits of NaBH(4) addition into kraft pulping was a significant reduction in kappa number and screening rejects and a significant increase in pulp yield. The most notable outcome of NaBH(4) was 66.6% increase in pulp brightness when 4% NaBH(4) was added into kraft pulping. Of unrefined pulps, unrefined kraft pulp displayed the highest strength of pulp, which is described as tear index at a constant tensile index. Of refined pulps, kraft-AQ showed the highest pulp strength when refined to 6000 and 12,000 revs in PFI mill.  相似文献   

11.
Endoglucanase treatment of pulp for the adjustment of viscosity and the increase in pulp reactivity is a promising step in the concept for the beneficial production of dissolving pulps from paper grade pulps. To promote the commercial applicability of these enzymes, the influence of pulp properties such as carbohydrate composition, pulp type and cellulose morphology on the enzymatic degradability of a pulp was examined. High contents of hemicelluloses and lignin were shown to impair the accessibility of the cellulose to the enzymes. Due to the elevated swelling capacity of cellulose II, conversion of the cellulose morphology from I to II upon alkaline treatments showed a large increasing effect on the cellulose accessibility, and enzymatic degradability. Reactivity measurements of softwood sulfite pulps after enzymatic degradation and acid-catalyzed hydrolysis, respectively, revealed elevated reactivity for the pulp after acid treatment. This is in contrast to effects of enzyme treatments reported for CCE treated kraft pulps.  相似文献   

12.
European black pine (Pinus nigra Arn.) chips were treated with the white-rot fungus Ceriporiopsis subvermispora for periods ranging from 20 to 100 days. The effects of pretreatment on the chemical composition of wood and kraft pulping were investigated. The results showed that fungal pretreatment reduced the lignin and extractive content of wood chips. Also, weight losses occurred. Kappa number, viscosity, and reject ratio of biokraft pulps decreased. Biokraft pulps gave better response to beating, which led to significant energy saving during refining. The tear index, burst index, and tensile index of biokraft pulps were found to be lower than those of kraft pulps. However, the tensile index and burst index of 20-day biotreated and unbeaten pulp was higher than those of kraft pulp. Also, the tear index of 20-day biotreated and beaten pulp was higher than that of kraft pulp. The brightness of biokraft pulps decreased irregularly with increasing incubation time.  相似文献   

13.
Parameters influencing the mutagenic properties of spent bleaching liquors from sulphite pulps have been studied. In addition a comparison has been made between the properties of spent liquors from sulphite and kraft pulp bleaching. In the sulphite process the cooking base had no influence on the mutagenicity of the chlorination stage. In contrast, removing the extractives before chlorination especially for dissolving pulp resulted in an increase in mutagenic activity. The mutagenicity decreased significantly after substituting 40% of the chlorine with chlorine dioxide. Sequential addition of chlorine and chlorine dioxide resulted in higher activity than simultaneous or premixed chlorination as observed for liquors from kraft pulp. Increasing the pH of the extracts or addition of sulphur dioxide decreased the mutagenicity. Expressed as 10(7) revertants per kappa number and ton pulp the mutagenicity varied between 10 and 40 for sulphite pulp while the corresponding figures for kraft pulp were 100-225.  相似文献   

14.
Fungal laccases in the presence of mediators are powerful biocatalysts to degrade lignin. Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) have been successfully used to delignify eucalypt kraft pulp once integrated in a totally chlorine-free bleaching sequence. Real time delignification of kraft pulp by laccase-HBT was verified in situ by monitoring the loss of lignin autofluorescence during the enzymatic treatment using confocal laser scanning microscopy. The highest delignification of pulp fibers occurred over a very short time-span (5 min). Moreover, we demonstrate the removal of sterols, responsible for pitch deposits in hardwood kraft pulps, as an additional effect of laccase-HBT. Spherical structures between pulp fibers localized by low temperature scanning electron microscopy were removed by laccase-HBT. The use of filipin, a specific stain, revealed the sterol nature of many of these structures. At the end of the enzyme-aided bleaching sequence, the fluorescent sterols-filipin signals were almost completely absent.  相似文献   

15.
In an effort to alter the physical properties of high-yield kraft, fibers were treated at high consistency (20%) with laccase and syringic, vanillic, or 4-hydroxybenzoic acid. Treatment with laccase and 4-hydroxybenzoic acid resulted in a 20-point increase in kappa number and a 100% increase in bulk acid groups. ESCA analysis of the treated and untreated pulp revealed that the laccase-grafted fibers had a two-fold enrichment in acid groups, strongly suggesting a laccase-facilitated coupling of 4-hydroxybenzoic acid to the fiber surface. A model system consisting of lignin-coated cellulosic fibers was developed to determine changes to the lignin structure during laccase grafting. 31P NMR analysis of lignin from the model system revealed an increase in acid groups with a concomitant decrease in phenolic hydroxyl groups.  相似文献   

16.
Cold plasma treatment is used to modify the cellulosic fibers for a variety of applications. The grafting of softwood unbleached (UBP) and bleached (BP) kraft pulp fibers has been performed under the action of cold plasma discharges, using different kinds of fatty acids. The grafted samples are characterized by FTIR spectroscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), termogravimetry (TG-DTG) and X-ray diffraction (XRD). All these methods confirm the morphological and structural changes after plasma treatment which determines the modification in cellulosic fiber properties. The active centers created within the cellulose chains by plasma treatment were used to initiate grafting reactions with fatty acids. Such modification is useful to enhance the fibers properties such as softness and to change hydrophilic/hydrophobic balance.  相似文献   

17.
Three selected alkali-based organosolv pulps (alkali-sulfite-anthraquinone-methanol (ASAM), alkali-anthraquinone-methanol (organocell) and ethanol-soda) from agrofibre crop giant reed (Arundo donax L.) were bleached by an ozone-based TCF (totally chlorine- free) bleaching sequence AZE(R)QP (where A is an acidic pulp pre-treatment, Z is an ozone stage, (E(R)) is an alkaline extraction in the presence of reducing agent, Q is a pulp chelating, P is a hydrogen peroxide stage) without oxygen pre-bleaching, and compared with a conventional kraft pulp used as a reference. The different response on bleaching conditions within each bleaching stage was noted for all tested pulps. The pulp bleachability, in terms of brightness improvement or lignin removal per unit of applied chemicals, was found higher for the organocell pulp. The ASAM and ethanol-soda pulps showed the highest bleaching selectivity, expressed by viscosity loss per unit of lignin removed or brightness improved. The overall bleaching results of organosolv pulps were superior to kraft.  相似文献   

18.
Summary The specificity of action of a cellulase-free xylanase preparation on pulp fibers was revealed by the composition of the solubilized products after enzyme treatment. The neutral carbohydrates released by the treatment of two hardwood kraft pulps were composed exclusively of xylooligomers. A similar treatment of Solka Floc showed no detrimental effect on the degree of polymerization of the cellulose fibers, as determined by size exclusion chromatographic analysis.  相似文献   

19.
Two laccase isozymes (I and II) produced by the white-rot fungus Trametes versicolor were purified, and their reactivities towards various substrates and lignins were studied. The N-terminal amino acid sequences of these enzymes were determined and compared to other known laccase sequences. Laccase II showed a very high sequence similarity to a laccase which was previously reported to depolymerize lignin. The reactivities of the two isozymes on most of the substrates tested were similar, but there were some differences in the oxidation rate of polymeric substrates. We found that the two laccases produced similar qualitative effects on kraft lignin and residual lignin in kraft pulp, with no evidence of a marked preference for depolymerization by either enzyme. However, the presence of the mediator 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) prevented and reversed the polymerization of kraft lignin by either laccase. The delignification of hardwood and softwood kraft pulps with the two isozymes and the mediator was compared; either laccase was able to reduce the kappa number of pulp, but only in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate).  相似文献   

20.
Celluloses from different origins were dissolved stepwise in N,N-dimethylacetamide/lithium chloride (9% v/w; DMAc/LiCl) with the aim to study the time course of the dissolution process, completeness of dissolution in the dissolved fractions, possible discrimination effects, and differences between the celluloses. Cellulosic pulps from both annual plants and different wood species were analyzed. The obtained fractions were subject to gel permeation chromatography (GPC) with multiple detection to monitor the development of molecular mass distribution (MMD), molecular mass, and recovered mass. The dissolution behavior of accompanying xylans was followed by quantitative analysis of the uronic acids by fluorescence labeling--GPC. The morphological changes at the remaining fibers in the stepwise dissolution were addressed by SEM. The time needed to dissolve completely the cellulosic pulp differed from species to species, mainly between pulps from annual plants and pulps from wood. Annual plants generally needed much longer to dissolve completely. In the beginning of the dissolution, the dissolved fractions of annual plants showed a distinct discrimination effect because they were enriched in hemicellulose. By contrast, wood pulps dissolve fast and without distinct changes in the MMD of the dissolved fractions over time. Bagasse pulp is an exception to the observation for annual plants and rather resembled the behavior of wood celluloses. Prolonged dissolution times, as often practiced in cellulose GPC, do not lead to any improvements regarding the determination of molecular mass, MMD, and recovered mass of injected sample, so that the dissolution times required for reliable GPC analysis can be significantly shortened, which will be important for biorefinery analytics with high numbers of samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号