首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Park H  Seok C 《Proteins》2012,80(8):1974-1986
Contemporary template-based modeling techniques allow applications of modeling methods to vast biological problems. However, they tend to fail to provide accurate structures for less-conserved local regions in sequence even when the overall structure can be modeled reliably. We call these regions unreliable local regions (ULRs). Accurate modeling of ULRs is of enormous value because they are frequently involved in functional specificity. In this article, we introduce a new method for modeling ULRs in template-based models by employing a sophisticated loop modeling technique. Combined with our previous study on protein termini, the method is applicable to refinement of both loop and terminus ULRs. A large-scale test carried out in a blind fashion in CASP9 (the 9th Critical Assessment of techniques for protein structure prediction) shows that ULR structures are improved over initial template-based models by refinement in more than 70% of the successfully detected ULRs. It is also notable that successful modeling of several long ULRs over 12 residues is achieved. Overall, the current results show that a careful application of loop and terminus modeling can be a promising tool for model refinement in template-based modeling.  相似文献   

2.
    
Rohl CA  Strauss CE  Chivian D  Baker D 《Proteins》2004,55(3):656-677
A major limitation of current comparative modeling methods is the accuracy with which regions that are structurally divergent from homologues of known structure can be modeled. Because structural differences between homologous proteins are responsible for variations in protein function and specificity, the ability to model these differences has important functional consequences. Although existing methods can provide reasonably accurate models of short loop regions, modeling longer structurally divergent regions is an unsolved problem. Here we describe a method based on the de novo structure prediction algorithm, Rosetta, for predicting conformations of structurally divergent regions in comparative models. Initial conformations for short segments are selected from the protein structure database, whereas longer segments are built up by using three- and nine-residue fragments drawn from the database and combined by using the Rosetta algorithm. A gap closure term in the potential in combination with modified Newton's method for gradient descent minimization is used to ensure continuity of the peptide backbone. Conformations of variable regions are refined in the context of a fixed template structure using Monte Carlo minimization together with rapid repacking of side-chains to iteratively optimize backbone torsion angles and side-chain rotamers. For short loops, mean accuracies of 0.69, 1.45, and 3.62 A are obtained for 4, 8, and 12 residue loops, respectively. In addition, the method can provide reasonable models of conformations of longer protein segments: predicted conformations of 3A root-mean-square deviation or better were obtained for 5 of 10 examples of segments ranging from 13 to 34 residues. In combination with a sequence alignment algorithm, this method generates complete, ungapped models of protein structures, including regions both similar to and divergent from a homologous structure. This combined method was used to make predictions for 28 protein domains in the Critical Assessment of Protein Structure 4 (CASP 4) and 59 domains in CASP 5, where the method ranked highly among comparative modeling and fold recognition methods. Model accuracy in these blind predictions is dominated by alignment quality, but in the context of accurate alignments, long protein segments can be accurately modeled. Notably, the method correctly predicted the local structure of a 39-residue insertion into a TIM barrel in CASP 5 target T0186.  相似文献   

3.
    
Protein model refinement has been an essential part of successful protein structure prediction. Molecular dynamics simulation-based refinement methods have shown consistent improvement of protein models. There had been progress in the extent of refinement for a few years since the idea of ensemble averaging of sampled conformations emerged. There was little progress in CASP12 because conformational sampling was not sufficiently diverse due to harmonic restraints. During CASP13, a new refinement method was tested that achieved significant improvements over CASP12. The new method intended to address previous bottlenecks in the refinement problem by introducing new features. Flat-bottom harmonic restraints replaced harmonic restraints, sampling was performed iteratively, and a new scoring function and selection criteria were used. The new protocol expanded conformational sampling at reduced computational costs. In addition to overall improvements, some models were refined significantly to near-experimental accuracy.  相似文献   

4.
    
We present the assembly category assessment in the 13th edition of the CASP community-wide experiment. For the second time, protein assemblies constitute an independent assessment category. Compared to the last edition we see a clear uptake in participation, more oligomeric targets released, and consistent, albeit modest, improvement of the predictions quality. Looking at the tertiary structure predictions, we observe that ignoring the oligomeric state of the targets hinders modeling success. We also note that some contact prediction groups successfully predicted homomeric interfacial contacts, though it appears that these predictions were not used for assembly modeling. Homology modeling with sizeable human intervention appears to form the basis of the assembly prediction techniques in this round of CASP. Future developments should see more integrated approaches where subunits are modeled in the context of the assemblies they form.  相似文献   

5.
6.
    
The accuracy of sequence-based tertiary contact predictions was assessed in a blind prediction experiment at the CASP13 meeting. After 4 years of significant improvements in prediction accuracy, another dramatic advance has taken place since CASP12 was held 2 years ago. The precision of predicting the top L/5 contacts in the free modeling category, where L is the corresponding length of the protein in residues, has exceeded 70%. As a comparison, the best-performing group at CASP12 with a 47% precision would have finished below the top 1/3 of the CASP13 groups. Extensively trained deep neural network approaches dominate the top performing algorithms, which appear to efficiently integrate information on coevolving residues and interacting fragments or possibly utilize memories of sequence similarities and sometimes can deliver accurate results even in the absence of virtually any target specific evolutionary information. If the current performance is evaluated by F-score on L contacts, it stands around 24% right now, which, despite the tremendous impact and advance in improving its utility for structure modeling, also suggests that there is much room left for further improvement.  相似文献   

7.
    
Lim Heo  Michael Feig 《Proteins》2020,88(5):637-642
Protein structure prediction has long been available as an alternative to experimental structure determination, especially via homology modeling based on templates from related sequences. Recently, models based on distance restraints from coevolutionary analysis via machine learning to have significantly expanded the ability to predict structures for sequences without templates. One such method, AlphaFold, also performs well on sequences where templates are available but without using such information directly. Here we show that combining machine-learning based models from AlphaFold with state-of-the-art physics-based refinement via molecular dynamics simulations further improves predictions to outperform any other prediction method tested during the latest round of CASP. The resulting models have highly accurate global and local structures, including high accuracy at functionally important interface residues, and they are highly suitable as initial models for crystal structure determination via molecular replacement.  相似文献   

8.
    
Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.  相似文献   

9.
    
In recent years in silico protein structure prediction reached a level where fully automated servers can generate large pools of near‐native structures. However, the identification and further refinement of the best structures from the pool of models remain problematic. To address these issues, we have developed (i) a target‐specific selective refinement (SR) protocol; and (ii) molecular dynamics (MD) simulation based ranking (SMDR) method. In SR the all‐atom refinement of structures is accomplished via the Rosetta Relax protocol, subject to specific constraints determined by the size and complexity of the target. The best‐refined models are selected with SMDR by testing their relative stability against gradual heating through all‐atom MD simulations. Through extensive testing we have found that Mufold‐MD, our fully automated protein structure prediction server updated with the SR and SMDR modules consistently outperformed its previous versions. Proteins 2015; 83:1823–1835. © 2015 Wiley Periodicals, Inc.  相似文献   

10.
    
Protein structure refinement aims to perform a set of operations given a predicted structure to improve model quality and accuracy with respect to the native in a blind fashion. Despite the numerous computational approaches to the protein refinement problem reported in the previous three CASPs, an overwhelming majority of methods degrade models rather than improve them. We initially developed a method tested using blind predictions during CASP10 which was officially ranked in 5th place among all methods in the refinement category. Here, we present Princeton_TIGRESS, which when benchmarked on all CASP 7,8,9, and 10 refinement targets, simultaneously increased GDT_TS 76% of the time with an average improvement of 0.83 GDT_TS points per structure. The method was additionally benchmarked on models produced by top performing three‐dimensional structure prediction servers during CASP10. The robustness of the Princeton_TIGRESS protocol was also tested for different random seeds. We make the Princeton_TIGRESS refinement protocol freely available as a web server at http://atlas.princeton.edu/refinement . Using this protocol, one can consistently refine a prediction to help bridge the gap between a predicted structure and the actual native structure. Proteins 2014; 82:794–814. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
    
Protein structure refinement is the challenging problem of operating on any protein structure prediction to improve its accuracy with respect to the native structure in a blind fashion. Although many approaches have been developed and tested during the last four CASP experiments, a majority of the methods continue to degrade models rather than improve them. Princeton_TIGRESS (Khoury et al., Proteins 2014;82:794–814) was developed previously and utilizes separate sampling and selection stages involving Monte Carlo and molecular dynamics simulations and classification using an SVM predictor. The initial implementation was shown to consistently refine protein structures 76% of the time in our own internal benchmarking on CASP 7‐10 targets. In this work, we improved the sampling and selection stages and tested the method in blind predictions during CASP11. We added a decomposition of physics‐based and hybrid energy functions, as well as a coordinate‐free representation of the protein structure through distance‐binning distances to capture fine‐grained movements. We performed parameter estimation to optimize the adjustable SVM parameters to maximize precision while balancing sensitivity and specificity across all cross‐validated data sets, finding enrichment in our ability to select models from the populations of similar decoys generated for targets in CASPs 7‐10. The MD stage was enhanced such that larger structures could be further refined. Among refinement methods that are currently implemented as web‐servers, Princeton_TIGRESS 2.0 demonstrated the most consistent and most substantial net refinement in blind predictions during CASP11. The enhanced refinement protocol Princeton_TIGRESS 2.0 is freely available as a web server at http://atlas.engr.tamu.edu/refinement/ . Proteins 2017; 85:1078–1098. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
    
Kifer I  Nussinov R  Wolfson HJ 《Proteins》2008,73(2):380-394
How a one-dimensional protein sequence folds into a specific 3D structure remains a difficult challenge in structural biology. Many computational methods have been developed in an attempt to predict the tertiary structure of the protein; most of these employ approaches that are based on the accumulated knowledge of solved protein structures. Here we introduce a novel and fully automated approach for predicting the 3D structure of a protein that is based on the well accepted notion that protein folding is a hierarchical process. Our algorithm follows the hierarchical model by employing two stages: the first aims to find a match between the sequences of short independently-folding structural entities and parts of the target sequence and assigns the respective structures. The second assembles these local structural parts into a complete 3D structure, allowing for long-range interactions between them. We present the results of applying our method to a subset of the targets from CASP6 and CASP7. Our results indicate that for targets with a significant sequence similarity to known structures we are often able to provide predictions that are better than those achieved by two leading servers, and that the most significant improvements in comparison with these methods occur in regions of a gapped structural alignment between the native structure and the closest available structural template. We conclude that in addition to performing well for targets with known homologous structures, our method shows great promise for addressing the more general category of comparative modeling targets, which is our next goal.  相似文献   

13.
    
Performance in the model refinement category of the 13th round of Critical Assessment of Structure Prediction (CASP13) is assessed, showing that some groups consistently improve most starting models whereas the majority of participants continue to degrade the starting model on average. Using the ranking formula developed for CASP12, it is shown that only 7 of 32 groups perform better than a “naïve predictor” who just submits the starting model. Common features in their approaches include a dependence on physics-based force fields to judge alternative conformations and the use of molecular dynamics to relax models to local minima, usually with some restraints to prevent excessively large movements. In addition to the traditional CASP metrics that focus largely on the quality of the overall fold, alternative metrics are evaluated, including comparisons of the main-chain and side-chain torsion angles, and the utility of the models for solving crystal structures by the molecular replacement method. It is proposed that the introduction of these metrics, as well as consideration of the accuracy of coordinate error estimates, would improve the discrimination between good and very good models.  相似文献   

14.
    
  1. Download : Download high-res image (153KB)
  2. Download : Download full-size image
  相似文献   

15.
  总被引:1,自引:0,他引:1  
We designed a simple position-specific hidden Markov model to predict protein structure. Our new framework naturally repeats itself to converge to a final target, conglomerating fragment assembly, clustering, target selection, refinement, and consensus, all in one process. Our initial implementation of this theory converges to within 6 A of the native structures for 100% of decoys on all six standard benchmark proteins used in ROSETTA (discussed by Simons and colleagues in a recent paper), which achieved only 14%-94% for the same data. The qualities of the best decoys and the final decoys our theory converges to are also notably better.  相似文献   

16.
    
Protein loops are often involved in important biological functions such as molecular recognition, signal transduction, or enzymatic action. The three dimensional structures of loops can provide essential information for understanding molecular mechanisms behind protein functions. In this article, we develop a novel method for protein loop modeling, where the loop conformations are generated by fragment assembly and analytical loop closure. The fragment assembly method reduces the conformational space drastically, and the analytical loop closure method finds the geometrically consistent loop conformations efficiently. We also derive an analytic formula for the gradient of any analytical function of dihedral angles in the space of closed loops. The gradient can be used to optimize various restraints derived from experiments or databases, for example restraints for preferential interactions between specific residues or for preferred backbone angles. We demonstrate that the current loop modeling method outperforms previous methods that employ residue‐based torsion angle maps or different loop closure strategies when tested on two sets of loop targets of lengths ranging from 4 to 12. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
    
The use of classical molecular dynamics simulations, performed in explicit water, for the refinement of structural models of proteins generated ab initio or based on homology has been investigated. The study involved a test set of 15 proteins that were previously used by Baker and coworkers to assess the efficiency of the ROSETTA method for ab initio protein structure prediction. For each protein, four models generated using the ROSETTA procedure were simulated for periods of between 5 and 400 nsec in explicit solvent, under identical conditions. In addition, the experimentally determined structure and the experimentally derived structure in which the side chains of all residues had been deleted and then regenerated using the WHATIF program were simulated and used as controls. A significant improvement in the deviation of the model structures from the experimentally determined structures was observed in several cases. In addition, it was found that in certain cases in which the experimental structure deviated rapidly from the initial structure in the simulations, indicating internal strain, the structures were more stable after regenerating the side-chain positions. Overall, the results indicate that molecular dynamics simulations on a tens to hundreds of nanoseconds time scale are useful for the refinement of homology or ab initio models of small to medium-size proteins.  相似文献   

18.
    
DeWeese-Scott C  Moult J 《Proteins》2004,55(4):942-961
Experimental protein structures often provide extensive insight into the mode and specificity of small molecule binding, and this information is useful for understanding protein function and for the design of drugs. We have performed an analysis of the reliability with which ligand-binding information can be deduced from computer model structures, as opposed to experimentally derived ones. Models produced as part of the CASP experiments are used. The accuracy of contacts between protein model atoms and experimentally determined ligand atom positions is the main criterion. Only comparative models are included (i.e., models based on a sequence relationship between the protein of interest and a known structure). We find that, as expected, contact errors increase with decreasing sequence identity used as a basis for modeling. Analysis of the causes of errors shows that sequence alignment errors between model and experimental template have the most deleterious effect. In general, good, but not perfect, insight into ligand binding can be obtained from models based on a sequence relationship, providing there are no alignment errors in the model. The results support a structural genomics strategy based on experimental sampling of structure space so that all protein domains can be modeled on the basis of 30% or higher sequence identity.  相似文献   

19.
    
De novo structure prediction can be defined as a search in conformational space under the guidance of an energy function. The most successful de novo structure prediction methods, such as Rosetta, assemble the fragments from known structures to reduce the search space. Therefore, the fragment quality is an important factor in structure prediction. In our study, a method is proposed to generate a new set of fragments from the lowest energy de novo models. These fragments were subsequently used to predict the next‐round of models. In a benchmark of 30 proteins, the new set of fragments showed better performance when used to predict de novo structures. The lowest energy model predicted using our method was closer to native structure than Rosetta for 22 proteins. Following a similar trend, the best model among top five lowest energy models predicted using our method was closer to native structure than Rosetta for 20 proteins. In addition, our experiment showed that the C‐alpha root mean square deviation was improved from 5.99 to 5.03 Å on average compared to Rosetta when the lowest energy models were picked as the best predicted models. Proteins 2014; 82:2240–2252. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
Fujitsuka Y  Chikenji G  Takada S 《Proteins》2006,62(2):381-398
Predicting protein tertiary structures by in silico folding is still very difficult for proteins that have new folds. Here, we developed a coarse-grained energy function, SimFold, for de novo structure prediction, performed a benchmark test of prediction with fragment assembly simulations for 38 test proteins, and proposed consensus prediction with Rosetta. The SimFold energy consists of many terms that take into account solvent-induced effects on the basis of physicochemical consideration. In the benchmark test, SimFold succeeded in predicting native structures within 6.5 A for 12 of 38 proteins; this success rate was the same as that by the publicly available version of Rosetta (ab initio version 1.2) run with default parameters. We investigated which energy terms in SimFold contribute to structure prediction performance, finding that the hydrophobic interaction is the most crucial for the prediction, whereas other sequence-specific terms have weak but positive roles. In the benchmark, well-predicted proteins by SimFold and by Rosetta were not the same for 5 of 12 proteins, which led us to introduce consensus prediction. With combined decoys, we succeeded in prediction for 16 proteins, four more than SimFold or Rosetta separately. For each of 38 proteins, structural ensembles generated by SimFold and by Rosetta were qualitatively compared by mapping sampled structural space onto two dimensions. For proteins of which one of the two methods succeeded and the other failed in prediction, the former had a less scattered ensemble located around the native. For proteins of which both methods succeeded in prediction, often two ensembles were mixed up.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号