首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The function of lysosome-related organelles such as melanosomes in melanocytes, and lytic granules in cytotoxic T lymphocytes is disrupted in Griscelli syndrome and related diseases. Griscelli syndrome results from loss of function mutations in either the RAB27A (type 1 Griscelli syndrome) or MYO5A (type 2 Griscelli syndrome) genes. Melanocytes from Griscelli syndrome patients and respective murine models ashen (Rab27a mutant), dilute (myosin Va mutant), and leaden exhibit perinuclear clustering of melanosomes. Recent work suggests that Rab27a is required to recruit myosin Va to melanosomes, thereby tethering melanosomes to the peripheral actin network and promoting melanosome retention at the tips of melanocytic dendrites. Here, we characterize the function of the leaden gene product. We show that Rab27a, but not myosin Va, can be localized to melanosomes in leaden melanocytes, suggesting that the leaden gene product acts downstream of, or in parallel to, Rab27a in melanocytes to promote recruitment of myosin Va to melanosomes. We also observed reduced levels of myosin Va protein in leaden and ashen melanocytes, suggesting that myosin Va stability is influenced by the leaden and ashen gene products. In leaden cytotoxic T lymphocytes, we observed that lytic granules polarize towards the immunological synapse and kill target cells normally. However, in contrast to melanocytes, we found that neither the leaden gene product (melanophilin) nor myosin Va was detectable in cytotoxic T lymphocytes. These results suggest that Rab27a interacts with different classes of effector proteins in melanocytes and cytotoxic T lymphocytes.  相似文献   

2.
Melanosomes are a type of lysosome‐related organelle that is commonly defective in Hermansky–Pudlak syndrome. Biogenesis of melanosomes is regulated by BLOC‐1, ‐2, ‐3, or AP‐1, ‐3 complexes, which mediate cargo transport from recycling endosomes to melanosomes. Although several Rab GTPases have been shown to regulate these trafficking steps, the precise role of Rab9A remains unknown. Here, we found that a cohort of Rab9A associates with the melanosomes and its knockdown in melanocytes results in hypopigmented melanosomes due to mistargeting of melanosomal proteins to lysosomes. In addition, the Rab9A‐depletion phenotype resembles Rab38/32‐inactivated or BLOC‐3‐deficient melanocytes, suggesting that Rab9A works in line with BLOC‐3 and Rab38/32 during melanosome cargo transport. Furthermore, silencing of Rab9A, Rab38/32 or its effector VARP, or BLOC‐3‐deficiency in melanocytes decreased the length of STX13‐positive recycling endosomal tubules and targeted the SNARE to lysosomes. This result indicates a defect in directing recycling endosomal tubules to melanosomes. Thus, Rab9A and its co‐regulatory GTPases control STX13‐mediated cargo delivery to maturing melanosomes.  相似文献   

3.
NDC1 is a transmembrane nucleoporin that is required for NPC assembly and nucleocytoplasmic transport. We show here that NDC1 directly interacts with the nucleoporin ALADIN, mutations of which are responsible for triple-A syndrome, and that this interaction is required for targeting of ALADIN to nuclear pore complexes (NPCs). Furthermore, we show that NDC1 is required for selective nuclear import. Our findings suggest that NDC1-mediated localization of ALADIN to NPCs is essential for selective nuclear protein import, and that abrogation of the interaction between ALADIN and NDC1 may be important for the development of triple-A syndrome.  相似文献   

4.
Rab27a activity is affected in several mouse models of human disease including Griscelli (ashen mice) and Hermansky-Pudlak (gunmetal mice) syndromes. A loss of function mutation occurs in the Rab27a gene in ashen (ash), whereas in gunmetal (gm) Rab27a dysfunction is secondary to a mutation in the alpha subunit of Rab geranylgeranyl transferase, an enzyme required for prenylation and activation of Rabs. We show here that Rab27a is normally expressed in cytotoxic T lymphocytes (CTLs), but absent in ashen homozygotes (ash/ash). Cytotoxicity and secretion assays show that ash/ash CTLs are unable to kill target cells or to secrete granzyme A and hexosaminidase. By immunofluorescence and electron microscopy, we show polarization but no membrane docking of ash/ash lytic granules at the immunological synapse. In gunmetal CTLs, we show underprenylation and redistribution of Rab27a to the cytosol, implying reduced activity. Gunmetal CTLs show a reduced ability to kill target cells but retain the ability to secrete hexosaminidase and granzyme A. However, only some of the granules polarize to the immunological synapse, and many remain dispersed around the periphery of the CTLs. These results demonstrate that Rab27a is required in a final secretory step and that other Rab proteins also affected in gunmetal are likely to be involved in polarization of the granules to the immunological synapse.  相似文献   

5.
Human TPX2 is required for targeting Aurora-A kinase to the spindle   总被引:24,自引:0,他引:24       下载免费PDF全文
Aurora-A is a serine-threonine kinase implicated in the assembly and maintenance of the mitotic spindle. Here we show that human Aurora-A binds to TPX2, a prominent component of the spindle apparatus. TPX2 was identified by mass spectrometry as a major protein coimmunoprecipitating specifically with Aurora-A from mitotic HeLa cell extracts. Conversely, Aurora-A could be detected in TPX2 immunoprecipitates. This indicates that subpopulations of these two proteins undergo complex formation in vivo. Binding studies demonstrated that the NH2 terminus of TPX2 can directly interact with the COOH-terminal catalytic domain of Aurora-A. Although kinase activity was not required for this interaction, TPX2 was readily phosphorylated by Aurora-A. Upon siRNA-mediated elimination of TPX2 from cells, the association of Aurora-A with the spindle microtubules was abolished, although its association with spindle poles was unaffected. Conversely, depletion of Aurora-A by siRNA had no detectable influence on the localization of TPX2. We propose that human TPX2 is required for targeting Aurora-A kinase to the spindle apparatus. In turn, Aurora-A might regulate the function of TPX2 during spindle assembly.  相似文献   

6.
It was known that the uptake of tryptophan is reduced in the yeast erg6 mutant, which is defective in a late step of ergosterol biosynthesis. Here, we show that this is because the high affinity tryptophan permease Tat2p is not targeted to the plasma membrane. In wild-type cells, the plasma membrane localization of Tat2p is regulated by the external tryptophan concentration. Tat2p is transported from the Golgi apparatus to the vacuole at high tryptophan, and to the plasma membrane at low tryptophan. However, in the erg6 mutant, Tat2p is missorted to the vacuole at low tryptophan. The plasma membrane targeting of Tat2p is dependent on detergent-insoluble membrane domains, suggesting that sterol affects the sorting through the organization of lipid rafts. The erg6 mutation also caused missorting to the multivesicular body pathway in late endosomes. Thus, sterol composition is crucial for protein sorting late in the secretory pathway. Tat2p is subject to polyubiquitination, which acts as a vacuolar-targeting signal, and the inhibition of this process suppresses the Tat2p sorting defects of the erg6 mutant. The sorting mechanisms of Tat2p that depend on both sterol and ubiquitin will be discussed.  相似文献   

7.
8.
The equal distribution of chromosomes during mitosis is critical for maintaining the integrity of the genome. Essential to this process are the capture of spindle microtubules by kinetochores and the congression of chromosomes to the metaphase plate . Polo-like kinase 1 (Plk1) is a mitotic kinase that has been implicated in microtubule-kinetochore attachment, tension generation at kinetochores, tension-responsive signal transduction, and chromosome congression . The tension-sensitive substrates of Plk1 at the kinetochore are unknown. Here, we demonstrate that human Nuclear distribution protein C (NudC), a 42 kDa protein initially identified in Aspergillus nidulans and shown to be phosphorylated by Plk1 , plays a significant role in regulating kinetochore function. Plk1-phosphorylated NudC colocalizes with Plk1 at the outer plate of the kinetochore. Depletion of NudC reduced end-on microtubule attachments at kinetochores and resulted in defects in chromosome congression at the metaphase plate. Importantly, NudC-deficient cells exhibited mislocalization of Plk1 and the Kinesin-7 motor CENP-E from prometaphase kinetochores. Ectopic expression of wild-type NudC, but not NudC containing mutations in the Plk1 phosphorylation sites, recovered Plk1 localization at the kinetochore and rescued chromosome congression. Thus, NudC functions as both a substrate and a spatial regulator of Plk1 at the kinetochore to promote chromosome congression.  相似文献   

9.
Accumulating evidence shows that proper degradation of proteins that affect defense responses in a positive or negative manner is critical in plant immunity. However, the role of plant degradation systems such as the 26S proteasome in plant immunity is not well understood. Loss‐of‐function mutations in EDR2 (ENHANCED DISEASE RESISTANCE 2) lead to increased resistance to the adapted biotrophic powdery mildew pathogen Golovinomyces cichoracearum. To study the molecular interactions between powdery mildew pathogen and Arabidopsis, we performed a screen for suppressors of edr2 and found that mutation in the gene that encodes RPN1a, a subunit of the 26S proteasome, suppressed edr2‐associated disease resistance phenotypes. In addition, RPN1a is required for edr1‐ and pmr4‐mediated powdery mildew resistance and mildew‐induced cell death. Furthermore, we show that rpn1a displayed enhanced susceptibility to the fungal pathogen G. cichoracearum and to virulent and avirulent bacterial Pto DC3000 strains, which indicated that rpn1a has defects in basal defense and resistance (R) protein‐mediated defense. RPN1a–GFP localizes to both the nucleus and cytoplasm. Accumulation of RPN1a is affected by salicylic acid (SA) and the rpn1a mutant has defects in SA accumulation upon Pto DC3000 infection. Further analysis revealed that two other subunits of the 26S proteasome, RPT2a and RPN8a are also involved in edr2‐mediated disease resistance. Based on these results, we conclude that RPN1a is required for basal defense and R protein‐mediated defense. Our data provide evidence that some subunits of the 26S proteasome are involved in innate immunity in Arabidopsis.  相似文献   

10.
p8 is an 80 amino-acid polypeptide identified because of its remarkable over-expression in the stressed pancreas. This protein, apparently devoid of enzymatic activity, is a powerful regulator of several intracellular pathways, suggesting that it has to interact with several molecular partners to modulate their activity. We used two-hybrid screening of a pre-transformed human testes cDNA library to identify some of these partners. One of them was the multifunctional protein Jab1, its interaction with p8 being confirmed by His6-pull down and co-immunoprecipitation assays. In addition, we could show that the two proteins co-localized in the cell. Our functional data demonstrate that Jab1 requires direct interaction with p8 to induce the translocation of p27 from nucleus to cytoplasm and its subsequent degradation. Experiments showing that the knock-down of p8 expression results in a strong inhibition of Jab1 activity confirmed that the mechanism by which Jab1 promotes cell growth by decreasing p27 level is p8-dependent.  相似文献   

11.
12.
To survive starvation conditions, eukaryotes have developed an evolutionarily conserved process, termed autophagy, by which the vacuole/lysosome mediates the turnover and recycling of non-essential intracellular material for re-use in critical biosynthetic reactions. Morphological and biochemical studies in Saccharomyces cerevisiae have elucidated the basic steps and mechanisms of the autophagy pathway. Although it is a degradative process, autophagy shows substantial overlap with the biosynthetic cytoplasm to vacuole targeting (Cvt) pathway that delivers resident hydrolases to the vacuole. Recent molecular genetics analyses of mutants defective in autophagy and the Cvt pathway, apg, aut, and cvt, have begun to identify the protein machinery and provide a molecular resolution of the sequestration and import mechanism that are characteristic of these pathways. In this study, we have identified a novel protein, termed Apg2, required for both the Cvt and autophagy pathways as well as the specific degradation of peroxisomes. Apg2 is required for the formation and/or completion of cytosolic sequestering vesicles that are needed for vacuolar import through both the Cvt pathway and autophagy. Biochemical studies revealed that Apg2 is a peripheral membrane protein. Apg2 localizes to the previously identified perivacuolar compartment that contains Apg9, the only characterized integral membrane protein that is required for autophagosome/Cvt vesicle formation.  相似文献   

13.
We have studied the role of the cyclin-dependent kinase (Cdk) inhibitor p27(Kip1) in postnatal mammary gland morphogenesis. Based on its ability to negatively regulate cyclin/Cdk function, loss of p27 may result in unrestrained cellular proliferation. However, recent evidence about the stabilizing effect of p27 on cyclin D1-Cdk4 complexes suggests that p27 deficiency might recapitulate the hypoplastic mammary phenotype of cyclin D1-deficient animals. These hypotheses were investigated in postnatal p27-deficient (p27(-/-)), hemizygous (p27(+/)-), or wild-type (p27(+/+)) mammary glands. Mammary glands from p27(+/)- mice displayed increased ductal branching and proliferation with delayed postlactational involution. In contrast, p27(-/-) mammary glands or wild-type mammary fat pads reconstituted with p27(-/-) epithelium produced the opposite phenotype: hypoplasia, low proliferation, decreased ductal branching, impaired lobuloalveolar differentiation, and inability to lactate. The association of cyclin D1 with Cdk4, the kinase activity of Cdk4 against pRb in vitro, the nuclear localization of cyclin D1, and the stability of cyclin D1 were all severely impaired in p27(-/-) mammary epithelial cells compared with p27(+/+) and p27(+/-) mammary epithelial cells. Therefore, p27 is required for mammary gland development in a dose-dependent fashion and positively regulates cyclin D-Cdk4 function in the mammary gland.  相似文献   

14.
Nascent beta and gamma subunits of heterotrimeric G proteins need to be targeted to the cytoplasmic face of the plasma membrane (PM) in order to transmit signals. We show that beta(1)gamma(2) is poorly targeted to the PM and predominantly localized to endoplasmic reticulum (ER) membranes when expressed in HEK293 cells, but co-expression of a G protein alpha subunit allows strong PM localization of the beta(1)gamma(2). Furthermore, C-terminal isoprenylation of the gamma subunit is necessary but not sufficient for PM localization of beta(1)gamma(2). Isoprenylation of gamma(2) and localization of beta(1)gamma(2) to the ER occurs independently of alpha expression. Efficient PM localization of beta(1)gamma(2) in the absence of co-expressed alpha is observed when a site for palmitoylation, a putative second membrane targeting signal, is introduced into gamma(2). When a mutant of alpha(s) is targeted to mitochondria, beta(1)gamma(2) follows, consistent with an important role for alpha in promoting subcellular localization of betagamma. Furthermore, we directly demonstrate the requirement for alpha by showing that disruption of heterotrimer formation by the introduction of alpha binding mutations into beta(1) impedes PM targeting of beta(1)gamma(2). The results indicate that two membrane targeting signals, lipid modification and alpha binding, make concerted contributions to PM localization of betagamma.  相似文献   

15.
Many plant RNA viruses use their nonstructural proteins to target and move through the cortical endoplasmic reticulum (ER) tubules within the plant intercellular junction for cell-to-cell spreading. Most of these proteins, including the triple-gene-block 3 protein (TGBp3) of Potexvirus, are ER membrane proteins. We previously showed that TGBp3 of the Bamboo mosaic potexvirus partitions into tubular subdomains of the ER in both yeast and plants, but the mechanism and physiological significance of this localization is unclear. Here, we demonstrate that a sorting signal present in TGBp3 is necessary and sufficient for its oligomerization and for targeting integral membrane proteins into puncta within curved ER tubules. Mutations in the TGBp3 sorting signal impair viral spread, and plants infected with viruses harboring these mutants were either asymptomatic or had reduced symptoms. Thus, we propose that Potexvirus use the sorting signal in TGBp3 to target infectious viral derivatives to cortical ER tubules for transmission through the intercellular junctions in plants.  相似文献   

16.
A truncated form of the yeast mitochondrial 5-aminolevulinate (ALA) synthase was constructed by deletion of the first 75 amino acid residues of its precursor form. This truncated ALA synthase which lost its entire presequence and 40 residues of the mature part possesses a new amino terminus quite different from a typical mitochondrial presequence. This modified protein expressed in vivo is found entirely located within mitochondria. Although it was now unable to reach the matrix space, it was internalized as shown by its resistance to protease in isolated mitochondria. Pulse-chase radiolabeling in the presence of an uncoupler suggests that a membrane potential is not required for the targeting of this truncated ALA synthase. Thus, the amino-terminal signal, if indispensable as a matrix targeting signal, could be replaced by an internal sequence or a particular folding for recognition by the import machinery.  相似文献   

17.
《Developmental cell》2022,57(12):1482-1495.e5
  1. Download : Download high-res image (119KB)
  2. Download : Download full-size image
  相似文献   

18.
Mammalian pentatricopeptide repeat domain (PPR) proteins are involved in regulation of mitochondrial RNA metabolism and translation and are required for mitochondrial function. We investigated an uncharacterised PPR protein, the supernumerary mitochondrial ribosomal protein of the small subunit 27 (MRPS27), and show that it associates with the 12S rRNA and tRNAGlu, however it does not affect their abundance. We found that MRPS27 is not required for mitochondrial RNA processing or the stability of the small ribosomal subunit. However, MRPS27 is required for mitochondrial protein synthesis and its knockdown causes decreased abundance in respiratory complexes and cytochrome c oxidase activity.

Structured summary of protein interactions

MRPS27 and MRPS15 colocalize by cosedimentation through density gradient (View Interaction)  相似文献   

19.
Three lines of investigation have suggested that interactions between Survivin and the chromosomal passenger proteins INCENP and Aurora-B kinase may be important for mitotic progression. First, interference with the function of Survivin/BIR1, INCENP, or Aurora-B kinase leads to similar defects in mitosis and cytokinesis [1-7] (see [8] for review). Second, INCENP and Aurora-B exist in a complex in Xenopus eggs [9] and in mammalian cultured cells [7]. Third, interference with Survivin or INCENP function causes Aurora-B kinase to be mislocalized in mitosis in both C. elegans and vertebrates [5, 7, 9]. Here, we provide evidence that Survivin, Aurora-B, and INCENP interact physically and functionally. Direct visualization of Survivin-GFP in mitotic cells reveals that it localizes identically to INCENP and Aurora-B. Survivin binds directly to both Aurora-B and INCENP in yeast two-hybrid and in vitro pull-down assays. The in vitro interaction between Survivin and Aurora-B is extraordinarily stable in that it resists 3 M NaCl. Finally, Survivin and INCENP interact functionally in vivo; in cells in which INCENP localization is disrupted, Survivin adheres to the chromosomes and no longer concentrates at the centromeres or transfers to the anaphase spindle midzone. Our data provide the first biochemical evidence that Survivin can interact directly with members of the chromosomal passenger complex.  相似文献   

20.
Intraerythrocytic malaria parasites reside within a parasitophorous vacuole membrane (PVM) that closely overlays the parasite plasma membrane. Although the PVM is the site of several transport activities essential to parasite survival, the basis for organisation of this membrane system is unknown. Here, we performed proximity labeling at the PVM with BioID2, which highlighted a group of single‐pass integral membrane proteins that constitute a major component of the PVM proteome but whose function remains unclear. We investigated EXP1, the longest known member of this group, by adapting a CRISPR/Cpf1 genome editing system to install the TetR–DOZI‐aptamers system for conditional translational control. Importantly, although EXP1 was required for intraerythrocytic development, a previously reported in vitro glutathione S‐transferase activity could not account for this essential EXP1 function in vivo. EXP1 knockdown was accompanied by profound changes in vacuole ultrastructure, including apparent increased separation of the PVM from the parasite plasma membrane and formation of abnormal membrane structures. Furthermore, although activity of the Plasmodium translocon of exported proteins was not impacted by depletion of EXP1, the distribution of the translocon pore‐forming protein EXP2 but not the HSP101 unfoldase was substantially altered. Collectively, our results reveal a novel PVM defect that indicates a critical role for EXP1 in maintaining proper organisation of EXP2 within the PVM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号