首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One hundred thirteen HSV-specific CD4+ T cell clones were established from the PBL of a healthy person and their functional heterogeneity was investigated. All clones proliferated in response to stimulation with HSV in the presence of autologous APC. Among those, 48 clones showed cytotoxic activity to HSV-infected autologous EBV-transformed lymphoblastoid cell line, but not to HSV-infected autologous fibroblasts, HSV-infected allogeneic cells, or K562 cells (group 1). Five clones showed cytotoxicity against HSV-infected autologous cells as well as HSV-infected allogeneic cells and K562 cells (group 2). The cytotoxicity of these clones was found to be mediated by the direct killing but not by the "innocent bystander" killing of target cells. Sixty clones showed no cytotoxic activity, however, among these, 23 revealed HLA-unrestricted and nonspecific cytotoxicity in the presence of PHA in culture (group 3), and the remaining 37 did not show any cytotoxic activity even in the presence of PHA (group 4). The cytotoxic patterns of these clones did not change in activated and resting phases, suggesting that the difference in cytotoxic ability does not depend on cell cycles. The cytotoxic activity of group 1 was inhibited by addition of anti-HLA-DR or anti-CD3 mAb to the culture, whereas these mAb had no effect on the cytotoxicity of group 2. All four groups of clones had helper activity for anti-HSV antibody production by autologous B cells. Moreover it was found that all groups of clones simultaneously produced IL-2, IL-4, and IFN-gamma after culture with APC followed by HSV Ag stimulation. The surface phenotype of all clones was uniformly CD2+, CD3+, CD4+, CD8-, CD29+, CD45RA-, but expression of Leu 8 was varied. These data therefore indicate that HSV-specific human CD4+ T cells are classified into at least four groups according to the presence and specificity of cytotoxicity, i.e., Th cells with HSV-specific and HLA-class II-restricted cytotoxicity, Th cells with HLA-unrestricted and nonspecific cytotoxicity, Th cells with lectin-dependent cytotoxicity, and Th cells without cytotoxic activity. The present finding of functional heterogeneity among virus-specific human CD4+ T cells might shed light on the pathogenesis of CD4+ T cell immunodeficiency, such as human retrovirus infections.  相似文献   

2.
Three HSV type 1 (HSV-1) and HSV type 2 (HSV-2) common ("HSV-type common") and three HSV-1 specific CTL clones, which were CD3+, CD4+, CD8-, 4B4+, and 2H4-, were established. These clones proliferated in response to stimulation with HSV in the presence of autologous APC. The HSV type specificity of the proliferative response was identical with that of the cytotoxic activity of the clones. The cytotoxic activity and the proliferative response were both inhibited by addition of anti-HLA-DR mAb to the culture. After culture of these CTL clones with autologous B cells and macrophages followed by HSV Ag stimulation, anti-HSV antibody was detected in the culture supernatant. The HSV type specificity of the helper function for antibody production was identical with that of the cytotoxicity, i.e., HSV-type common clones, upon stimulation with either HSV-1, or HSV-2, and HSV-1-specific clones, upon stimulation with HSV-1 but not with HSV-2, showed helper activity for anti-HSV antibody production by autologous B cells. Moreover, it was found that these clones produced humoral factors which help autologous B cells to produce antibody. The helper factors were produced by T cell clones in an HSV-type-specific manner. These data suggest that some CD4+ T cells can simultaneously manifest both specific cytotoxicity and helper activity for Ag-specific antibody production by B cells, and that these multifunctional T cells might play an important role in protection against viral infection.  相似文献   

3.
In the last few years it has become possible in the liver to isolate lymphocytes from inflammatory infiltrates and to culture them in vitro. Most of the lymphocyte clones obtained are CD 8 + cytotoxic cells, but interactions between these lymphocytes and hepatocytes in primary culture have not been analysed previously. In this study, cloned human T lymphocytes from liver biopsies and from the peripheral blood of patients with chronic hepatitis B or primary biliary cirrhosis, after phenotypical and functional characterization into CD 8+ or CD 4+ cytotoxic lymphocytes, were activated in an antigen-independent fashion by adding either anti CD 3 or anti CD 2/R-3 monoclonal antibodies to the cell suspension. The activated cells were then coincubated with rat hepatocytes in primary culture. The killing capacity of the activated lymphocytes was monitored by light and electron microscopy and by measurement of lactic dehydrogenase (LDH)-release into the culture medium. It was found that cytotoxic CD 8 +, but not CD 4 + helper lymphocytes very effectively killed hepatocytes. The killing effect was dependent on the time of cocultivation and on effector-target (E/T) ratio. Total breakdown of the hepatocyte monolayer was achieved after 10–20 h coculture and at an E/T ratio of 10 to 1. As LDH-release in the culture medium reached about 80% of the total LDH-content, most of the hepatocytes were lysed by activated lymphocytes. Cytotoxic activity of clones obtained from different biopsies was comparable with that of clones from peripheral blood. Hepatocytes in primary culture seem to be very sensitive to the killing capacity of activated cytotoxic lymphocytes. Supported by DFG grants Ra 362/5-2 and SFB 311 A7 (G.R.) and A5 (H.P.D.)  相似文献   

4.
Human cytotoxic T lymphocyte (CTL) clones directed against herpes simplex virus (HSV)-infected cells were generated after stimulation of peripheral blood lymphocytes (PBL) with HSV type 1 (HSV-1) and HSV type 2 (HSV-2). These CTL clones were studied with regard to HSV type specificity and with regard to whether they also express helper cell activity. Some clones, generated after stimulation with HSV-1, were cytotoxic for autologous cells infected with either HSV-1 or HSV-2 ("HSV type common clones"), whereas other clones lysed HSV-1-infected cells only ("type-specific clones"). Similarly, after HSV-2 stimulation, both HSV-2 specific and HSV type common clones were obtained, indicating the heterogeneity of human cytotoxic T cells to HSV. All CTL clones tested were found to be bifunctional in that they also proliferated in response to stimulation with HSV. The HSV type specificity of the proliferative response was identical to that of the cytotoxic activity of the clones. An HSV type common clone, when stimulated with either HSV-1 or HSV-2, and an HSV-1 specific clone, when stimulated with HSV-1 but not with HSV-2, produced a factor, presumably interleukin 2 (IL 2), which induced proliferation of CTLL, an IL 2-dependent T cell line, providing evidence that our HSV-directed CTL clones also express helper cell activity. CTL clones that we previously reported were restricted in cytotoxic activity by HLA class II DR-1 or MB-1 antigens were found, in this study, to be restricted in proliferative response to HSV by these same HLA antigens. These results suggest that our bifunctional T cell clones directed against HSV may recognize the same viral antigenic determinants and the same HLA antigens for both cytotoxic and virus-induced proliferative activities. This is the first demonstration of human HSV type specific and HSV type common T cell clones and HSV specific T cell clones with both cytotoxic and helper cell activities.  相似文献   

5.
Culture of human thymocytes in interleukin 2 (IL 2) results in the generation of cytotoxic T lymphocytes (CTL) that kill tumor cell targets without major histocompatibility complex (MHC) restriction. Thymic non-MHC restricted CTL expressed Leu-19 antigen, but were generated from thymic precursor cells that lacked expression of Leu-19. In contrast, short term culture in Il 2 of peripheral blood lymphocytes depleted of Leu-19+ lymphocytes did not result in the generation of cytotoxic activity. IL 2 was necessary and sufficient for the generation of cytotoxic thymocytes and induction of Leu-19 antigen expression. Thymic non-MHC restricted CTL were generated from precursor cells expressing CD1, an antigen present on the majority of thymocytes. Furthermore, cytotoxic activity was detected in IL 2 cultured thymocyte populations with an "immature" antigenic phenotype, i.e. CD1+ and CD4+, CD8+. Upon subsequent culture, thymic non-MHC restricted CTL lost expression of CD1, and developed an antigenic phenotype similar to peripheral blood non-MHC-restricted CTL, suggesting that peripheral non-MHC-restricted CTL may originate from these thymic precursors.  相似文献   

6.
Granular lymphocytes co-expressing the Leu-7 (NK-related) and CD4 (T helper cell) markers are selectively localized in the germinal centers of lymphoid tissues. Leu-7+ cells (greater than 98% of which co-expressed CD4) were isolated from inflammatory tonsils and were cloned by the limiting dilution technique. Clones were analyzed for their phenotypic and functional characteristics. CD4+-Leu-7+ cell-derived clones retained their CD3 and CD4 surface antigens, lost the Leu-7 marker, and acquired HLA-DR determinants. In comparison with clones derived from peripheral blood or tonsil CD4+ cells, CD4+-Leu-7+ tonsil cell-derived clones showed similar low frequencies of cytotoxic precursors. In contrast, the frequency of interleukin 2 (IL 2) and B cell growth factor producing clones was much lower for tonsil CD4+-Leu-7+ cells than for CD4+ blood or tonsil progenitors. We conclude that germinal center CD4+-Leu-7+ cells are a subset of T cells unable to produce IL 2 in response to phytohemagglutinin or anti-CD3 stimulation, which is effective on the majority of T helper cells.  相似文献   

7.
We showed previously that contact of human peripheral blood lymphocytes with glutaraldehyde-fixed Salmonella bacteria augmented their cytotoxic capacity against NK-sensitive targets. We have now analyzed the characteristics of the activation and also identified the subsets of lymphocytes responding to bacterial contact. Blocking of protein synthesis with cyclohexamide totally abrogated bacterial induction of activated killing (AK), whereas inhibition of DNA synthesis with mitomycin C did not significantly affect the capacity of lymphocytes to respond to bacterial contact. Both the induction and the effector phase of AK were radioresistant. The AK cells exhibited efficient lytic activity, comparable to that induced by recombinant IL 2 (rIL 2), against NK-resistant targets (including both hematopoietic and solid tumor cell lines). All inducible cytotoxic activity was contained within the subset of lymphocytes expressing Leu-19 (NKH-1) antigen. Leu-19- lymphocytes exhibited no significant NK activity and could not be further stimulated by bacterial contact, rIL 2, or IFN-alpha. Within the Leu-19+ lymphocyte subset, two distinct cell types were present; CD3-, Leu-19+ NK cells and CD3+. Leu-19+ T cells. The CD3+, Leu-19+, T cells mediated low levels of non-MHC-restricted cytotoxicity against K562, but did not respond to bacterial contact, even though rIL 2 could augment their lytic activity slightly. However, the cytotoxic activity of CD3-, Leu-19+ NK cells was significantly augmented by bacterial contact. Within the CD3-, Leu-19+ NK cell population both CD16+ and CD16- cells responded to bacterial activation. The CD3-, CD16-, Leu-19+ cells constituted 1 to 4% of the Percoll-fractionated low buoyant density lymphocytes and accounted for the activation seen within the CD16- lymphocyte population. Thus bacterial stimulation of NK activity seems to be mediated for the most part via CD16+, Leu-19+ cells, and a minor overall contribution is mediated via CD3-, CD16-, Leu-19+ cells. No apparent involvement of T cells was seen in the lytic response of lymphocytes to bacterial contact.  相似文献   

8.
In the last few years it has become possible in the liver to isolate lymphocytes from inflammatory infiltrates and to culture them in vitro. Most of the lymphocyte clones obtained are CD 8+ cytotoxic cells, but interactions between these lymphocytes and hepatocytes in primary culture have not been analysed previously. In this study, cloned human T lymphocytes from liver biopsies and from the peripheral blood of patients with chronic hepatitis B or primary biliary cirrhosis, after phenotypical and functional characterization into CD 8+ or CD 4+ cytotoxic lymphocytes, were activated in an antigen-independent fashion by adding either anti CD 3 or anti CD 2/R-3 monoclonal antibodies to the cell suspension. The activated cells were then coincubated with rat hepatocytes in primary culture. The killing capacity of the activated lymphocytes was monitored by light and electron microscopy and by measurement of lactic dehydrogenase (LDH)-release into the culture medium. It was found that cytotoxic CD 8+, but not CD 4+ helper lymphocytes very effectively killed hepatocytes. The killing effect was dependent on the time of cocultivation and on effector-target (E/T) ratio. Total breakdown of the hepatocyte monolayer was achieved after 10-20 h coculture and at an E/T ratio of 10 to 1. As LDH-release in the culture medium reached about 80% of the total LDH-content, most of the hepatocytes were lysed by activated lymphocytes. Cytotoxic activity of clones obtained from different biopsies was comparable with that of clones from peripheral blood. Hepatocytes in primary culture seem to be very sensitive to the killing capacity of activated cytotoxic lymphocytes.  相似文献   

9.
The frequency and phenotype of human T cells that mediate major histocompatibility complex (MHC)-unrestricted cytolysis were analyzed. T cell clones were generated by culturing adherent cell-depleted peripheral blood mononuclear cells at a density of 0.3 cell/well with phytohemagglutinin, recombinant interleukin 2 (rIL-2), and irradiated autologous peripheral blood mononuclear cells and/or Epstein-Barr virus-transformed lymphoblastoid cell lines. These conditions were shown to expand a mean of 96% of cells cultured. All of the 198 clones generated by this method were T cells (CD2+, CD3+, CD4+ or CD2+, CD3+, CD8+) that possessed potent lytic activity against K562, an erythroleukemia line sensitive to lysis by human natural killer cells, and Cur, a renal carcinoma cell line resistant to human natural killer activity. Cytolysis was MHC-unrestricted, since the clones were able to lyse MHC class I or class II negative targets, as well as MHC class I and class II negative targets. In addition, the activity was not inhibited by monoclonal antibodies directed against class I or class II nonpolymorphic MHC determinants. Killing, however, was inhibited by soluble monoclonal antibodies against the CD3 complex. Although the clones produced tissue necrosis factor/lymphotoxin-like molecules, lysis of Cur or K562 was not mediated by a soluble factor secreted by the clones. Some of the clones retained their cytotoxic activity when grown in rIL-2 alone for 4 to 6 wk, whereas others exhibited markedly diminished cytotoxicity after maintenance in this manner. Clones that exhibited diminished or no cytotoxic activity after prolonged maintenance in rIL-2 could be induced to kill by stimulation with immobilized but not soluble monoclonal antibodies to CD3 in the absence of lectin. All of the clones examined expressed NKH1 and CD11b but none were CD16 positive. The degree of cytotoxicity of resting or activated clones could not be correlated with expression of these markers. These data indicate that the capacity for MHC-unrestricted tumoricidal activity and expression of NKH1 and CD11b, but not CD16, are properties common to all or nearly all human peripheral blood-derived T cell clones regardless of CD4 or CD8 phenotype.  相似文献   

10.
Purified T lymphocytes isolated from spleens of untreated patients with Hodgkin's disease (HD) were cloned by using a microculture system previously shown to allow clonal expansion of virtually all peripheral blood T lymphocytes. Cells were plated under limiting conditions with irradiated feeder cells and PHA. Interleukin 2 (IL 2)-containing supernatants were added 48 hr later. The phenotypic and functional characteristics of a total number of 221 clones derived from six different HD spleens were investigated and compared with those of 133 clones obtained from three spleens of otherwise healthy individuals who underwent posttraumatic splenectomy. The majority of T cell clones derived from HD spleens expressed the T4+ (helper/inducer) phenotype. However, further functional characterization showed that as much as 50% of these T4+ clones displayed cytolytic activity in a lectin-dependent lytic assay allowing detection of cytolytic cells of any specificity. In contrast, less than 10% T4+ clones derived from control spleens were cytolytic, as assessed by the same lectin-dependent lytic assay. The cytolytic potential of T4+ and T8+ clones established from spleens of patients with HD did not reflect the induction of lymphokine-activated killer cells, because only a minority of them displayed natural killer (NK) activity against NK-sensitive K562 and MOLT-4 cell lines. These findings indicate that T lymphocytes found in the spleens of patients with HD may represent, at least in part, the expansion of a subset present in small percentages among normal peripheral blood or spleen T lymphocytes, which is involved in a cytotoxic reaction.  相似文献   

11.
CD8 is needed for development of cytotoxic T cells but not helper T cells.   总被引:49,自引:0,他引:49  
A mutant mouse strain without CD8 (Lyt-2 and Lyt-3) expression on the cell surface has been generated by disrupting the Lyt-2 gene using embryonic stem cell technology. In these mice, CD8+ T lymphocytes are not present in peripheral lymphoid organs, but the CD4+ T lymphocyte population seems to be unaltered. Cytotoxic response of T lymphocytes from these mice against alloantigens and viral antigens is dramatically decreased. Proliferative response against alloantigens and in vivo help to B lymphocytes, however, are not affected. These data suggest that CD8 is necessary for the maturation and positive selection of class I MHC restricted cytotoxic T lymphocytes but is not required on any of the intermediate thymocyte populations (CD8+CD4-TcR- or CD4+CD8+TcRlow) during the development of functional class II MHC restricted helper T cells.  相似文献   

12.
We examined the antigenic and functional characteristics of human peripheral blood lymphocytes that differentially express the CD16 (Leu-11) and Leu-19 (NKH-1) antigens. Leu-19 is a approximately 220,000 daltons protein expressed on approximately 15% of freshly isolated peripheral blood lymphocytes. Within the Leu-19+ subset, three distinct populations were identified: CD3-,CD16+,Leu-19+ cells; CD3+,CD16-,Leu-19+ cells; and CD3-,CD16-,Leu-19bright+ cells. Both the CD3+,CD16-,Leu-19+ and CD3-,CD16+,Leu-19+ populations mediated non-major histocompatibility complex (MHC)-restricted cytotoxicity against the NK-sensitive tumor cell K562 and were large granular lymphocytes. CD3-,CD16+,Leu-19+ NK cells were the most abundant (comprising approximately 10% of peripheral blood lymphocytes) and the most efficient cytotoxic effectors. The finding that CD3+,Leu 19+ lymphocytes mediated cytotoxicity against K562 unequivocally demonstrates that a unique subset of non-MHC-restricted cytotoxic CD3+ T lymphocytes are present in the peripheral blood of unprimed, normal individuals. However, CD3+,CD16-,Leu-19+ cells comprised less than 5% of peripheral blood lymphocytes, and the cytotoxic activity of this subset was significantly less than CD3-,CD16+,Leu-19+ NK cells. Most CD3+,Leu-19+ T cells co-expressed the CD2, CD8, and CD5 differentiation antigens. The antigenic and functional phenotype of peripheral blood CD3+,Leu-19+ cytotoxic T lymphocytes corresponds to the interleukin 2-dependent CD3+ cell lines that mediate non-MHC-restricted cytotoxicity against NK-sensitive tumor cell targets. A small population of Leu-19bright+ lymphocytes lacking both CD3 and CD16 was also observed. This population (comprising less than 2% of peripheral blood lymphocytes) contained both large agranular lymphocytes and large granular lymphocytes. CD3-,CD16-,Leu-19bright+ lymphocytes also mediate non-MHC-restricted cytotoxicity. The relationship of these CD3-CD16-,Leu-19bright+ lymphocytes to CD3+ T cells or CD16+ NK cells is unknown.  相似文献   

13.
Epigenetic modifications, including DNA methylation, profoundly influence gene expression of CD4(+) Th-specific cells thereby shaping memory Th cell function. We demonstrate here a correlation between a lacking fixed potential of human memory Th cells to re-express the immunoregulatory cytokine gene IL10 and its DNA methylation status. Memory Th cells secreting IL-10 or IFN-gamma were directly isolated ex vivo from peripheral blood of healthy volunteers, and the DNA methylation status of IL10 and IFNG was assessed. Limited difference in methylation was found for the IL10 gene locus in IL-10-secreting Th cells, as compared with Th cells not secreting IL-10 isolated directly ex vivo or from in vitro-established human Th1 and Th2 clones. In contrast, in IFN-gamma(+) memory Th cells the promoter of the IFNG gene was hypomethylated, as compared with IFN-gamma-nonsecreting memory Th cells. In accordance with the lack of epigenetic memory, almost 90% of ex vivo-isolated IL-10-secreting Th cells lacked a functional memory for IL-10 re-expression after restimulation. Our data indicate that IL10 does not become epigenetically marked in human memory Th cells unlike effector cytokine genes such as IFNG. The exclusion of IL-10, but not effector cytokines, from the functional memory of human CD4(+) T lymphocytes ex vivo may reflect the need for appropriate regulation of IL-10 secretion, due to its potent immunoregulatory potential.  相似文献   

14.
Previous studies have shown that human CD8-positive T cells activated by immobilized mAb to the CD3 complex have the capacity to support the generation of Ig secreting cells (ISC). The experiments reported here were undertaken to examine the nature of CD8+ T cell helper function in greater detail. CD8+ T cells that had been treated with mitomycin C (CD8+ mito) and stimulated by immobilized mAb to CD3 (64.1) provided help for the generation of ISC from resting B cells. By contrast, CD8+ mito did not support the generation of ISC in cultures stimulated by pokeweed mitogen (PWM). This could not be explained by differences in the production of IL2, since PWM and anti-CD3 induced comparable amounts of IL2 from CD8+ mito. In anti-CD3-stimulated cultures, CD8+ mito supported the generation of larger numbers of ISC when B cells were also activated with Staphylococcus aureus (SA). By contrast, in PWM-stimulated cultures, CD8+ mito did not provide help for SA-activated B cells. Rather, PWM-stimulated CD8+ mito appeared to suppress the generation of ISC induced by PWM-activated CD4+ mito or by SA + IL2, whereas anti-CD3-stimulated CD8+ mito did not. Only control CD8+ T cells, which were able to proliferate, exerted suppressive effects in anti-CD3-stimulated cultures. Examination of the functional capacities of a battery of CD8+ T cell clones indicated that the same clonal population of CD8+ cells could provide help or suppress responses when stimulated with anti-CD3 or PWM, respectively. The functional activities of CD8+ clones differed from those of fresh CD8+ cells. Thus, anti-CD3-stimulated CD8+ clones provided help for B cells regardless of whether they were treated with mitomycin C. Moreover, PWM stimulated suppression by CD8+ clones was abrogated by treating the clones with radiation or mitomycin C. These results indicate that helper T cell function is not limited to the CD4+ T cell population, but that help can also be provided by appropriately stimulated CD8+ T cells. Taken together, these results indicate that CD8+ T cells are not limited in their capacity to regulate B cell responses, but rather can provide positive or negative influences depending on the nature of the activating stimulus.  相似文献   

15.
A human helper T cell clone (d4), which showed its helper effect on the differentiation of both T and B cells, was established by MLC reaction of normal T cells against a B lymphoblastoid cell line (CESS) followed by cloning in the presence of IL2 and x-irradiated CESS and autologous non-T cells. d4 cells helped the induction of cytotoxic T cells against UV-treated CESS cells. Antigen-stimulated d4 cells secreted helper factor(s) involved in the induction of cytotoxic T cells (killer helper factor(s), KHF), and KHF activity could be separated into two fractions, one with the m.w. of 15,000 to 20,000 and the other with the m.w. of 45,000 to 50,000. The factor with 15,000 to 20,000 m.w. showed IL 2 activity; the other factor showed gamma-interferon activity without IL 2 activity, suggesting that both IL 2 and gamma-interferon exerted KHF activity. d4 cells or their culture supernatant showed helper activity in the induction of IgG in a B cell line (CESS). The helper activity of the supernatant (TRF) was absorbed with CESS cells but not with IL 2-dependent CTLL, whereas KHF activity was absorbed with IL 2-dependent CTLL but not with CESS cells. The results showed that TRF and KHF were distinct molecules and a single helper T cell clone could secrete helper factors for both B and T cells.  相似文献   

16.
Maturation of cytolytic T lymphocytes from nonlytic precursors requires cytokines in addition to IL2. Interleukin-6 is the principal cytokine that cooperates with IL2 in the induction of CTL differentiation from murine and human thymocyte precursors. However, a cytotoxic differentiation factor (CDF) role of IL6 for mature T cells is challenged by data indicating that IL2 alone is sufficient for CTL generation. The aim of this study was to identify a model system in which IL6 acted as a CDF for human peripheral T cells. We noted that IL6 was endogenously produced by CTL clones in the course of their expansion with APC, lectin, and IL2. The majority of several hundred T-cell clones, both CD4+ and CD8+, produced IL6 in response to relatively high doses of IL2. Other experiments that compared the cytolytic function of CTL clones cultured in the presence of IL6 with that of the same clones cultured in the absence of IL6 demonstrated that IL6 contributes to the cytolytic ability of the majority of human CTL clones. Our data suggest that IL6 acts in an autocrine fashion to support CTL differentiation in human T-cell clones.  相似文献   

17.
The phenotype of T lymphocyte subsets present in renal biopsies showing acute cellular allograft rejection in six patients on cyclosporine have been characterized in situ by immunoperoxidase staining, and after expansion in vitro in interleukin 2 (IL-2) by two-color flow cytometry, sorting, and functional analysis. After 8 to 42 days in organ culture, both Leu-3+ (CD4) and Leu-2+ (CD8) subsets were found in each culture, in a ratio that varied from 0.2 to 5.0, which was not significantly different than the results of in situ immunoperoxidase staining of the uncultured biopsy. The cultured cells were almost all Leu-4+ (CD3) T cells (89% +/- 4), which expressed the activation markers DR (82% +/- 6) and the IL 2 (CD25) receptor (15% +/- 4). The Leu-3+ cells were largely Leu-8- (90% +/- 6), whereas a minority of the Leu-2+ cells were Leu-15+ (CD11) (26% +/- 4). Only a small fraction of the Leu-2+ cells stained for Leu-7 (8% +/- 6). Functional analysis of FACS-purified Leu-2-3+ and Leu-2+3- populations indicated that both subsets proliferated in response to graft donor antigens in a mixed lymphocyte reaction (MLR) and produced IL 2. Only the Leu-2+3- population demonstrated donor-specific cytotoxic activity. A minor subpopulation in each culture were both Leu-3+ and Leu-2+ (2.0%). Leu-2+3+ cells from one biopsy were purified to homogeneity (99.8%), and were found to express the T cell antigen receptor complex Ti/CD3 (WT-31+, Leu-4+), but not the common thymocyte antigen CD1 (OKT6). The Leu-2+3+ cells neither responded in the MLR, nor showed any cytotoxic capacity. The Leu-2+3+ cells were capable of IL 2 but not interferon-gamma production. None of the purified cultures demonstrated NK activity. A subset of the purified Leu-2+3+ cells lost Leu-2+ during 1 to 3 wk in culture, and became Leu-2-3+. These studies provide evidence that the cells that infiltrate renal allografts during rejection include alloproliferative, lymphokine-producing cells of both Leu-2+ and Leu-3+ subsets. The Leu-2+3- cells are also highly cytotoxic against donor lymphocytes, indicating the presence of helper independent cytotoxic T cells. A minor population of Leu-2+3+ T cells that do not express donor specific function was also identified.  相似文献   

18.
Normal murine splenocytes cultured with IL2 for 6, but not 3, days contained an NK1.1+, CD3+ lytically active subset. These lymphocytes were not derived from NK1.1+ precursors since NK1.1+ cells, purified by flow cytometry, failed to express CD3, as determined by the 145-2C11 mAb, on their surface even after culture with IL2 for 6 days. Instead, the precursors of the NK1.1+, CD3+ effectors were contained in a B cell-depleted CD4-, CD8-, NK1.1- splenic subset. Freshly obtained CD4-, CD8-, NK1.1- splenocytes were mostly CD3+, CD5+, B220-, had no spontaneous lytic activity against YAC-1, and were unable to mediate anti-CD3 directed lysis against FcR-bearing target cells. Culture of the CD4-, CD8-, NK1.1- splenocytes with IL2, for 6 days, resulted in the development of NK1.1+, CD3+, B220+ effectors 40% of which were CD5dim and 20-25% of which expressed TCR-V beta 8 as determined by the F23.1 mAb. The acquisition of NK1.1, B220, and lytic activity by this triple-negative subset was readily inhibited by cyclosporine A (CSA). On the other hand, CSA had no effect on the acquisition of B220 or lytic activity by NK1.1+ precursors obtained by flow cytometry sorting. Moreover, all of the NK1.1+ cells generated by IL2 culture of splenocytes obtained from mice depleted of NK1.1+ lymphocytes (by in vivo injection of anti-NK1.1 mAb) coexpressed CD3 on their surface and were thus distinct from classical NK cells. These findings demonstrate that splenic NK cells do not express or acquire CD3; that the NK1.1+, CD3+ LAK effectors are derived from an NK1.1- precursor; and that CSA is exquisitely selective in its inhibitory effect on LAK generation.  相似文献   

19.
Syngeneic normal lymphoid cells added in co-culture of immune lymphocytes and tumor cells reveal a suppressive activity inhibiting the generation of cytolytic T lymphocytes. The suppression was specific for the response directed against endogenous virus-induced or x-ray-induced tumor cells expressing endogenous C type virus antigens. Thymocytes, spleen cells, or lymph node cells from naive mice were able to express this suppressive activity. The same cells displayed no suppressive activity on killer cells directed against exogenous C type virus-induced tumor cells. The suppressor cells were Thy-1+, Lyt-1- 2+. Our results strongly suggested that the spontaneous suppressor cells exert their activity by interacting with an early step on the CTL response, probably at the level of the helper T cell function. The suppressive activity was mediated by soluble factor(s) that were antigen specific and possibly H-2 restricted. The possible implications of these spontaneous suppressor T lymphocytes in the development of endogenous virus-induced tumors and their possible implications in tolerance to self antigens are discussed.  相似文献   

20.
Wheat germ agglutinin (WGA), a tetravalent lectin, has both stimulatory and inhibitory effects on human T lymphocytes. It has been suggested that these actions are related and that WGA selectively stimulates a suppressive subset of T cells. We studied the ability of WGA to stimulate and inhibit subpopulations of human peripheral blood mononuclear cells (PBMC) known to have helper or suppressor activity. Fresh human PBMC were depleted of either T4+ or T8+ cells by using antibody-mediated complement lysis. The resultant cell populations were stimulated with WGA, and the proliferative response was assessed by [3H]thymidine incorporation, IL 2 receptor expression, the ability to elaborate IL 2 in culture supernatants, and the susceptibility to inhibition by the monoclonal antibody anti-Tac. Similar experiments with cells from a WGA-responsive continuous T cell culture were also performed. WGA inhibited phytohemagglutinin (PHA)-induced proliferation of PBMC depleted of either T4+ or T8+ cells. WGA also inhibited PBMC that had been depleted of adherent cells and Ia+ cells and then induced to proliferate with a combination of TPA and PHA. Our findings indicate that WGA induces IL 2-dependent proliferation in a small proportion of both T4+ and T8+ lymphocytes. We also provide evidence that the inhibitory activity of WGA is not mediated by a T4+, T8+, or Ia+ cell, suggesting that WGA acts directly on the proliferating cell rather than selectively stimulating a suppressive subpopulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号