首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
The benzodiazepine antagonist properties of Ro 15-1788 were evaluated in rats trained to discriminate between saline and either 1.0 mg/kg of diazepam or 10 mg/kg of pentobarbital in a two-choice discrete-trial shock avoidance procedure. When administered alone, 1.0 mg/kg of diazepam and 10 mg/kg of pentobarbital produced comparable amounts of drug-appropriate responding (> 84%), whether rats were trained to discriminate between diazepam or pentobarbital and saline. Ro 15-1788 (3–32 mg/kg, p.o.), administered 10 min before diazepam or pentobarbital, produced a dose-related blockade of the discriminative effects of diazepam in both groups of rats, but was completely ineffective in blocking the discriminative effects of pentobarbital. The dose-effect curve for the discriminative effects of diazepam was shifted to the right in a parallel fashion 3- and 13-fold by 10 and 32 mg/kg of Ro 15-1788, respectively, indicating that Ro 15-1788 acts as a surmountable, competitive antagonist of diazepam. When administered alone, Ro 15-1788 (32–100 mg/kg, p.o.) produced primarily saline-appropriate responding, although 100 mg/kg of Ro 15-1788 produced drug-appropriate responding in one out of eight rats. When administered orally 30 min after diazepam, Ro 15-1788 (32 mg/kg) completely reversed within 10 min the discriminative effects of diazepam. The blockade of diazepam's discriminative effects by 32 mg/kg of Ro 15-1788 appeared to last at least as long (approximately 2 hr) as the effects of diazepam alone.  相似文献   

2.
Twenty male Sprague-Dawley rats were trained to discriminate 3.0 mg/kg delta-9-tetrahydrocannabinol (THC) from its vehicle. Following acquisition of this discrimination animals were tested for generalization to 3.0 mg/kg diazepam. Thirteen animals showed a generalization from THC to diazepam, whereas the remaining seven animals did not. The generalization curve for diazepam was dose-dependent from 0.1 to 10.0 mg/kg in the first group; the latter group showed no generalization from THC at any dose of diazepam in this range. No differences were found between these groups in the generalization curve for THC. The benzodiazepine antagonist Ro 15-1788 (2.0 mg/kg) antagonized the generalization to diazepam in the group that discriminated diazepam as THC. In contrast, Ro 15-1788 increased THC lever responding of 10 mg/kg diazepam in the group which did not generalize from THC. Ro 15-1788 did not alter the discriminability of THC in either group. THC also showed partial generalization to pentobarbital (1 to 10 mg/kg). The generalization was again complete in one subgroup and absent in another, but there was only a 43 percent overlap between the subgroups found with testing for generalization to diazepam. The percent THC lever responding with 3.0 mg/kg pentobarbital was increased by Ro 15-1788 in the group which generalized to diazepam, but not the other group. These data suggest that the discriminative stimulus properties of THC may have some commonality with the effects of diazepam in a subpopulation of rats trained to discriminate THC. These THC-like effects of diazepam are probably mediated by benzodiazepine receptors since they are antagonized by a specific benzodiazepine receptor antagonist.  相似文献   

3.
J M Witkin  J E Barrett 《Life sciences》1985,37(17):1587-1595
The selective benzodiazepine receptor antagonist, Ro 15-1788, produced behavioral effects in pigeons at doses at least 100 times lower than those previously reported to possess intrinsic pharmacological activity in mammals. In contrast to its effects in mammalian species, in pigeons, Ro 15-1788 does not exhibit partial agonist activity. Key-peck responses of pigeons were studied under a multiple fixed-interval 3-min, fixed-interval 3-min schedule in which the first response after 3-min produced food in the presence of red or white keylights. In addition, every 30th response during the red keylight produced a brief electric shock (punishment). Under control conditions, punished responding was suppressed to 30% of unpunished response levels. Ro 15-1788 (0.01 mg/kg, i.m.) increased unpunished response rates by 33% without affecting rates of punished responding. Doses of 0.1 to 1.0 mg/kg Ro 15-1788 produced dose-related decreases in both punished and unpunished responding. As is characteristic of other benzodiazepines, midazolam (0.1 and 0.3 mg/kg, i.m.) markedly increased punished responding but had little effect on rates of unpunished responding. Ro 15-1788 antagonized the increases in punished responding and also reversed the rate-decreasing effects of higher doses of midazolam. However, the effectiveness of Ro 15-1788 as a benzodiazepine antagonist was limited by its intrinsic activity: rate-decreasing doses of Ro 15-1788 were unable to completely reverse behavioral effects of midazolam. Midazolam was an effective antagonist of the behavioral effects of Ro 15-1788 (up to 0.1 mg/kg) but midazolam did not influence the rate-decreasing effects of 1.0 mg/kg Ro 15-1788 across a 100-fold dose range. In the pigeon, the behavioral effects of relatively low doses of Ro 15-1788 (0.01-0.1 mg/kg) appear to be related to benzodiazepine receptor mechanisms, whereas other systems appear to be involved in the effects of higher doses.  相似文献   

4.
The effects of Ro 15-1788 and ethyl-beta-carboline-3-carboxylate (beta-CCE) were studied alone and in combination on the behavioral performances of squirrel monkeys. Under one procedure, performances maintained by food were suppressed by electric shock presentation (punishment or "conflict" procedure). Under a second procedure, responding was maintained either by food or electric shock delivery under a 5-min fixed-interval schedule. Doses of beta-CCE between 0.1 and 3.0 mg/kg, i.m., produced graded decreases in punished responding which were reversed by pretreatment with Ro 15-1788 (1.0 - 10.0 mg/kg, i.m.). Low doses of beta-CCE (0.03 - 0.3 mg/kg, i.m.) increased responding of monkeys maintained by shock presentation, but did not affect food-maintained responding; higher doses of beta-CCE decreased responding under both schedules. These effects of beta-CCE are opposite those produced by the benzodiazepines under this procedure. Ro 15-1788 (1.0 mg/kg i.m.) antagonized the effects of beta-CCE, producing a shift to the right in the dose-response curves. These findings provide further support for the view that beta-CCE and Ro 15-1788 produce effects mediated by the same benzodiazepine receptor recognition site.  相似文献   

5.
T Gherezghiher  H Lal 《Life sciences》1982,31(26):2955-2960
The specificity of ethyl 8-fluro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo (1,5-a) (1,4) benzodiazepine-3-carboxylate (RO 15-1788) in reversing the effectiveness of diazepam and des-methylclobazam, but not of pentobarbital, in antagonizing discriminative stimuli produced by pentylenetetrazol is described. Male hooded rats were trained to discriminate pentylenetetrazol-induced interoceptive discriminative-stimuli (IDS) in a two-lever choice paradigm on an FR10 schedule of food reinforcement. These IDS pharmacologically model verbal report of anxiogenic activity in humans. Diazepam (1,4 benzodiazepine), des-methylclobazam (1,5 benzo-diazepine), and pentobarbital antagonized pentylenetetrazol-IDS. RO 15-1788 neither generalized to nor antagonized pentylenetetrazol-IDS. It also did not cause convulsions in pentylenetetrazol sensitized rats at doses up to 40 mg/kg. It did, however, antagonize the action of diazepam (10 mg/kg) as well as that of des-methylclobazam (160 mg/kg) but not that of pentobarbital. These data suggest that RO 15-1788 is not an anxiomimetic, anxiolytic or a convulsant drug, but it is a specific and effective antagonist of anxiolytic action of benzodiazepines.  相似文献   

6.
The effects of benzodiazepine antagonist Ro 15–1788, alone or with diazepam, were studied in mice on convulsions induced by pentylenetetrazol (PTZ). We found that Ro 15–1788 (1 mg/kg) was able to antagonize the anticonvulsive effects of diazepam (1 mg/kg), but also had, with submaximal doses of PTZ (65 mg/kg), its own anti-convulsive action. At very low doses (0.1 mg/kg), it even potentiated the anticonvulsive effects of diazepam (0.05 mg/kg). This dual action provides evidence for partial agonist properties of the antagonist Ro 15–1788.  相似文献   

7.
The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50 = 2.3 +/- 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation (KD) of 1.0 +/- 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

8.
Abstract: The recently discovered benzodiazepine antagonist Ro 15-1788 was characterized in binding studies, and its potency and selectivity were determined in vivo by interaction with drug-induced changes in dopamine turnover and cerebellar cGMP level. Ro 15-1788 reduced [3H]flunitrazepam binding in the brain in vivo with a potency similar to that of diazepam and effectively inhibited [3H]diazepam binding in vitro (IC50= 2.3 ± 0.6 nmol/liter). [3H]Ro 15-1788 bound to tissue fractions of rat cerebral cortex with an apparent dissociation constant ( K D) of 1.0 ± 0.1 nmol/liter. The in vitro potency of various benzodiazepines in displacing [3H]Ro 15-1788 from its binding site was of the same rank order as found previously in [3H]diazepam binding. Autoradiograms of [3H]Ro 15-1788 binding in sections of rat cerebellum showed the same distribution of radioactivity as with [3H]flunitrazepam. The attenuating effect of diazepam on the chlorpromazine- or stress-induced elevation of homovanillic acid in rat brain was antagonized by Ro 15-1788. Among a series of compounds which either decreased or increased the rat cerebellar cGMP level, only the effect of benzodiazepine receptor ligands (diazepam, zopiclone, CL 218 872) was antagonized by Ro 15-1788. Thus, Ro 15-1788 is a selective benzodiazepine antagonist acting at the level of the benzodiazepine receptor in the central nervous system. Peripheral benzodiazepine binding sites in kidney and schistosomes were not affected by Ro 15-1788.  相似文献   

9.
R L Garrett  W M Bourn 《Life sciences》1985,37(20):1933-1939
The convulsant influence of high doses of diazepam, in the presence of the benzodiazepine receptor antagonist Ro 15-1788, was studied in rats. Animals were implanted with permanent cortical screw electrodes for EEG recording. EEG spiking and accompanying clonic activity was observed in rats receiving greater than or equal to 200 mg/kg diazepam, followed 10 minutes later by Ro 15-1788 (20 mg/kg). Pentylenetetrazole and picrotoxin seizure thresholds, measured during constant rate iv infusion, were significantly lowered by pretreatment with diazepam (250 mg/kg) and Ro 15-1788 (20 mg/kg) administered 30 and 20 minutes, respectively, before seizure threshold measurement. It is proposed that this convulsive activity of diazepam is mediated through the picrotoxinin receptor.  相似文献   

10.
Y Ida  M Tanaka  A Tsuda  S Tsujimaru  N Nagasaki 《Life sciences》1985,37(26):2491-2498
One-hour immobilization stress increased levels of the major metabolite of brain noradrenaline (NA), 3-methoxy-4-hydroxyphenyl-ethyleneglycol sulfate (MHPG-SO4), in nine brain regions of rats. Diazepam at 5 mg/kg attenuated the stress-induced increases in MHPG-SO4 levels in the hypothalamus, amygdala, hippocampus, cerebral cortex and locus coeruleus (LC) region, but not in the thalamus, pons plus medulla oblongata excluding the LC region and basal ganglia. The attenuating effects of the drug on stress-induced increases in metabolite levels in the above regions were completely antagonized by pretreatment with Ro 15-1788 at 5 or 10 mg/kg, a potent and specific benzodiazepine (BDZ) receptor antagonist. When given alone, Ro 15-1788 did not affect the increases in MHPG-SO4 levels. Behavioral changes observed during immobilization stress such as vocalization and defecation, were also attenuated by diazepam at 5 mg/kg and this action of diazepam was antagonized by Ro 15-1788 at 10 mg/kg, which by itself had no effects on these behavioral measurements. These findings suggest: (1) that diazepam acts via BDZ receptors to attenuate stress-induced increases in NA turnover selectively in the hypothalamus, amygdala, hippocampus, cerebral cortex and LC region and (2) that this decreased noradrenergic activity might be closely related to relief of distress-evoked hyperemotionality, i.e., fear and/or anxiety in animals.  相似文献   

11.
Ro 15-1788 (10 mg/kg, ip) and CGS 8216 (10 mg/kg, ip) significantly reversed the inhibitory effect of diazepam (5 mg/kg, ip) on electrically induced head-turning in rats. Neither antagonist alone, at the dose level which blocked diazepam, had any intrinsic activity in this model. The specificity of the interaction between CGS 8216 and diazepam was further confirmed by the lack of antagonism by CGS 8216 of muscimol's inhibitory effect on head-turning. These results provide additional evidence that the inhibition of head-turning induced by diazepam is mediated via the benzodiazepine binding site. Furthermore, this model provides a functional expression of the interaction between the benzodiazepine recognition site, the chloride ionophore, and the GABA receptor complex.  相似文献   

12.
A novel beta-carboline with benzodiazepine-like properties has recently been synthesized. We compared the effect of the i.v. administration of this drug, ZK 93423, with diazepam on the activity of nigral pars reticulata neurons which are known to be very sensitive to the inhibitory effect produced by GABA-mimetics and benzodiazepines. ZK 93423 (0.05-1.0 mg/kg) inhibited reticulata cells in a dose-related manner up to the cessation of their activity. Since the maximal rate-inhibition elicited by diazepam (1.0 mg/kg) was some 55% of baseline, ZK 93423 showed a much greater potency. Moreover, the firing depression by ZK 93423 was prevented and reversed by two benzodiazepine receptor antagonists: Ro15-1788 and ZK 93426. However, the dosage of Ro15-1788 required for these actions was at least five times higher than that for the blockade of the diazepam effect. The results indicate that the beta-carboline agonist ZK 93423 decreases the activity of reticulata neurons more effectively than diazepam.  相似文献   

13.
H E Shannon  S L Davis 《Life sciences》1984,34(26):2589-2596
The benzodiazepine antagonist properties of CGS8216 were evaluated in rats trained to discriminate between saline and 1.0 mg/kg of diazepam in a two-choice, stimulus-shock termination procedure. CGS8216 (0.3 to 100 mg/kg) administered alone, either s.c., p.o. or i.p., occasioned only saline-appropriate responding. When administered concomitantly with a constant 1.0 mg/kg dose of diazepam, CGS8216 produced dose-related decreases in drug-appropriate responding. CGS8216 was most potent by the i.p. route, and approximately tenfold less potent by the oral route. CGS8216 was dermatotoxic after s.c. administration. CGS8216 i.p. had a long duration of action. A dose of 30 mg/kg completely antagonized the discriminative effects of the 1.0 mg/kg training dose of diazepam when the antagonist was administered 8 hr before the start of the test session. In order to determine the type of antagonism by CGS8216, the dose-effect curve for diazepam was redetermined in the presence of varying doses of CGS8216 (0.3 to 3.0 mg/kg, i.p.). CGS8216 produced a dose-related rightward shift in the diazepam dose-effect curve, but also decreased the slope and appeared to decrease the maximal effect. These results are consistent with the interpretation that CGS8216 antagonizes diazepam in a noncompetitive manner. It may do so because either it interacts with a subpopulation of benzodiazepine receptors, it functions as a pseudo-irreversible antagonist due to its high affinity, or because it is an antagonist with agonist properties.  相似文献   

14.
M Schwarz  L Turski  K H Sontag 《Life sciences》1984,35(14):1445-1451
Diazepam (0.4-4 mg/kg i.p.) reduced the spontaneous tonic activity in the electromyogram (EMG) recorded from the gastrocnemius-soleus muscle of spastic mutant Han-Wistar rats in a dose-dependent manner. The muscle relaxant effect of diazepam was antagonized by the benzodiazepine antagonists Ro 15-1788 (5 mg/kg i.p.), beta-CCM (2 mg/kg i.p.) and CGS 8216 (5 mg/kg i.p.), but not by EMD 41717 (50 mg/kg i.p.). These results add further support to the hypothesis that Ro 15-1788, CGS 8216 and beta-CCM do antagonize all pharmacological effects of benzodiazepines while EMD 41717 displays more selectivity in antagonizing the different actions of benzodiazepines.  相似文献   

15.
R Young  R A Glennon  W L Dewey 《Life sciences》1984,34(20):1977-1983
Rats trained to discriminate 3.0 mg/kg of diazepam from saline in a two-lever operant choice task were challenged with the racemic mixture and optical isomers of 3- methylflunitrazepam or pentobarbital. Generalization of the diazepam stimulus was found to occur to (+/-)- and S(+)-3- methylflunitrazepam , with the S(+)-isomer being twice as active as the racemate. Diazepam stimulus generalization also occurred to (+/-)-, S(-)-, and R(+)-pentobarbital, with the S(-)-isomer being approximately twice as active as (+/-)- or R(+)-pentobarbital. In addition, the administration of the imidazobenzodiazepine Ro 15-1788, a selective benzodiazepine receptor antagonist, prior to benzodiazepine or barbiturate administration competitively antagonized the discriminative stimulus properties of the benzodiazepines but was completely ineffective in attenuating the discriminative stimulus effect of the barbiturates. The results of this study suggest that benzodiazepines exert their stimulus effects by a stereoselective interaction at a benzodiazepine receptor and that stereochemical factors are important in evaluating the stimulus properties of benzodiazepines or barbiturates.  相似文献   

16.
Effects of pentobarbital, chlordiazepoxide and ethanol were studied alone and in combination with thyrotropin-releasing hormone (TRH), IM, on punished behavior. Key-peck responses of pigeons were maintained by food presentation under a fixed-interval 3-min schedule in which every 30th response produced shock. Moderate doses of pentobarbital, chlordiazepoxide and ethanol increased punished responding to 150-200% of control values while the higher doses of these drugs almost completely eliminated responding. TRH (0.01-1 mg/kg) had little effect on punished responding and 3 mg/kg produced 50% decreases. Although the lower doses of TRH were without effect when given alone, doses of 0.03 mg/kg and greater markedly potentiated the rate-increasing effects of pentobarbital, chlordiazepoxide and ethanol. Increases in punished responding of 350% were obtained with combinations of TRH and these drugs. The rate-decreasing effects of the sedative-hypnotic and anxiolytic compounds were not reversed by TRH. Potentiation of the behavioral effects of sedative-hypnotic and anxiolytic drugs by TRH suggests that TRH may play an important role in modulating the behavioral effects of these compounds and that combinations of neuroactive peptides with certain psychotherapeutic agents may be of some therapeutic value.  相似文献   

17.
The discriminative effects of cyclorphan were studied in pigeons trained to discriminate 0.32 mg/kg ethylketazocine, 1.8 mg/kg cyclazocine, or 32 mg/kg naltrexone from saline. A fourth group of pigeons was administered 100 mg/kg/day morphine and trained to discriminate 0.1 mg/kg naltrexone from saline. Cyclorphan produced dose-related ethylketazocine-appropriate responding that reached a maximum of 83% of the total session responses at 0.3 mg/kg. Higher cyclorphan doses produced less ethylketazocine-appropriate responding. In pigeons trained to discriminate cyclazocine from saline, maximum drug-appropriate responding of greater than 90% occured at 5.6–10.0 mg/kg cyclorphan. In narcotic-naive pigeons trained to discriminate 32 mg/kg naltrexone from saline, cyclorphan produced a maximum of less than 50% drug-appropriate responding. In contrast, in pigeons chronically administered morphine and trained to discriminate 0.1 mg/kg naltrexone from saline, 1.0 mg/kg cyclorphan resulted in 100% drug-appropriate responding. In pigeons responding under a multiple fixed-interval, fixed-ratio schedule of food delivery, cyclorphan produced a complete dose-related reversal of the rate-decreasing effects of 10 mg/kg morphine, the maximally effective antagonist doses being 1.0–3.2 mg/kg. Higher cyclorphan doses (10 mg/kg) resulted in response rate decreases that were not reversed by naloxone (1 mg/kg). Thus, cyclorphan has discriminative effects that are similar to those of both ethylketazocine and, at 20-fold higher doses, cyclazocine. In addition, in morphine-treated pigeons, cyclorphan, across the same range of doses that produce ethylketazocine-appropriate responding, has discriminative effects that are similar to those of naltrexone, an effect that is probably related to the antagonist action of the drug.  相似文献   

18.
The binding of the triazolopyridazine CL 218,872 to central benzodiazepine receptors identified with [3H]Ro 15-1788 was studied in extensively washed homogenates of rat spinal cord and cerebral cortex. CL 218,872 displacement curves were shallow in both spinal cord (nH = 0.67) and cortex (nH = 0.54), suggesting the presence of type 1 and type 2 benzodiazepine receptors in both tissues. CL 218,872 had lower affinity in spinal cord (IC50 = 825 nM) than cortex (IC50 = 152 nM), possibly reflecting the presence of fewer type 1 sites in the cord. Activating gamma-aminobutyric acid (GABA) receptors with 10 microM muscimol resulted in a two- to threefold increase in CL 218,872 affinity in both tissues without changes in the displacement curve slope. This indicates that GABA enhances CL 218,872 affinity for both type 1 and type 2 sites in both spinal cord and cerebral cortex.  相似文献   

19.
The effects of various doses of diazepam and the new central benzodiazepine antagonist Ro-15-1788 were investigated in fully amygdaloid kindled rats. Diazepam had a pronounced dose-dependent anticonvulsant effect in this model. Ro-15-1788 dose-dependently reduced the behavioral ranks of the elicited kindled seizures to a maximum of 60% of control without consistently modifying the afterdischarge duration. No prestimulation convulsant effects were seen with Ro-15-1788. When 2 mg/kg i.p. of Ro-15-1788 was given after various doses of diazepam, the prestimulation sedation and ataxia anticonvulsant effects of diazepam (0.5-2.0 mg/kg) were attenuated by treatment with 2 mg/kg dose of Ro-15-1788. At the low dose of diazepam (0.25 mg/kg), increased reduction of behavioral rank and after discharge duration was seen after the 2 mg/kg dose of Ro-15-1788. Thus, Ro-15-1788 appears not to have proconvulsant properties in the kindled amygdaloid seizure model. Further, Ro-15-1788 appears to have some anticonvulsant properties of its own. Mixed agonist and antagonist effects were seen with Ro-15-1788 when given after various doses of diazepam in this model.  相似文献   

20.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号