首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The relationship between intermembrane spacing, adhesion efficiency, and lateral organization of adhesion receptors has not been established for any adhesion system. We have utilized the CD2 ligand CD48 with two (wild type CD48 (CD48-WT)), four (CD48-CD2), or five (CD48-CD22) Ig-like domains. CD48-WT was 10-fold more efficient in mediating adhesion than CD48-CD2 or CD48-CD22. Electron tomography of contact areas with planar bilayers demonstrated average intermembrane spacing of 12.8 nm with CD48-WT, 14.7 nm with CD48-CD2, and 15.6 nm with CD48-CD22. Both CD48-CD2 and CD48-CD22 chimeras segregated completely from CD48-WT in mixed contact areas. In contrast, CD48-CD2 and CD48-CD22 co-localized when mixed contacts were formed. Confocal imaging of immunological synapses formed between primary T lymphocytes and Chinese hamster ovary cells presenting major histocompatibility complex-peptide complexes, and different forms of CD48 demonstrated that CD48-CD2 and CD48-CD22 induce an eccentric CD2/T cell antigen receptor cluster. We propose that this reorganization of the immunological synapse sequesters the T cell antigen receptor in a location where it cannot interact with its ligand and dramatically reduces T cell sensitivity.  相似文献   

2.
Kinetics of binding of LPS to recombinant CD14, TLR4, and MD-2 proteins   总被引:2,自引:0,他引:2  
TLR4 together with CD14 and MD-2 forms a pattern recognition receptor that plays an initiating role in the innate immune response to Gram-negative bacteria. Here, we employed the surface plasmon resonance technique to investigate the kinetics of binding of LPS to recombinant CD14, MD-2 and TLR4 proteins produced in insect cells. The dissociation constants (KD) of LPS for immobilized CD14 and MD-2 were 8.7 microM, and 2.3 microM, respectively. The association rate constant (Kon) of LPS for MD-2 was 5.61 x 10(3) M-1S-1, and the dissociation rate constant (Koff) was 1.28 10 2 S 1, revealing slow association and fast dissociation with an affinity constant KD of 2.33 x 10-6 M at 25 degreesC. These affinities are consistent with the current view that CD14 conveys LPS to the TLR4/MD-2 complex.  相似文献   

3.
Direct force measurements were used to investigate the molecular mechanism of heterophilic adhesion between the murine T-cell adhesion glycoprotein CD2 and its ligand CD48. From the distance dependence of the protein-protein interaction potential, we demonstrate directly that the full-length extracellular domains adhere in a head-to-head orientation. The absence of long-range electrostatic protein-protein attraction further indicates that the salt bridges between the binding surfaces only influence the interaction at short range. Despite the loss of a stabilizing disulfide bond in domain 1 (D1) of CD2, adhesive failure occurs abruptly with no evidence of partial protein unfolding during detachment. Finally, these measurements between extended membrane surfaces directly confirm that the low-affinity CD2-CD48 bond generates weak adhesion and that lateral receptor mobility is required for the development of appreciable adhesion. This is the first direct measurement of the range and magnitude of the forces governing heterotypic adhesion mediated by cell surface proteins. These results both verified the head-to-head CD2-CD48 docking alignment and demonstrated the ability to elucidate the structure-function relationships of adhesion proteins from the measured distance dependence of their interaction potentials.  相似文献   

4.
Conformational dynamics of human T-helper cell receptor protein CD4 has been studied with the help of monoclonal antibody (mAb) T6. The mAb T6 discriminates between s- and m-forms of CD4 and recognizes a specific conformation of the soluble (s) form of CD4 including the first nine amino acids of CD4 transmembrane sequence. However, change of tryptophan for serine in position 2 in this sequence destabilizes the T6-type conformation. By enzymatic deglycosylation and deletions of glycosylation sites, we show that T6-type conformation depends on glycosylation in both sites (Asn271 and Asn300). We show also that the sugars are not involved in direct binding to the antibody but stabilize the D3/D4 local conformation. Deglycosylated forms of sCD4 in vivo acquire a specific conformation similar to the wild type sCD4, which however cannot be restored after denaturation/renaturation under conditions of non-reducing Western blot. This observation indicates that the correct protein folding needs chaperone assistance and cannot be achieved in vitro. Completely non-glycosylated sCD4 is synthesized and secreted into the growth medium. In the medium, this mutant appears to be unstable and aggregates during time. In a contrast to soluble CD4, mutations in glycosylation sites abrogate expression of membrane CD4, thus demonstrating a different secretion pathways for soluble and membrane proteins. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 2, pp. 238–246.  相似文献   

5.
The structural analysis of surface proteins belonging to the CD2 subset of the immunoglobulin superfamily has yielded important insights into transient cellular interactions. In mice and rats, CD2 and CD244 (2B4), which are expressed predominantly on T cells and natural killer cells, respectively, bind the same, broadly expressed ligand, CD48. Structures of CD2 and CD244 have been solved previously, and we now present the structure of the receptor-binding domain of rat CD48. The receptor-binding surface of CD48 is unusually flat, as in the case of rat CD2, and shares a high degree of electrostatic complementarity with the equivalent surface of CD2. The relatively simple arrangement of charged residues and this flat topology explain why CD48 cross-reacts with CD2 and CD244 and, in rats, with the CD244-related protein, 2B4R. Comparisons of modeled complexes of CD2 and CD48 with the complex of human CD2 and CD58 are suggestive of there being substantial plasticity in the topology of ligand binding by CD2. Thermodynamic analysis of the native CD48-CD2 interaction indicates that binding is driven by equivalent, weak enthalpic and entropic effects, in contrast to the human CD2-CD58 interaction, for which there is a large entropic barrier. Overall, the structural and biophysical comparisons of the CD2 homologues suggest that the evolutionary diversification of interacting cell surface proteins is rapid and constrained only by the requirement that binding remains weak and specific.  相似文献   

6.

Introduction

Spondyloarthritis (SpA) comprises a group of diseases often associated with HLA-B27 and characterized by inflammation of the entheses and joints of the axial skeleton. The inflammatory process in SpA is presumably driven by innate immune cells but is still poorly understood. Thus, new tools for monitoring and treating inflammation are needed. The family of CD18 integrins is pivotal in guiding leukocytes to sites of inflammation, and CD18 hypomorphic mice develop a disease resembling SpA. Previously, we demonstrated that altered soluble CD18 (sCD18) complexes in the blood and synovial fluid of patients with arthritis have anti-inflammatory functions. Here, we study the mechanisms for these alterations and their association with SpA disease activity.

Methods

Plasma levels of sCD18 in a study population with 84 patients with SpA and matched healthy controls were analyzed with a time-resolved immunoflourometric assay (TRIFMA). Binding of sCD18 to endothelial cells and fibroblast-like synoviocytes (FLSs) was studied with confocal microscopy. Shedding of CD18 from peripheral blood mononuclear cells (PBMCs) was studied with flow cytometry and TRIFMA.

Results

Plasma levels of sCD18 were decreased in patients with SpA compared with healthy volunteers (P <0.001), and the lowest levels were in the HLA-B27-positive subgroup (P <0.05). In a multiple regression model, the sCD18 levels exhibited an inverse correlation with the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) (P <0.05), the level of morning stiffness (P <0.05), the Bath Ankylosing Spondilitis Metrology Index (P <0.05), the physician global assessment score (P <0.01), and the sacroiliac magnetic resonance imaging activity score (P <0.05). The mechanisms for these changes could be simulated in vitro. First, sCD18 in plasma adhered to inflammation-induced intercellular adhesion molecule 1 (ICAM-1) on endothelial cells and FLS, indicating increased consumption. Second, CD18 shedding from SpA PBMCs correlated inversely with the BASDAI (P <0.05), suggesting insufficient generation. CD18 was shed primarily from intermediate CD14++ CD16+ monocytes, supporting the view that alterations in innate immunity can regulate the inflammatory processes in SpA.

Conclusions

Taken together, the failure of patients with SpA to maintain adequate sCD18 levels may reflect insufficient CD18 shedding from monocytes to counterbalance the capture of sCD18 complexes to inflammation-induced ICAM-1. This could increase the availability of ICAM-1 molecules on the endothelium and in the synovium, facilitating leukocyte migration to the entheses and joints and aggregating disease activity.  相似文献   

7.
The heterophilic CD2-CD58 adhesion interface contains interdigitating residues that impart high specificity and rapid binding kinetics. To define the hot spot of this counter-receptor interaction, we characterized CD2 adhesion domain variants harboring a single mutation of the central Tyr86 or of each amino acid residue forming a salt link/hydrogen bond. Alanine mutations at D31, D32 and K34 on the C strand and K43 and R48 on the C' strand reduce affinity for CD58 by 47-127-fold as measured by isothermal titration calorimetry. The Y86A mutant reduces affinity by approximately 1000-fold, whereas Y86F is virtually without effect, underscoring the importance of the phenyl ring rather than the hydroxyl moiety. The CD2-CD58 crystal structure offers a detailed view of this key functional epitope: CD2 D31 and D32 orient the side-chain of CD58 K34 such that CD2 Y86 makes hydrophobic contact with the extended aliphatic component of CD58 K34 between CD2 Y86 and CD58 F46. The elucidation of this hot spot provides a new target for rational design of immunosuppressive compounds and suggests a general approach for other receptors.  相似文献   

8.
Binding of the T-cell antigen CD4 to human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 has been reported to induce conformational rearrangements in the envelope complex that facilitate recognition of the CCR5 coreceptor and consequent viral entry into cells. To better understand the mechanism of virus docking and cell fusion, we developed a three-component gp120-CD4-17b optical biosensor assay to visualize the CD4-induced conformational change of gp120 as seen through envelope binding to a neutralizing human antibody, 17b, which binds to epitopes overlapping the CCR5 binding site. The 17b Fab fragment was immobilized on a dextran sensor surface, and kinetics of gp120 binding were evaluated by both global and linear transformation analyses. Adding soluble CD4 (sCD4) increased the association rate of full-length JR-FL gp120 by 25-fold. This change is consistent with greater exposure of the 17b binding epitope on gp120 when CD4 is bound and correlates with CD4-induced conformational changes in gp120 leading to higher affinity binding to coreceptor. A smaller enhancement of 17b binding by sCD4 was observed with a mutant of gp120, DeltaJR-FL protein, which lacks V1 and V2 variable loops and N- and C-termini. Biosensor results for JR-FL and DeltaJR-FL argue that CD4-induced conformational changes in the equilibrium state of gp120 lead both to movement of V1/V2 loops and to conformational rearrangement in the gp120 core structure and that both of these lead to greater exposure of the coreceptor-binding epitope in gp120. A 17b binding enhancement effect on JR-FL also was observed with a 32-amino acid charybdotoxin miniprotein construct that contains an epitope predicted to mimic the Phe 43/Arg 59 region of CD4 and that competes with CD4 for gp120 binding. Results with this construct argue that CD4-mimicking molecules with surrogate structural elements for the Phe 43/Arg 59 components of CD4 are sufficient to elicit a similar gp120 conformational isomerization as expressed by CD4 itself.  相似文献   

9.
Electrostatic interactions are important for molecular recognition processes including Ca2+-binding and cell adhesion. To understand these processes, we have successfully introduced a novel Ca2+-binding site into the non-Ca2+-dependent cell adhesion protein CD2 using our criteria that are specifically tailored to the structural and functional properties of the protein environment and charged adhesion surface. This designed site with ligand residues exclusively from the beta-sheets selectively binds to Ca2+ and Ln3+ over other mono- and divalent cations. While Ca2+ and Ln3+ binding specifically alters the local environment of the designed Ca2+-binding site, the designed protein undergoes a significantly smaller conformation change compared with those observed in naturally occurring Ca2+-binding sites that are composed of at least part of the flexible loop and helical regions. In addition, the CD2-CD48-binding affinity increased approximately threefold after protein engineering, suggesting that the cell adhesion of CD2 can be modulated by altering the local electrostatic environment. The study provides site-specific information for regulating cell adhesion within CD2 and gives insight into the structural factors required for Ca2+-modulated biological processes.  相似文献   

10.
Quantitative analysis of binding of the bivalent recombinant soluble fusion protein, LFA-3/IgG1, shows that the fusion protein binds to human CD2+ PBLs primarily through low affinity (KD approximately 140 microM) but also through high avidity (90 nM) interactions. The concentration dependence for LFA-3/IgG1 PBL binding took the form of two overlapping bell-shaped curves separated by a clear and reproducible minimum. This was accounted for in part by minor heterogeneity in the LFA-3/IgG1 preparations, and potentially by the ability of the ligand to bind to both CD2 and Fc receptors (FcR), best evidenced by the distinct binding properties of the fusion protein to NK and T cells. The low affinity LFA-3/ IgG1 binding to T cells is consistent with binding to CD2 only, and is in agreement with the low affinity reported for interactions between soluble forms of LFA-3 and CD2 by surface plasmon resonance technology. Moreover, as the low affinity determinations are similar for CD2 on resting and activated T cells, although the CD2 molecule has been reported to be altered to reveal new epitopes upon T cell activation, the binding data argue against multiple cell activation-dependent affinity states of CD2 for LFA-3 binding. This is distinct from that observed with other adhesion partners, and suggests that the different adhesion pathways utilize distinct mechanisms to mediate cell adhesion.  相似文献   

11.
J H Wang  A Smolyar  K Tan  J H Liu  M Kim  Z Y Sun  G Wagner  E L Reinherz 《Cell》1999,97(6):791-803
Interaction between CD2 and its counterreceptor, CD58 (LFA-3), on opposing cells optimizes immune recognition, facilitating contacts between helper T lymphocytes and antigen-presenting cells as well as between cytolytic effectors and target cells. Here, we report the crystal structure of the heterophilic adhesion complex between the amino-terminal domains of human CD2 and CD58. A strikingly asymmetric, orthogonal, face-to-face interaction involving the major beta sheets of the respective immunoglobulin-like domains with poor shape complementarity is revealed. In the virtual absence of hydrophobic forces, interdigitating charged amino acid side chains form hydrogen bonds and salt links at the interface (approximately 1200 A2), imparting a high degree of specificity albeit with low affinity (K(D) of approximately microM). These features explain CD2-CD58 dynamic binding, offering insights into interactions of related immunoglobulin superfamily receptors.  相似文献   

12.
The kinetics of electron-transfer reactions involving flavodoxins from Klebsiella pneumoniae (KpFld), Azotobacter chroococcum (AcFld), Anacystis nidulans (AnFld) and Megasphaera elsdenii (MeFld), the free, MgADP-bound and MgATP-bound forms of the Fe protein component of nitrogenase from K. pneumoniae [Kp2, Kp2(MgADP)2 and Kp2(MgATP)2] and Na2S2O4 were studied by stopped-flow spectrophotometry. Kinetic evidence was obtained for the formation of binary protein complexes involving KpFldSQ (semiquinone) with either Kp2(MgADP)2 (KD = 49 microM) or Kp2(MgATP)2 (KD = 13 microM) but not with Kp2 (KD greater than 730 microM). The binding of 2MgATP or 2MgADP to Kp2 therefore not only shifts the midpoint potential (Em) of the [4Fe-4S] centre from -200 mV to -320 mV or -350 mV respectively but also changes the affinity of Kp2 for KpFldSQ. Thermodynamically unfavourable electron from Kp2(MgADP)2 and Kp2(MgATP)2 to KpFldSQ occurs within the protein complexes with k = 1.2 s-1 (delta E = -72 mV) and 0.5 s-1 (delta E = -120 mV) respectively. Although AcFldSQ is reduced by Kp2, Kp2(MgADP)2 and Kp2(MgATP)2 (k = 8 x 10(3), 2.4 x 10(3) and 9 x 10(2) M-1.s-1 respectively), protein-complex formation is weak in each case (KD greater than 700 microM). Electron transfer in the physiologically important and thermodynamically favourable direction from Kp2FldHQ (hydroquinone) and AcFldHQ to Kp2ox.(MgADP)2 (the state of Kp2 that accepts electrons from FldHQ in the catalytic cycle of nitrogenase) is rapid (k greater than 10(6) M-1.s-1). The second-order rate constants for the reduction of KpFldSQ, AcFldSQ, AnFldSQ and MeFldSQ by SO2.- (active reductant formed by the predissociation of S2O4(2-) ion) exhibited the linear free-energy relationship predicted by the Marcus theory of electron transfer.  相似文献   

13.
The functional capabilities of human peripheral blood CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones were examined. The clones were generated by culturing purified populations of CD3+CD4-CD8- and CD3+CD4+CD8+ T cells at limiting dilution (0.3 cell/well) in the presence of PHA, rIL-2, and irradiated PBMC as feeders. Twelve CD3+CD4-CD8- and 5 CD3+CD4+CD8+ clones were generated. Clonality was documented by analyzing TCR gamma- and beta-chain rearrangement patterns. All CD3+CD4-CD8- clones were stained by the TCR-delta 1 mAb that identifies a framework epitope of the TCR delta-chain, but not by mAb WT31 that identifies the TCR-alpha beta on mature T cells. In contrast, the CD3+CD4+CD8+ clones were all stained by WT31 and not by TCR-delta 1. All 17 clones were screened for various functional activities. Each secreted IL-2, IFN-gamma, and lymphotoxin/TNF-like factors when stimulated with immobilized mAb to CD3 (64.1), albeit in varying quantities. These clones secreted far less IL-2 and IFN-gamma than CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta expressing clones, but comparable amounts of lymphotoxin/TNF. All clones also functioned as MHC-unrestricted cytotoxic cells. This activity was comparable to that mediated by the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. Nine of 12 CD3+CD4-CD8- and 4 of 5 CD3+CD4+CD8+ clones were able to support B cell differentiation when activated by immobilized anti-CD3, but usually not as effectively as the CD3+CD4+CD8- or CD3+CD4-CD8+ alpha beta clones. The differences in the functional capabilities of the various clones could not be accounted for by alterations in the signaling capacity of the CD3 molecular complex as mAb to CD3 induced comparable increases in intracellular free calcium in each clone examined. When clones were stimulated with PWM, each suppressed B cell differentiation supported by mitomycin C-treated fresh CD4+ T lymphocytes. Suppression was dependent on the number of clone cells added to culture, but could be observed with as few as 12,500 cells per microtiter well. Phenotypic analysis of the clones revealed that all expressed CD29, CD11b, and the NKH1 surface Ag. These results demonstrate that the CD3+CD4-CD8- and CD3+CD4+CD8+ T cell clones exhibit many of the functional characteristics of mature T cells, although they produce IL-2 and IFN-gamma and provide help for B cell differentiation less effectively than CD3+CD4+CD8- and CD3+CD4-CD8+ alpha beta T cell clones.  相似文献   

14.
The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.  相似文献   

15.
16.
以克隆的CD40cDNA为模板,经多步PCR构建羧基端融合异亮氨酸拉链(isoleucine zipper,IZ)三聚化基序和His6标签的可溶性CD40融合蛋白(sCD40IZ)的原核表达载体,在大肠杆菌中获得高效表达,分子量为27kD,与理论大小相符,表达产物主要存在于包涵体中,对包涵体蛋白进行稀释复性和纯化得到可溶性的sCD40IZ重组蛋白,该蛋白在溶液中的分子量为91kD,表明最有可能以三聚体形式存在。活性分析显示该蛋白能够与细胞上的CD40L结合,并且其结合活性与不含IZ基序的可溶性CD40相比明显提高。这些结果表明,在可溶性CD40羧基端融合IZ基序能够促进形成三聚体,并且具有增强的配基结合活性。  相似文献   

17.
CD2 is a cell adhesion molecule found on the plasma membrane of T-lymphocytes. Its counter-receptor in rat is the structurally related CD48. This interaction is believed to contribute to the adhesion of T-cells to other cells such as cytotoxic targets and antigen presenting cells. Cell-cell adhesion involves the formation of multiple cell adhesion molecule complexes at the cell surface and if cell-cell de-adhesion is to occur, these complexes need to be disrupted. The affinities of cell adhesion molecule interactions are suggested to be relatively weak to allow this de-adhesion of cell-cell interactions. The CD2/CD48 interaction has been studied using recombinant extracellular proteins and the affinity of the interaction of soluble recombinant rat CD2–CD48 has been determined (at 37°C) using surface plasmon resonance (and shown to be weak), with the dissociation constant Kd=60–90 μm. The values determined by surface plasmon resonance results could be affected by the immobilisation of the ligand on the chip and any self-association on the chip. We used three different analytical ultracentrifuge procedures which each allowed the interaction to be studied in free solution without the need for an immobilisation medium. Both sedimentation equilibrium (using direct analysis of the concentration distribution and also modelling of molecular weight versus concentration data) and sedimentation velocity at 5°C yielded dissociation constants in the range of 20– 110 μm, supporting the surface plasmon resonance findings showing that binding between these cell adhesion molecules is relatively weak. These studies also ruled out the presence of any significant self-association of the reactants which could lead to systematic error in the surface plasmon resonance results. Accepted: 19 November 1996  相似文献   

18.

Background

Inflammation plays a key role in the pathogenesis of acute myocardial infarction (MI). However, it is unclear whether marker of immune activation will provide prognostic information in these patients. We hypothesized that circulating levels of soluble CD93 (sCD93), a soluble form of transmembrane glycoprotein CD93, is increased in acute MI patients and its level would be associated with clinical outcomes in patients with acute MI.

Methods

We measured circulating levels of sCD93 in 120 patients with acute MI (63±13 yrs, M∶F = 85∶35) and in 120 age, sex-matched control subjects. In patients with acute MI, clinical characteristics, echocardiographic and laboratory findings were assessed at the time of initial enrollment. The primary outcome was defined as all-cause and cardiovascular death.

Results

Circulating sCD93 levels were significantly higher in patients with acute MI than in control subjects (552.1±293.7 vs. 429.8±114.2 ng/mL, p<0.0001). Upon in vitro inflammatory stimulation, increased CD93 shedding was demonstrated in acute MI patients but not in control subjects. During follow up period (median 208 days, 3-1058 days), the primary outcome occurred in 18 (15%) patients (9 cardiovascular deaths). Circulating levels of sCD93 were associated with all cause (p<0.0001) and cardiovascular (p<0.0001) mortality in patients with acute MI. Multivariate Cox regression analysis revealed that initial sCD93 level was found to be an independent predictor of all cause (p = 0.002) and cardiovascular mortality (p = 0.033) when controlled for age and left ventricular ejection fraction.

Conclusions

Circulating levels of sCD93 are elevated in patients with acute MI and their levels were associated with adverse clinical outcomes.  相似文献   

19.
We have examined the differential binding of Hck and Fyn to HIV-1 Nef to elucidate the structural basis of SH3 binding affinity and specificity. Full-length Nef bound to Hck SH3 with the highest affinity reported for an SH3-mediated interaction (KD 250 nM). In contrast to Hck, affinity of the highly homologous Fyn SH3 for Nef was too weak (KD > 20 microM) to be accurately determined. We show that this distinct specificity lies in a variable loop, the 'RT loop', positioned close to conserved SH3 residues implicated in the binding of proline-rich (PxxP) motifs. A mutant Fyn SH3 with a single amino acid substitution (R96I) in its RT loop had an affinity (KD 380 nM) for Nef comparable with that of Hck SH3. Based on additional mutagenesis studies we propose that the selective recognition of Nef by Hck SH3 is determined by hydrophobic interactions involving an isoleucine residue in its RT loop. Although Nef contains a PxxP motif which is necessary for the interaction with Hck SH3, high affinity binding was only observed for intact Nef protein. The binding of a peptide containing the Nef PxxP motif showed > 300-fold weaker affinity for Hck SH3 than full-length Nef.  相似文献   

20.
This study describes quantitative investigations of the impact of single charge mutations on equilibrium binding, kinetics, and the adhesion strength of the CD2-CD58 interaction. Previously steered molecular dynamics simulations guided the selection of the charge mutants investigated, which include the CD2 mutants D31A, K41A, K51A, and K91A. This set includes mutations in which the previous cell aggregation and binding data either agreed or disagreed with the steered molecular dynamics predictions. Surface plasmon resonance measurements quantified the solution binding properties. Adhesion was quantified with the surface force apparatus, which was used previously to study the closely related CD2-CD48 interaction. The results reveal roles that these salt bridges play in equilibrium binding and adhesion. We discuss both the molecular basis of this behavior and its implications for cell adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号