首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Host responses to infectious challenges include initial events elicited directly by agent structures distinct from host determinants, activation of innate immune system components by the products of initial events, and the shaping of downstream adaptive immunity by these initial/innate responses. The picture emerging from viral infections is that viral structures interact with intracellular signaling pathways to induce expression of the type 1 interferons, IFN-alpha/beta. In addition to mediating direct antiviral effects, these cytokines play dominant roles in regulating innate and adaptive immune responses to infection. In particular, IFN-alpha/beta acts to inhibit interleukin-12 (IL-12) expression and IL-12 activation of innate natural killer (NK) cell IFN-alpha production, while inducing NK cell cytotoxicity and proliferation, and promoting adaptive T cell IFN-alpha responses. Although certain viral infections do elicit initial/innate IL-12 and NK-cell-produced IFN-alpha, endogenous IFN-alpha/beta also controls the magnitudes of these responses. Thus, the pathways activated, to dominantly regulate innate and adaptive immune responses during viral infections, are being defined.  相似文献   

2.
The biology of IL-12: coordinating innate and adaptive immune responses   总被引:13,自引:0,他引:13  
Cytokines play critical roles in regulating all aspects of immune responses, including lymphoid development, homeostasis, differentiation, tolerance and memory. Interleukin (IL)-12 is especially important because its expression during infection regulates innate responses and determines the type and duration of adaptive immune response. IL-12 induces interferon-gamma (IFN-gamma) production by NK, T cells, dendritic cells (DC), and macrophages. IL-12 also promotes the differentiation of na?ve CD4+ T cells into T helper 1 (Th1) cells that produce IFN-gamma and aid in cell-mediated immunity. As IL-12 is induced by microbial products and regulates the development of adaptive immune cells, IL-12 plays a central role in coordinating innate and adaptive immunity. IL-12 and the recently identified cytokines, IL-23 and IL-27, define a family of related cytokines that induce IFN-gamma production and promote T cell expansion and proliferation.  相似文献   

3.
《Cytokine》2015,76(2):249-255
Cytokines play crucial roles in coordinating the activities of innate and adaptive immune systems. In response to pathogen recognition, innate immune cells secrete cytokines that inform the adaptive immune system about the nature of the pathogen and instruct naïve T cells to differentiate into the appropriate T cell subtypes required to clear the infection. These include Interleukins, Interferons and other immune-regulatory cytokines that exhibit remarkable functional redundancy and pleiotropic effects. The focus of this review, however, is on the enigmatic Interleukin 12 (IL-12) family of cytokines. This family of cytokines plays crucial roles in shaping immune responses during antigen presentation and influence cell-fate decisions of differentiating naïve T cells. They also play essential roles in regulating functions of a variety of effector cells, making IL-12 family cytokines important therapeutic targets or agents in a number of inflammatory diseases, such as the CNS autoimmune diseases, uveitis and multiple sclerosis.  相似文献   

4.
Nitric oxide (NO), an important effector molecule of the innate immune system, can also regulate adaptive immunity. In this study, the molecular effects of NO on the toll-like receptor signaling pathway were determined using interleukin-12 (IL-12) as an immunologically relevant target gene. The principal conclusion of these experiments is that NO inhibits IL-1 receptor-associated kinase (IRAK) activity and attenuates the molecular interaction between tumor necrosis factor receptor-associated factor-6 and IRAK. As a consequence, the NO donor S-nitroso-N-acetylpenicillamine (SNAP) inhibits lipopolysaccharide (LPS)-induced IL-12 p40 mRNA expression, protein production, and promoter activity in murine macrophages, dendritic cells, and the murine macrophage cell line RAW 264.7. Splenocytes from inducible nitric-oxide synthase-deficient mice demonstrate markedly increased IL-12 p40 protein and mRNA expression compared with wild type splenocytes. The inhibitory action of NO on IL-12 p40 is independent of the cytokine IL-10. The effects of NO can be directly attributed to inhibition of NF-kappaB activation through IRAK-dependent pathways. Accordingly, SNAP strongly reduces LPS-induced NF-kappaB DNA binding to the p40 promoter and inhibits LPS-induced IkappaB phosphorylation. Similarly, NO attenuates IL-1beta-induced NF-kappaB activation. These experiments provide another example of how an innate immune molecule may have a profound effect on adaptive immunity.  相似文献   

5.
NKT cells are thought of as a bridge between innate and adaptive immunity. In this study, we demonstrate that mouse NKT cells are activated in response to Escherichia coli LPS, and produce IFN-gamma, but not IL-4, although activation through their TCR typically induces both IL-4 and IFN-gamma production. IFN-gamma production by NKT cells is dependent on LPS-induced IL-12 and IL-18 from APC. LPS induced IFN-gamma production by NKT cells does not require CD1d-mediated presentation of an endogenous Ag and exposure to a combination of IL-12 and IL-18 is sufficient to activate them. In mice that are deficient for NKT cells, innate immune cells are activated less efficiently in response to LPS, resulting in the reduced production of TNF and IFN-gamma. We propose that in addition to acting as a bridge to adaptive immunity, NKT cells act as an early amplification step in the innate immune response and that the rapid and complete initiation of this innate response depends on the early production of IFN-gamma by NKT cells.  相似文献   

6.
IL-27, a heterodimeric cytokine of IL-12 family, regulates both innate and adaptive immunity largely via Jak-Stat signaling. IL-27 can induce IFN-γ and inflammatory mediators from T lymphocytes and innate immune cells. IL-27 has unique anti-inflammatory properties via both Tr1 cells dependent and independent mechanisms. Here the role and biology of IL-27 in innate and adaptive immunity are summarized, with special interest with immunity against Mycobacterium tuberculosis.  相似文献   

7.
The TLR5 agonist flagellin induces innate and adaptive immune responses in a MyD88-dependent manner and is under development as a vaccine adjuvant. In vitro studies indicate that, compared with other bacteria-derived adjuvants, flagellin is a very potent activator of proinflammatory gene expression and cytokine production from cells of nonhemopoietic origin. However, the role of nonhemopoietic cells in promoting flagellin-induced immune responses in vivo remains unclear. To investigate the relative contributions of the nonhemopoietic (radioresistant) and the hemopoietic (radiosensitive) compartments, we measured both innate and adaptive immune responses of flagellin-treated MyD88 radiation bone marrow chimeras. We observed that radiosensitive and radioresistant cells played distinct roles in the innate response to flagellin, with the radiosensitive cells producing the majority of the TNF-alpha, IL-12, and IL-6 cytokines and the radioresistant cells most of the KC, IP-10, and MCP-1 cytokines. Direct activation of either compartment alone by flagellin initiated dendritic cell costimulatory molecule up-regulation and induced a significant humoral immune response to the protein itself as well as to coinjected OVA. However, robust humoral responses were only observed when MyD88 was present in both cell compartments. Further studies revealed that hemopoietic and nonhemopoietic expression of the cytokines TNF-alpha and IL-6, but not IL-1, played an important role in promoting flagellin-induced Ab responses. Thus, in vivo both radioresistant and hemopoietic cells play key nonredundant roles in mediating innate and adaptive immune responses to flagellin.  相似文献   

8.
IL-15 is a member of the IL-2 family of cytokines whose signaling pathways are a bridge between innate and adaptive immune response. IL-15 is part of the intestinal mucosal barrier, and functions to modulate gut homeostasis. IL-15 has pivotal roles in the control of development, proliferation and survival of both innate and adaptive immune cells.IL-15 becomes up-regulated in the inflamed tissue of intestinal inflammatory disease, such as IBD, Celiac Disease and related complications. Indeed, several studies have reported that IL-15 may participate to the pathogenesis of these diseases. Furthermore, although IL-15 seems to be responsible for inflammation and autoimmunity, it also may increase the immune response against cancer. For these reasons, we decided to study the intestinal mucosa as an ‘immunological niche’, in which immune response, inflammation and local homeostasis are modulated.Understanding the role of the IL-15/IL-15R system will provide a scientific basis for the development of new approaches that use IL-15 for immunotherapy of autoimmune diseases and malignancies. Indeed, a better understanding of the complexity of the mucosal immune system will contribute to the general understanding of immuno-pathology, which could lead to new therapeutical tools for widespread immuno-mediated diseases.  相似文献   

9.
Primary infection with Toxoplasma gondii stimulates production of high levels of interleukin 12 (IL-12) and interferon γ (IFN-γ) by cells of the innate immune system. These two cytokines are central to resistance to T. gondii. Signaling through the Toll-like receptor (TLR) adaptor protein MyD88 is indispensible for activating early innate immune responses. Recent studies have established that TLR11 plays a dominant role in sensing T. gondii. At the same time, TLR11 is represented in humans only by a pseudogene, and the major question of how innate and adaptive immune responses occur in the absence of TLR11 remains unanswered. In this article, similarities and differences in sensors and effector molecules that determine host resistance to the parasite in humans and mice are discussed.  相似文献   

10.
Froy O 《Cellular microbiology》2005,7(10):1387-1397
The immune system consists of innate and adaptive immune responses. The innate immune system confers non-specific protection against a large number of pathogens, hence, serving as the first line of defence. The innate immune system utilizes Toll-like receptors (TLRs) to recognize and bind pathogen-associated molecular patterns (PAMPs). Binding of PAMPs leads to TLR activation, which, in turn, initiates MAPK- or NF-kappaB-dependent cascades that culminate in a proinflammatory response. This response involves the secretion of cytokines, chemokines and broad-spectrum antibacterial substances, such as defensins. Increased defensin synthesis is also mediated by the activation of receptors other than TLRs, such as NOD2, IL-17R and PAR-2. This review summarizes the recently characterized signalling pathways leading to increased defensin synthesis as well as the pathway by which defensins activate TLRs on immature dendritic and memory T cells. Thus, not only do defensins eliminate pathogens, but they also recruit the adaptive immune system in instances of infection and/or inflammation.  相似文献   

11.
The ehrlichiae are small Gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immune system is activated is not fully understood. Using Ehrlichia muris as a model organism, we show here that MyD88-dependent signaling pathways play a pivotal role in the host defense against ehrlichial infection. Upon E. muris infection, MyD88-deficient mice had significantly impaired clearance of E. muris, as well as decreased inflammation, characterized by reduced splenomegaly and recruitment of macrophages and neutrophils. Furthermore, MyD88-deficient mice produced markedly lower levels of IL-12, which correlated well with an impaired Th1 immune response. In vitro, dendritic cells, but not macrophages, efficiently produced IL-12 upon E. muris infection through a MyD88-dependent mechanism. Therefore, MyD88-dependent signaling is required for controlling ehrlichial infection by playing an essential role in the immediate activation of the innate immune system and inflammatory cytokine production, as well as in the activation of the adaptive immune system at a later stage by providing for optimal Th1 immune responses.  相似文献   

12.
13.
The heterodimeric cytokine IL-23 consists of a private cytokine-like p19 subunit and a cytokine receptor-like subunit, p40, which is shared with IL-12. Previously reported IL-12p40-deficient mice have profound immune defects resulting from combined deficiency in both IL-12 and IL-23. To address the effects of specific IL-23 deficiency, we generated mice lacking p19 by gene targeting. These mice display no overt abnormalities but mount severely compromised T-dependent humoral immune responses. IL-23p19(-/-) mice produce strongly reduced levels of Ag-specific Igs of all isotypes, but mount normal T-independent B cell responses. In addition, delayed type hypersensitivity responses are strongly impaired in the absence of IL-23, indicating a defect at the level of memory T cells. T cells stimulated with IL-23-deficient APCs secrete significantly reduced amounts of the proinflammatory cytokine IL-17, and IL-23-deficient mice phenotypically resemble IL-17-deficient animals. Thus, IL-23 plays a critical role in T cell-dependent immune responses, and our data provide further support for the existence of an IL-23/IL-17 axis of communication between the adaptive and innate parts of the immune system.  相似文献   

14.
The differentiation of monocytes into dendritic cells (DC) is a key mechanism by which the innate immune system instructs the adaptive T cell response. In this study, we investigated whether leukocyte Ig-like receptor A2 (LILRA2) regulates DC differentiation by using leprosy as a model. LILRA2 protein expression was increased in the lesions of the progressive, lepromatous form vs the self-limited, tuberculoid form of leprosy. Double immunolabeling revealed LILRA2 expression on CD14+, CD68+ monocytes/macrophages. Activation of LILRA2 on peripheral blood monocytes impaired GM-CSF induced differentiation into immature DC, as evidenced by reduced expression of DC markers (MHC class II, CD1b, CD40, and CD206), but not macrophage markers (CD209 and CD14). Furthermore, LILRA2 activation abrogated Ag presentation to both CD1b- and MHC class II-restricted, Mycobacterium leprae-reactive T cells derived from leprosy patients, while cytokine profiles of LILRA2-activated monocytes demonstrated an increase in TNF-alpha, IL-6, IL-8, IL-12, and IL-10, but little effect on TGF-beta. Therefore, LILRA2 activation, by altering GM-CSF-induced monocyte differentiation into immature DC, provides a mechanism for down-regulating the ability of the innate immune system to activate the adaptive T cell response while promoting an inflammatory response.  相似文献   

15.
Innate stimuli are well recognized as adjuvants of the systemic immune response. However, their role in driving end-organ disease is less well understood. Whereas the passive transfer of glomerular-targeting Abs alone elicited minimal renal disease, the concomitant delivery of innate stimuli triggered severe nephritis, characterized by proliferative glomerulonephritis with crescent formation, and tubulointerstitial disease. Specifically, stimulating TLR2, TLR3, TLR4, and TLR5 by using peptidoglycan, poly(I:C), LPS, and flagellin, respectively, all could facilitate anti-glomerular Ab-elicited nephritis. In this model, innate and immune triggers synergistically activated several cytokines and chemokines, including IL-1, IL-6, TNF-alpha, and MCP-1, some of which were demonstrated to be absolutely essential for the development of renal disease. Genetic studies revealed that, whereas the innate trigger is dependent on TLR/IL-1R-associated kinase-mediated signaling, the immune component was contingent on FcR-mediated signals. Importantly, infiltrating leukocytes as well as intrinsic glomerular cells may both serve to integrate these diverse signals. Extrapolating to spontaneous immune-mediated nephritis, although the adaptive immune system may be important in generating end-organ targeting Abs, the extent of damage inflicted by these Abs may be heavily dependent on cues from the innate immune system.  相似文献   

16.
The effects of genetic adjuvants on humoral and cell-mediated immunity to two human immunodeficiency virus antigens, Env and Nef, have been examined in mice. Despite similar levels of gene expression and the same gene delivery vector, the immune responses to these two gene products differed following DNA immunization. Intramuscular immunization with a Nef expression vector plasmid generated a humoral response and antigen-specific gamma interferon (IFN-gamma) production but little cytotoxic-T-lymphocyte (CTL) immunity. In contrast, immunization with an Env vector stimulated CTL activity but did not induce a high-titer antibody response. The ability to modify these antigen-specific immune responses was investigated by coinjection of DNA plasmids encoding cytokine and/or hematopoietic growth factors, interleukin-2 (IL-2), IL-12, IL-15, Flt3 ligand (FL), and granulocyte-macrophage colony-stimulating factor (GM-CSF). Coadministration of these genes largely altered the immune responses quantitatively but not qualitatively. IL-12 induced the greatest increase in IFN-gamma and immunoglobulin G responses to Nef, and GM-CSF induced the strongest IFN-gamma and CTL responses to Env. A dual approach of expanding innate immunity by administering the FL gene, together with a cytokine that enhances adaptive immune responses, IL-2, IL-12, or IL-15, generated the most potent immune response at the lowest doses of Nef antigen. These findings suggest that intrinsic properties of the antigen determine the character of immune reactivity for this method of immunization and that specific combination of innate and adaptive immune cytokine genes can increase the magnitude of the response to DNA vaccines.  相似文献   

17.
Microglia are resident central nervous system (CNS) macrophages. Theiler's murine encephalomyelitis virus (TMEV) infection of SJL/J mice causes persistent infection of CNS microglia, leading to the development of a chronic-progressive CD4(+) T-cell-mediated autoimmune demyelinating disease. We asked if TMEV infection of microglia activates their innate immune functions and/or activates their ability to serve as antigen-presenting cells for activation of T-cell responses to virus and endogenous myelin epitopes. The results indicate that microglia lines can be persistently infected with TMEV and that infection significantly upregulates the expression of cytokines involved in innate immunity (tumor necrosis factor alpha, interleukin-6 [IL-6], IL-18, and, most importantly, type I interferons) along with upregulation of major histocompatibility complex class II, IL-12, and various costimulatory molecules (B7-1, B7-2, CD40, and ICAM-1). Most significantly, TMEV-infected microglia were able to efficiently process and present both endogenous virus epitopes and exogenous myelin epitopes to inflammatory CD4(+) Th1 cells. Thus, TMEV infection of microglia activates these cells to initiate an innate immune response which may lead to the activation of naive and memory virus- and myelin-specific adaptive immune responses within the CNS.  相似文献   

18.
19.
Vertebrates have evolved an adaptive immune system in addition to the ancestral innate immune system. It is often assumed that a trade-off between costs and benefits of defence governs the evolution of immunological defence, but the costs and benefits specific to the adaptive immune system are poorly known. We used genetically engineered mice lacking lymphocytes (i.e. mice without adaptive, but with innate, immunity) as a model of the ancestral state in the evolution of the vertebrate immune system. To investigate if the magnitude of adaptive defence is constrained by the energetic costs of producing lymphocytes etc., we compared the basal metabolic rate of normal and lymphocyte-deficient mice. We found that lymphocyte-deficient mice had a higher basal metabolic rate than normal mice with both innate and adaptive immune defence. This suggests that the evolution of the adaptive immune system has not been constrained by energetic costs. Rather, it should have been favoured by the energy savings associated with a combination of innate and adaptive immune defence.  相似文献   

20.
Understanding the whole process of dendritic cell (DC) activation might help in the development of more efficient immunotherapeutic strategies for tumor patients. Part of this process is cytokine secretion, which has important effects on innate and adaptive immune response. Here, we cultured circulating monocytes for five days with interleukin-4 and GM-CSF followed by two-day culture with or without CD40 ligand and LPS to create a mature DC (mDC) and an immature DC (iDC) phenotype, respectively, characterized by differential expression of co-stimulatory molecules (CD80, CD83). We then compared the cytokine expression profile of the mDC and iDC using two protein platform arrays. Twelve supernatants from mDC paired with 12 from iDC were compared. The mDC protein expression profile showed significant increases in 16 out of 34 factors tested, including TNFalpha, IL-10, IL-12, IFNgamma, MIP1alpha, MIP1beta, IL-8, MDC, RANTES, and IL-6, which play a crucial role in the regulation of the innate immune response as well as the recruitment and activation of adaptive immune effectors. Interestingly, some of the cytokines expressed during maturation were also found in the gene expression profile identified in tumor metastases following IL-2 therapy using cDNA arrays. This finding suggests a possible role for resident DC maturation as a mediator of systemic IL-2 effects. Most important, the array of cytokines secreted during DC maturation may be considered an important component during adoptive transfer. Further characterization of the kinetics and persistence of their secretion should be undertaken in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号