首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Macrophytic marine red algae are a unique source of novel and bioactive terpenoids, including halogenated monoterpenes. Biomass and halogenated monoterpene production by regenerated microplantlet suspension cultures derived from the red alga Ochtodes secundiramea were studied within a perfusion airlift photobioreactor. Photobioreactor cultivations were carried out at 26 degrees C, 140 microE m(-2)s(-1) light intensity, 0.3 air L(-1) culture min(-1) aeration (3500 ppm CO(2)), and ESS/seawater medium perfusion rate of 0.2 L medium L(-1) culture d(-1). Macronutrient concentrations in the perfusion medium were adjusted to provide nitrate delivery rates of 0.0063, 0.077, and 0.74 mmol L(-1) d(-1) at a fixed N:P ratio of 19:1. Growth was maximized at the highest nutrient delivery rate, where 10 g dry biomass L(-1) culture was achieved after 30 days of cultivation. GC-MS analysis of dichloromethane extracts from cell biomass revealed that O. secundiramea microplantlets produced myrcene, three acyclic halogenated monoterpenes (10-bromomyrcene, 10-bromo-7-chloromyrcene, 3,10-dibromomyrcene), and one cyclic halogenated monoterpene (6-bromo-1,2,8-trichloro-3,4-ochtodene). 10E-bromomyrcene levels were much higher than those of its isomer 10Z-bromomyrcene, demonstrating stereoselective halogenation. Maximum yields of 10E-bromomyrcene and 6-bromo-1,2,8-trichloro-3,4-ochtodene were 15 and 13 micromol/g dry cell mass, respectively. Increasing the rate of nutrient delivery increased the accumulation of myrcene and 10-bromomyrcene during the first 14 days in culture. Furthermore, the yield selectivity toward higher halogenated monoterpenes increased as the rate of nutrient delivery decreased. From this data, a biogenic scheme was proposed where cyclic and acyclic halogenated monoterpenes are derived from sequential halogenation of myrcene, their common precursor.  相似文献   

2.
A green-pigmented callus of the moss, Sphagnum imbricatum Hornsch. ex. Russ., was induced and a chlorophyllous cell suspension culture was established using a modified Murashige and Skoog's medium without plant hormones. Cell growth in the light in the presence of glucose started after a short lag and was exponential for 12 days. The chlorophyll level was about 15 μg (mg cell dry weight)−1 and photosynthetic activity ca 20 to 50 μmol O2 (mg chlorophyll)−1h−1. Cell growth in the light was negligible in the absence of glucose under ordinary air, but photoautotrophic growth was possible under elevated CO2 concentrations. In the dark, the moss cells grew heterotrophically and continued to synthesize chlorophyll, although at a much reduced rate. The suspension-cultured cells redifferentiated protonemata and shoots when transferred to solid Knop's medium. In contrast to the callus cells, which could not assimilate nitrate, redifferentiated plantlets could use nitrate as the sole nitrogen source.  相似文献   

3.
Preference responses of zebrafish to 10−3, 10−4 and 10−5M alanine (Ala) were concentration- dependent. Behavioural responses to copper (Cu) and Cu + Ala mixtures were also assessed. Zebrafish avoided 100 and 10 μg Cu l−1, but not 1 μg l−1. Mixtures of 10−3 m Ala+ 100 μg Cu l−1 and 10 4 M Ala + 10 μg Cu 1−1 were avoided as intensely as was Cu alone. Responses to 10−3 M Ala + 10 or 1 μg Cu l−1 and 10 4 M Ala +1 μg Cu l−1 did not differ statistically from controls (no detectable preference or avoidance). These results demonstrate, firstly, that a concentration of a pollutant avoided by itself (10 μg Cu l−1) may not be avoided when encountered with an attractant chemical stimulus (Ala) and may suppress the preference for an attractant stimulus, and secondly, that a concentration of a pollutant not avoided by itself and not considered deleterious (1 μg Cu l−1) suppresses attraction to Ala (an important constituent of prey odours for many fishes).  相似文献   

4.
Domoic acid (DA), a neuroexcitatory amino acid, was detected in batch culture of the newly recognized species Nitzschia navis-varingica Lundholm et Moestrup . The production of DA by this diatom was confirmed by electrospray ionization mass spectrometry. The diatom was collected from a shrimp-culture pond in Do Son, Vietnam. The production of DA (1.7 pg·cell 1) is within the levels reported for Pseudo-nitzschia multiseries (Hasle) Hasle. The DA production started during the late exponential growth phase and reached a maximum during the early stationary growth phase. Maximum DA levels in the axenic culture decreased to about half that of the nonaxenic culture (0.9 pg·cell 1 vs. 1.7 pg·cell 1), suggesting that DA production by the new species is influenced by bacteria.  相似文献   

5.
The apple rootstock A2 can be readily propagated in vitro both in the juvenile and in the adult growth phase. Shoots were produced by meristem tip culture from the apple rootstock A2 in different growth phases. The influence of growth phases and different concentrations of PG and IBA was investigated as to rooting percentage, survival percentage, number of roots per rooted shoot, root length, shoot length and formation of callus. IBA at 15 μ M without PG gave a significantly lower rooting percentage than 5 and 10 μ M IBA. PG together with IBA stimulated rooting, the optimum concentrations of PG being, however, not the same for the different growth phases. For the adult growth phase, 10−4 M PG promoted rooting, whereas 10−3 M PG markedly inhibited rooting. In the juvenile growth phases, both 10−4 and 10−3 M PG stimulated rooting. PG at 10−4 M also increased the number of roots. The longest roots were obtained at 10−3 M PG and 5 μ M IBA. PG at 10−3 M reduced callus formation at all IBA concentrations used. Neither shoot length nor root length influenced the survival percentage.  相似文献   

6.
The acyclic monoterpene myrcene is the likely progenitor of the unusual cytotoxic halogenated monoterpenes that are found in marine algae and that function as feeding deterrents to herbivores. Myrcene synthase was isolated from suspension cultures of the marine red alga Ochtodes secundiramea, representing the first enzyme of this type from a marine organism. The algal myrcene synthase produces exclusively myrcene from the natural substrate geranyl diphosphate (GDP), utilizes Mg(+2) as the required divalent metal ion cofactor, has a molecular mass of about 69 kDa, and exhibits a pH optimum near 7.2. These features are similar to those of monoterpene synthases from terrestrial organisms. When incubated with neryl diphosphate (the cis-isomer of GDP), the O. secundiramea myrcene synthase produces the cyclic monoterpene limonene, whereas incubation with (+/-)linalyl diphosphate (the tertiary allylic isomer of geranyl diphosphate) yields both acyclic and cyclic monoterpenes. These results suggest that the enzyme is incapable of isomerizing geranyl diphosphate to linalyl diphosphate, a feature common to all monoterpene cyclases from terrestrial sources. The limited catalytic capability of the myrcene synthase may reflect the ancient evolutionary origin of the producing organism. The ability to assay this enzyme in cultured algae, grown under strictly defined conditions, provides an unparalleled opportunity to delineate factors eliciting the biosynthesis of this class of secondary metabolites, to investigate the metabolic pathway leading to the halogenated monoterpenes, and to determine their role in the chemical ecology of marine algae.  相似文献   

7.
Rapidly dividing photoautotrophic cell suspensions from Chenopodium rubrum L. assimilated about 85 μmol CO2 (mg chlorophyll)−1 h−1. During the late stationary phase of culture growth, CO2 fixation rate was reduced to about 60 μmol CO2 (mg chlorophyll)−1 h−1. Actively dividing cells characteristically incorporated a smaller proportion of 14C into starch than cells from non-dividing stationary phases. In rapidly dividing cells, [14C]-turnover from free sugars, sugar-phosphates, organic and amino acids was substantially higher compared to non-dividing cells from stationary growth phase. Higher proportions of photosynthetically fixed carbon were channelled into proteins, lipids and structural components in actively dividing cells than in non-dividing cells. In the latter. 14C was preferentially channeled into starch, and a striking increase in starch accumulation was observed. The transfer of non-dividing, stationary growth-phase cells into fresh culture medium resulted in an increase in the maximum extractable activities of some enzymes involved in the glycolytic and dark respiratory pathways and in the citric acid cycle. In contrast, the maximum extractable activities of the chloroplastic enzymes, ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.38) and NADP+-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were highest after the cells had reached the stationary growth phase.  相似文献   

8.
A strain of Raphidiopsis (Cyanobacteria) isolated from a fish pond in Wuhan, P. R. China was examined for its taxonomy and production of the alkaloidal hepatotoxins cylindrospermopsin (CYN) and deoxy-cylindrospermopsin (deoxy-CYN). Strain HB1 was identified as R. curvata Fritsch et Rich based on morphological examination of the laboratory culture. HB1 produced mainly deoxy-CYN at a concentration of 1.3 mg·g 1 (dry wt cells) by HPLC and HPLC-MS/MS. CYN was also detected in trace amounts (0.56 μg·g 1). A mouse bioassay did not show lethal toxicity when tested at doses up to 1500 mg dry weight cells·kg 1 body weight within 96 h, demonstrating that production of primarily deoxy-CYN does not lead to significant mouse toxicity by strain HB1. The presence of deoxy-CYN and CYN in R. curvata suggests that Raphidiopsis belongs to the Nostocaceae, but this requires confirmation by molecular systematic studies. Production of these cyanotoxins by Raphidiopsis adds another genus, in addition to Cylindrospermopsis , Aphanizomenon , and Umezakia , now known to produce this group of hepatotoxic cyanotoxins. This is also the first report from China of a CYN and deoxy-CYN producing cyanobacterium.  相似文献   

9.
The virucidal properties of iodophor, chlorine (sodium hypochlorite), formalin, thimerosal (organic mercurial compound), malachite green, and acriflavine were tested on infectious pancreatic necrosis virus (IPNV). Iodine and chlorine showed good activity, but efficacy depended on the concentration of virus, the presence of organic matter (calf serum), and water pH. Water hardness (0-300 mg 1−1 as CaCO3) did not affect virucidal activity. In a 5 min exposure, 4 mg 1−1 available iodine inactivated 103.9 TCID50 m1−1 IPNV but 16 mg 1−1 iodine were needed for inactivation of 106.3TCID50m1−1. The addition of 0-5% calf serum significantly reduced the iodine concentration and the virucidal activity. In comparison, 4 mg 1−1 chlorine were needed to inactivate 1046 TCID50 m1−1 IPNV in 5 min. However, the addition of 0-07 % serum greatly reduced the chlorine concentration and extended the virucidal contact time to 30 min or more. IPNV at 106.3 TCID60 m1−1 was not inactivated by exposures for 60 min to 0-2% formalin, 10 min to 0-2% thimerosal, 60 min to 5 mg 1−1 malachite green, or 20 min to 500 mg 1−1 acriflavine. However, acriflavine at 0-5 mg 1−1 in cell culture media prevented the development of cytopathology caused by IPNV and may be useful in the treatment of the disease.  相似文献   

10.
The effects of water hardness (9 and 220 mgl−1 as CaCO3) upon zinc exchange in brown trout exposed to 0.77 μmol Zn 1−1 have been investigated using artificial soft water (<49.9 μmol Ca l-1, <40.1 μmol Mg 1−1) and mains hard water (1671.7 μmol Ca 1−1, 493.6 μmol Mg 1−1) of known composition. Both hard and soft water-adapted fish exhibited a bimodal pattern of net zinc influx. Net zinc influxes during both fast and slow uptake phases were significantly greater ( P <0.001) in soft (82.9 and 6.2 μmol Zn 100 g−1 h−1) than in hard water (46.3 and 2.4 μmol Zn 100 g h−1). Zinc efflux (- 0.2 μmol Zn 100 g−1 h−1) was enhanced only in hard water during the slow net influx phase.
Brown trout exposed to zinc in hard water and placed in metal-free media exhibited a greater net efflux (- 25.6 μmol Zn 100 g−1 h−1) of the metal than did fish in soft water (-4.2 μmol Zn 100 g−1 h−1) treated in the same manner. Tissue 65Zn activities reflected both the differences in uptake and excretion rates of the metal between hard and soft water fish. During zinc exposure (0.77 μmol Zn 1−1) high water hardness reduced tissue burdens of the metal by reducing net branchial influx, and enhancing efflux of the metal in hard water fish.  相似文献   

11.
Abstract The uptake and incorporation of 75[Se]selenite by Butyrivibrio fibrisolvens and Bacteroides ruminicola were by constitutive systems. Rates of uptake were higher in chemostat culture than in batch culture and there may be some inducible component. Uptake of [75Se]selenite was distinct from sulphate or selenate transport, since sulphate and selenate did not inhibit selenite uptake, nor could sulphate or selenate uptake be demonstrated in these organisms. Selenite uptake in B. fibrisolvens had and apparent K m of 1.74 mM and a V max of 109 ng Se · min−1· (mg protein)−1. An apparent K m of 1.76 mM and V max of 1.5 μg Se · min−1· (mg protein)−1 was obtained for B. ruminicola . [75Se]Selenite uptake by both organisms was partially sensitive to inhibition by 2,4-DNP. Uptake by B. fibrisolvens was also partially inhibited by azide and arsenate and in B. ruminicola it was partially inhibited by fluoride. CCCP, CPZ, DCCD or quinine did not inhibit uptake in either B. fibrisolvens or B. ruminicola . Selenite transport by both organisms was sensitive to IAA and NEM and was strongly inhibited by sulphite and nitrite. [75Se]Selenite was converted to selenocystine, selenohomocystine and selenomethionine by B. fibrisolvens. B. ruminicola did not incorporate [75Se]selenite into organic compounds, but did reduce it to red elemental selenium.  相似文献   

12.
Iron inefficiency in the maize ( Zea mays L.) mutant ysl is caused by a defect in the uptake system for Fe-phytosiderophores. To characterize this defect further, the uptake kinetics of Fe-phytosiderophores in ysl was compared to the Fe-efficient maize cultivar Alice. Short-term uptake of 59Fe-labeled Fe-deoxymugineic acid (Fe-DMA) was measured over a concentration range of 0.03 to 300 μM. Iron uptake in Fe-deficient plants followed Michaelis-Menten kinetics up to about 30 μM and was linear at higher concentrations, indicating two kinetically distinct components in the uptake of Fe-phytosiderophores. The saturable component had similar Km (∼ 10 μM) in both genotypes. In contrast. Vmax was 5.5 μmol Fe-DMA g−1 dry weight [30 min]−1 in Alice, but only 0.6 μmol Fe-DMA g−1 dry weight [30 min]−1 in ysl. Uptake experiments with double-labeled 59Fe-[14C]DMA suggest that in both cultivars Fe-DMA was taken up by the roots as the intact chelate. The results indicate the existence of a high-affinity and a low-affinity uptake system mediating Fe-phytosiderophore transport across the root plasma membrane in maize. Apparently, the mutation responsible for Fe inefficiency in ysl affected high-affected uptake and led to a decrease in activity and/or number of Fe-phytosiderophore transporters.  相似文献   

13.
The bioprocess engineering of marine macroalgae (i.e. seaweeds) for the production of secondary metabolites is an emerging area of marine biotechnology. One novel system is the biosynthesis of halogenated monoterpenes by "microplantlet" suspension cultures derived from the red alga Ochtodes secundiramea. This biosynthetic platform has three principal components: elaboration of myrcene from geranyl diphosphate (GPP); bromonium-ion promoted halogenation of myrcene to 10E-bromomyrcene, 3-chloro-10E-bromo-alpha-myrcene, and 3,10E-dibromomyrcene; bromonium-ion promoted cyclization of myrcene to Apakaochtodene B. In this study, a metabolic flux analysis on halogenated monoterpene biosynthesis was performed. To facilitate this effort, a "bromine free" cell line of O. secundiramea microplantlets was developed where biohalogenation was temporarily disabled but myrcene biosynthesis was still enabled. This cell line was cultivated within an airlift photobioreactor under nutrient medium perfusion. Halogenated monoterpene biosynthesis was "turned on" by coordinated addition of bromide and vanadate (a co-factor for vanadium bromoperoxidase) to the perfusion medium. From these experiments, the effects of bromide and vanadate delivery on the metabolic flux of each metabolite were determined. Bromination of myrcene at its Delta(6-10) olefinic bond was the dominant branch of the bioreaction network, whereas chlorination steps in the pathway were "weakly rigid". This study represents the first application of metabolic engineering principles to the analysis and manipulation of secondary metabolism in macrophytic marine organisms.  相似文献   

14.
Freshly fertilized ova of brown trout, Salmo trutta L., were exposed to all possible mixtures of Al (6000 nmol 11), Cu (80 nmol 1−1), Pb (50 nmol 1−1) and Zn (300 nmol 1 1). In a separate experiment, newly hatched brown trout yolk-sac fry were exposed to Mn (1500 nmol 1−1), Fe (2500 nmol 1 1), Ni (200 nmol 1−1) or Cd (4 nmol 1 1), separately, and in mixtures with either Al or Cu. Both experiments were conducted in flowing, artificial softwater media nominally at pH 5.6 [Ca] 20 μmol 1 1 and 10° C.
Mortalities were high in fry subjected to treatments which contained both Al and Cu (31–72%), and to the Cu + Fe treatment (78%) compared with those from the other trace metal mixtures (0–22%). In all the treatments tested, fry exposed to trace metal mixtures containing Al and/or Cu had reduced whole body Ca, Na and K content, and seriously impaired skeletal calcification. Whole body Mg content was variable. In trace metal mixtures which contained Cu but not Al, the effects on fry survival and whole body mineral content were in general more deleterious than the corresponding mixtures but with Al present rather than Cu. The presence of Pb and/or Zn in mixtures with Al and/or Cu had a slight ameliorative effect in terms both of fry survival and whole body mineral content.  相似文献   

15.
Abstract An optimized polyethylene glycol (PEG) method of transformation was developed for Methanococcus maripaludis using the pKAS102 integration vector. The frequency of transformation with 0.8 μg of plasmid and 3×109 cells was 4.8×10−5 transformants cfu−1, or 1.8×105 transformants μg−1, which was four orders of magnitude greater than with the natural transformation method. A Pst I restriction activity in M. maripaludis was also identified. Methylation of the plasmid with Pst I methylase increased the methanococcal transformation frequency at least four-fold. Also, chromosomal DNA from M. maripaludis was resistant to digestion by the Pst I endonuclease.  相似文献   

16.
Abstract. Growth in the presence of retinoids was found to induce erythroid differentiation in Friend murine erythroleukemia (MEL) cells in culture. The program of differentiated functions expressed by retinoid-treated cells was quite similar to that promoted by other inducers of MEL cell differentiation. For example, 70% or more of induced cells synthesized hemoglobin which accumulated to a level of 8 μg–10 μg per 106 cells. The level of acetylcholinesterase activity increased two to five-fold in induced cells, and induction by retinoids, like induction by dimethylsulfoxide (DMSO), promoted the appearance of cell surface lumps or 'blebs'. All-trans retinaldehyde, which promoted maximum hemoglobin and acetylcholinesterase synthesis at a concentration of 5 × 10−7 M, was found to be a more potent inducer than all-trans retinoic acid or retinol, which both showed maximum induction at 1 × 10−5 M. Like differentiation promoted by DMSO, retinoid-induced differentiation was inhibited by 10−7 M dexamethasone.  相似文献   

17.
Chlorophyllous, cultured cells of Marchantia polymorpha L. (HYA-2 cell line) grow actively under photoautotrophic (lithotrophic) conditions. The maximum specific growth rate (μcell) was 0.64 day−1 and the doubling time was 1.08 days under optimum conditions (165 μmol m−2 s−1, 1% carbon dioxide enriched atmosphere, 25°C). The photosynthetic activity was 1.30 μmol CO2-fixed (106 cells)−1 h−1 [66 μmol (mg chlorophyll)−1 h−1] in the exponential phase. The growth course has two distinct phases, an exponential and a linear one. The exponential phase is observed as long as the population density is sufficiently low (less than 7.9 × 106 cells ml−1), so that practically all individual cells directly receive the full incident light. The effect of light on the specific growth rate is a linear function of photon flux density. Linear growth occurs after the population density is so high that the incident light is almost completely absorbed by the cell suspension. The growth rate is a logarithmic function of photon flux density, in contrast to the specific growth rate, and saturates at high photon flux densities. The conditions of maximum growth, however, are not wellbalanced between cell mass production and cell division. Therefore, the maximum growth does not continue for a long time.  相似文献   

18.
Observations on the effects of different degrees of rigidity of both an agar (Tayio) and a non-agar (Gelrite) gel on the uptake of radiolabelled N6-benzyladenine (14C-BA) were also extended to mode of application and positioning of the explant. Regression analysis showed a highly significant inverse correlation between 14C-BA accumulation and degree of gel stiffness. Significantly greater numbers of adventitious buds per explant were induced at low to medium levels of rigidity (2.5–10 g Tayio 1−1, 1–5 g Gelrite 1−1); this advantage was almost completely nullified at the lower levels (2.5 and 5.0 g Tayio 1−1, 1 and 1.5 g Gelrite 1−1) as a result of the high incidence of vitrification. In addition to turgor distension, vitrified buds displayed cellular damage. Explants with their cotyledons flattened onto the agar surface accumulated less 14C-BA after 96 h than upright explants, but produced greater numbers of adventitious buds, pseudobuds and phylloids. It was suggested that BA was taken up only by "target" cells, presumably the differentiating subsidiary cells of those stomatal complexes in surface contact with the medium. Pulse treatments of relatively short durations (2 h) with optimal concentrations of BA (ca 125 μ M ), followed by subculturing on hormone-free media gelled with 10 g agar 1−1, produced a satisfactory balance between yield and competence of adventitiously-induced buds.  相似文献   

19.
SUMMARY. 1. Regeneration of ammonium and phosphate by macro-zooplankton (Cladocera. adult copepods. and copepodites) was measured in Lake Calado. an Amazon floodplain lake, Macrozooplanktonabundances ranged between 1×104 and 3×105 individuals m−2.
2. Phosphate regeneration ranged from 0.2 to 1.3 μ mol PO4 m−2 b−1at station 1. located 2 km from the Solimoes River, and from 1.6 to8.3 μ mol PO4 m−2 h −1 at station 3, located 7 km from the SolimoesRiver. Ammonium regeneration at stations 1 and 3 ranged from 1.7 to11.9 and from 13.4 to 77.2 μ mol NH4 m−2 h−1. respectively.
3. Zooplankton regenerated ammonium and phosphate at similarrates during rising and falling waier. Regeneration by macrozooplankton was low compared to other tropical lakes and compared to microbesand microzooplankton in Lake Calado.  相似文献   

20.
Abstract Demethylation and cleavage of dimethylsulfoniopropionate (DMSP) was measured in three different types of intertidal marine sediments: a cyanobacterial mat, a diatom-covered tidal flat and a carbonate sediment. Consumption rates of added DMSP were highest in cyanobacterial mat slurries (59 μmol DMSP 1−1) and lower in slurries from a diatom mat and a carbonate tidal sediment (24 and 9 μmol DMSP 1−1 h−1, respectively). Dimethyl sulfide (DMS) and 3-mercaptopropionate (MPA) were produced simultaneously during DMSP consumption, indicating that cleavage and demethylation occurred at the same time. Viable counts of DMSP-utilizing bacteria revealed a population of 2 × 107 cells cm−3 sediment (90% of these cleaved DMSP to DMS, 10% demethylated DMSP to MPA) in the cyanobacterial mat, 7 × 105 cells cm−3 in the diatom mat (23% cleavers, 77% demethylators), and 9 × 104 cells cm−3 (20% cleavers and 80% demethylators) in the carbonate sediment. In slurries of the diatom mat, the rate of MPA production from added 3-methiolpropionate (MMPA) was 50% of the rate of MPA formation from DMSP. The presence of a large population of demethylating bacteria and the production of MPA from DMSP suggest that the demethylation pathway, in addition to cleavage, contributes significantly to DMSP consumption in coastal sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号