首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate at which CO2 is released from woody debris post-clearcut affects the long term carbon consequences of such disturbances. Changes in microclimate post-clearcut may alter the rate of woody debris decomposition from that in a mature forest. However, very few studies have explored post-disturbance rates of woody debris respiration and the possible influence of an altered microclimate, and even fewer have considered the role of log position in influencing rates of respiration. This study explored the effects of log position and microclimate variability on the rates of coarse woody debris (CWD) respiration. The rates of respiration of downed Norway spruce (Picea abies) logs were repeatedly measured in situ using an LI-6200 gas analyzer. Treatments included native logs in the clearcut site, native logs in a neighboring mature spruce stand, and logs transferred from the clearcut site to the mature spruce stand. The transfer logs showed the highest rates of respiration (0.44 ± 0.03 g COm?2 log surface h?1), followed by the clearcut logs (0.36 ± 0.02 g CO2 m?2 log surface h?1), and spruce stand logs (0.30 ± 0.02 g CO2 m?2 log surface h?1) (P < 0.01). The boost in respiration found in the transfer treatment group was best explained by increases in log water content, while the slower rate of respiration in the spruce stand logs was best explained by the log’s contact/non-contact with the ground prior to the start of the observational campaign. CWD respiration was found to represent 18 ± 3 % of total daytime ecosystem respiration (R eco).  相似文献   

2.
Interannual variations in CO2 exchange across Amazonia, as deduced from atmospheric inversions, correlate with El Niño occurrence. They are thought to result from changes in net ecosystem exchange and fire incidence that are both related to drought intensity. Alterations to net ecosystem production (NEP) are caused by changes in gross primary production (GPP) and ecosystem respiration (Reco). Here, we analyse observations of the components of Reco (leaves, live and dead woody tissue, and soil) to provide first estimates of changes in Reco during short-term (seasonal to interannual) moisture limitation. Although photosynthesis declines if moisture availability is limiting, leaf dark respiration is generally maintained, potentially acclimating upwards in the longer term. If leaf area is lost, then short-term canopy-scale respiratory effluxes from wood and leaves are likely to decline. Using a moderate short-term drying scenario where soil moisture limitation leads to a loss of 0.5 m2 m−2 yr−1 in leaf area index, we estimate a reduction in respiratory CO2 efflux from leaves and live woody tissue of 1.0 (±0.4) t C ha−1 yr−1. Necromass decomposition declines during drought, but mortality increases; the median mortality increase following a strong El Niño is 1.1% (n=46 tropical rainforest plots) and yields an estimated net short-term increase in necromass CO2 efflux of 0.13–0.18 t C ha−1 yr−1. Soil respiration is strongly sensitive to moisture limitation over the short term, but not to associated temperature increases. This effect is underestimated in many models but can lead to estimated reductions in CO2 efflux of 2.0 (±0.5) t C ha−1 yr−1. Thus, the majority of short-term respiratory responses to drought point to a decline in Reco, an outcome that contradicts recent regional-scale modelling of NEP. NEP varies with both GPP and Reco but robust moisture response functions are clearly needed to improve quantification of the role of Reco in influencing regional-scale CO2 emissions from Amazonia.  相似文献   

3.
Annual budgets and fitted temperature response curves for soil respiration and ecosystem respiration provide useful information for partitioning annual carbon budgets of ecosystems, but they may not adequately reveal seasonal variation in the ratios of these two fluxes. Soil respiration (Rs) typically contributes 30–80% of annual total ecosystem respiration (Reco) in forests, but the temporal variation of these ratios across seasons has not been investigated. The objective of this study was to investigate seasonal variation in the Rs/Reco ratio in a mature forest dominated by conifers at Howland, ME, USA. We used chamber measurements of Rs and tower‐based eddy covariance measurements of Reco. The Rs/Reco ratio reached a minimum of about 0.45 in the early spring, gradually increased through the late spring and early summer, leveled off at about 0.65 for the summer, and then increased again to about 0.8 in the autumn. A spring pulse of aboveground respiration presumably causes the springtime minimum in this ratio. Soil respiration ‘catches up’ as the soils warm and as root growth presumably accelerates in the late spring, causing the Rs/Reco ratios to increase. The summertime plateau of Rs/Reco ratios is consistent with summer drought suppressing Rs that would otherwise be increasing, based on increasing soil temperature alone, thus causing the Rs/Reco ratios to not increase as soils continue to warm. Declining air temperatures and litter fall apparently contribute to increased Rs/Reco ratios in the autumn. Differences in phenology of growth of aboveground and belowground plant tissues, mobilization and use of stored substrates within woody plants, seasonal variation in photosynthate and litter substrates, and lags between temperature changes of air and soil contribute to a distinct seasonal pattern of Rs/Reco ratios.  相似文献   

4.
We estimated respiratory fluxes in a treeline-associated Pinus canariensis forest in Tenerife, Canary Islands, an ecotone with strong seasonal changes in soil water availability. CO2 efflux rates from the foliage, above ground woody tissue and the soil were measured by chamber techniques. Site-specific models obtained from these chamber measurements were then combined with half-hourly measurements of canopy, stem and soil temperature as well as with soil water potential, leaf area and stem sapwood volume data for scaling up component-specific CO2 efflux to ecosystem respiration (R ECO). Integrated over an entire year R ECO was 550 g C m?2 ground surface area (average of 2008 and 2009) and comprised the following component fluxes: 57 % from the soil, 10 % from above ground woody tissue and 33 % from the foliage. Between year differences in R ECO and its components were <3 %. R ECO varied markedly throughout an entire year generally following the seasonal trends in temperature during most of the year. During the dry summer, however, R ECO was significantly reduced due to limited soil water availability in the rooting horizon. Thus, in treeline-associated forests under predicted scenarios of increasing aridity in Mediterranean regions, it is likely that there will be a shift in the contribution of CO2 efflux from the soil (R S), the foliage (R F) and above ground woody tissue (R W) to R ECO from predominately below ground to increasingly above ground. Such changes should be taken into account for predicting the response of treeline forests to a changing climate at their upper distribution limit.  相似文献   

5.
During a 1-year measurement period, we recorded the CO2 efflux from stems (R S) and coarse woody roots (R R) of 13–20 common tree species at three study sites at 1,050, 1,890 and 3,050 m a.s.l. in an Andean moist forest. The objective of this work was to study elevation changes of woody tissue CO2 efflux and the relationship to climate variation, site characteristics and growth. Furthermore, we aim to provide insights into important respiration–productivity relationships of a little studied tropical vegetation type. We expected R S and R R to vary with dry and humid season conditions. We further expected R S to vary more than R R due to a more stable soil than air temperature regime. Seasonal variation in woody tissue CO2 efflux was indeed mainly attributable to stems. At the same time, temperature played only a small role in triggering variations in R S. At stand level, the ratio of C release (g C m?2 ground area year?1) between stems and roots varied from 4:1 at 1,050 m to 1:1 at 3,050 m, indicating the increasing prevalence of root activity at high elevations. The fraction of growth respiration from total respiration varied between 10 (3,050 m) and 14% (1,050 m) for stems and between 5 (1,050 m) and 30% (3,050 m) for roots. Our results show that respiratory activity and hence productivity is not driven by low temperatures towards higher elevations in this tropical montane forest. We suggest that future studies should examine the limitation of carbohydrate supply from leaves as a driver for the changes in respiratory activity with elevation.  相似文献   

6.

Background and aims

Ecosystem respiration (R eco ) is controlled by thermal and hydrologic regimes, but their relative importance in defining the CO2 emissions in peatlands seems to be site specific. The aim of the paper is to investigate the sensitivity of R eco to variations in temperature and water table depth (WTD) in a wet, geogenous temperate peatland with a wide variety of vegetation community groups.

Methods

The CO2 fluxes were measured using chambers. Measurements were made at four microsites with different vegetation communities and peat moisture and temperature conditions every 3 to 4 weeks during the period 2008–2009, 2 years with contrasting WTD patterns. Models were used to examine the relative response of each microsite to variations in peat temperature and WTD and used to estimate annual total R eco .

Results

Temporal variations in R eco were strongly related to peat temperature at the 5 cm depth. However, two of the microsites did not show any significant change in this relationship while two others showed contrasting responses including an increase and decrease in temperature sensitivity with deeper WTD. Average R eco varied among the microsites and tended to be greatest for those with greatest leaf area which also positively correlated with deeper WTD, ash content and degree of peat decomposition at 20 cm. A combined temperature and WTD model explained up to 94 % of the temporal variation in daily average R eco and was used to show that on an annual basis, R eco was between 5 and 18 % greater in the warmer year with deeper WTD.

Conclusion

Microsite-specific responses were related to differences in vegetation and peat characteristics among microsites. R eco may have remained insensitive to WTD variations at one microsite due to the dominance of autotrophic respiration from abundant sedge biomass. At a Sphagnum-dominated microsite, a lack of response may have been due to relatively small variations in WTD that did not greatly influence microbial respiration or due to offsets between decreasing and increasing respiration rates in near-surface and deeper peat. The microsite with the most recalcitrant peat had reduced R eco sensitivity to temperature under more aerobic conditions while another microsite showed the opposite response, perhaps due to less nutrient availability during the wet year. Ultimately, micro-site specific models with both soil temperature and WTD as explanatory variables described temporal variations in R eco and highlighted the significant spatial variations in respiration rates that may occur within a single wetland.  相似文献   

7.
Unravelling the role of structural and environmental drivers of gross primary productivity (GPP) and ecosystem respiration (R eco) in highly heterogeneous tundra is a major challenge for the upscaling of chamber-based CO2 fluxes in Arctic landscapes. In a mountain birch woodland-mire ecotone, we investigated the role of LAI (and NDVI), environmental factors (microclimate, soil moisture), and microsite type across tundra shrub plots (wet hummocks, dry hummocks, dry hollows) and lichen hummocks, in controlling net ecosystem CO2 exchange (NEE). During a growing season, we measured NEE fluxes continuously, with closed dynamic chambers, and performed multiple fits (one for each 3-day period) of a simple light and temperature response model to hourly NEE data. Tundra shrub plots were largely CO2 sinks, as opposed to lichen plots, although fluxes were highly variable within microsite type. For tundra shrub plots, microsite type did not influence photosynthetic parameters but it affected basal (that is, temperature-normalized) ecosystem respiration (R 0). PAR-normalized photosynthesis (P 600) increased with air temperature and declined with increasing vapor pressure deficit. R 0 declined with soil moisture and showed an apparent increase with temperature, which may underlie a tight link between GPP and R eco. NDVI was a good proxy for LAI, maximum P 600 and maximum R 0 of shrub plots. Cumulative CO2 fluxes were strongly correlated with LAI (NDVI) but we observed a comparatively low GPP/LAI in dry hummocks. Our results broadly agree with the reported functional convergence across tundra vegetation, but here we show that the role of decreased productivity in transition zones and the influence of temperature and water balance on seasonal CO2 fluxes in sub-Arctic forest–mire ecotones cannot be overlooked.  相似文献   

8.
Coarse woody debris (CWD) is an important component of the forest carbon cycle, acting as a carbon pool and a source of CO2 in temperate forest ecosystems. We used a soda-lime closed-chamber method to measure CO2 efflux from downed CWD (diameter ≥5 cm) and to examine CWD respiration (R CWD) under field conditions over 1 year in a temperate secondary pioneer forest in Takayama forest. We also investigated tree mortality (input to the CWD pool) from the data obtained from the annual tree census, which commenced in 2000. We developed an exponential function of temperature to predict R CWD in each decay class (R 2 = 0.81–0.97). The sensitivity of R CWD to changing temperature, expressed as Q 10, ranged from 2.12 to 2.92 and was relatively high in decay class III. Annual C flux from CWD (F CWD) was extrapolated using continuous air temperature measurements and CWD necromass pools in the three decay classes. F CWD was 3.0 (class I), 17.8 (class II), and 13.7 g C m?2 year?1 (class III) and totaled 34 g C m?2 year?1 in 2009. Annual input to CWD averaged 77 g C m?2 year?1 from 2000 to 2009. The budget of the CWD pool in the Takayama forest, including tree mortality inputs and respiratory outputs, was 0.43 Mg C ha?1 year?1 (net C sink) owing to high tree mortality in the mature pioneer forest. The potential CWD sink is important for the carbon cycle in temperate successional forests.  相似文献   

9.
The relative contribution of gross primary production and ecosystem respiration to seasonal changes in the net carbon flux of tropical forests remains poorly quantified by both modelling and field studies. We use data assimilation to combine nine ecological time series from an eastern Amazonian forest, with mass balance constraints from an ecosystem carbon cycle model. The resulting analysis quantifies, with uncertainty estimates, the seasonal changes in the net carbon flux of a tropical rainforest which experiences a pronounced dry season. We show that the carbon accumulation in this forest was four times greater in the dry season than in the wet season and that this was accompanied by a 5% increase in the carbon use efficiency. This seasonal response was caused by a dry season increase in gross primary productivity, in response to radiation and a similar magnitude decrease in heterotrophic respiration, in response to drying soils. The analysis also predicts increased carbon allocation to leaves and wood in the wet season, and greater allocation to fine roots in the dry season. This study demonstrates implementation of seasonal variations in parameters better enables models to simulate observed patterns in data. In particular, we highlight the necessity to simulate the seasonal patterns of heterotrophic respiration to accurately simulate the net carbon flux seasonal tropical forest.  相似文献   

10.
Ozone (O3) and nitrogen (N) deposition affect plant carbon (C) dynamics and may change ecosystem C‐sink/‐source properties. We studied effects of increased background [O3] (up to [ambient] × 2) and increased N deposition (up to +50 kg ha?1 a?1) on mature, subalpine grassland during the third treatment year. During 10 days and 13 nights, distributed evenly over the growth period of 2006, we measured ecosystem‐level CO2 exchange using a static cuvette. Light dependency of gross primary production (GPP) and temperature dependency of ecosystem respiration rates (Reco) were established. Soil temperature, soil water content, and solar radiation were monitored. Using Reco and GPP values, we calculated seasonal net ecosystem production (NEP), based on hourly averages of global radiation and soil temperature. Differences in NEP were compared with differences in soil organic C after 5 years of treatment. The high [O3] had no effect on aboveground dry matter productivity (DM), but seasonal mean rates of both Reco and GPP decreased ca. 8%. NEP indicated an unaltered growing season CO2–C balance. High N treatment, with a +31% increase in DM, mean Reco increased ca. 3%, but GPP decreased ca. 4%. Consequently, seasonal NEP yielded a 53.9 g C m?2 (±22.05) C loss compared with control. Independent of treatment, we observed a negative NEP of 146.4 g C m?2 (±15.3). Carbon loss was likely due to a transient management effect, equivalent to a shift from pasture to hay meadow and a drought effect, specific to the 2006 summer climate. We argue that this resulted from strongly intensified soil microbial respiration, following mitigation of nutrient limitation. There was no interaction between O3 and N treatments. Thus, during the 2006 growing season, the subalpine grassland lost >2% of total topsoil organic C as respired CO2, with increased N deposition responsible for one‐third of that loss.  相似文献   

11.
Climate change may alter the terrestrial ecosystem carbon balance in the Arctic, and previous studies have emphasized the importance of cold season gas exchange when considering the annual carbon balance. Here, we examined gross ecosystem production (GEP), ecosystem respiration (R eco) and net ecosystem exchange (NEE) during autumn at a high arctic dry open heath, over a period where air temperatures decreased from +9.8 to ?16.5°C. GEP declined by 95–100% during autumn but GEP significantly different from 0 was measured on October 8 despite sub-zero temperatures. R eco declined by 90% and dominated NEE throughout the study as the ecosystem on all measurement days was a source of atmospheric CO2. We estimated net September carbon losses (NEE) to be 17?g?CO2?m?2, emphasizing the importance of autumn in relation to annual carbon budgets. The study site has been subjected to 14 summers of water addition, and occasional pulses of nitrogen (N) addition in a fully factorial design. N addition enhanced GEP up to 17-fold during September, although there was no effect in October when GEP was very low. Summer water addition decreased autumn R eco by up to 25%. Both N amendment and water addition decreased carbon loss, that is, increased NEE; N amendment increased NEE on all dates by 13–64% whereas water addition increased NEE by 20–54% late in September and onward, demonstrating the importance of nutrient and water availability on carbon balance in high arctic tundra, also during the autumn freeze-in.  相似文献   

12.
The impact of land management actions such as prescribed fire remains a key uncertainty in understanding the spatiotemporal patterns of carbon cycling in the Western USA. We therefore quantified carbon exchange and aboveground carbon stocks following a prescribed fire in a mountain big sagebrush ecosystem located in the northern Great Basin, USA. Specifically, we examined the changes in plant functional type, leaf area index, standing aboveground carbon stocks, net ecosystem production (NEP), gross ecosystem production (GEP), and ecosystem-level respiration (Reco) for 2 years before and 7 of 9 years after a prescribed fire. Post-burn GEP and Reco exceeded pre-burn GEP and Reco within 2 years and remained elevated. The variation in GEP and Reco provided no evidence of a large and prolonged net efflux of carbon in the 9 years after the fire. Rather, NEP indicated the site was a sink before and after the fire, with little change in sink strength associated with the burn. Re-sprouting and recruitment of grasses and forbs drove the post-burn increase in GEP. Woody shrub growth was the dominant control on aboveground biomass accumulation after fire, with shrub aboveground biomass reaching ~ 11% of pre-burn biomass after 5 years. The rapid recovery of GEP and the growth of mid-successional shrubs suggest ecosystem-level carbon fluxes and stocks can recover rapidly after fire in mesic mountain big sagebrush ecosystems.  相似文献   

13.
Predicted reductions of cool-season rainfall may expand and accelerate drought-induced plant mortality currently unfolding across the Southwest US. To assess how repeated plant mortality affects ecosystem functional attributes, we quantified net ecosystem CO2 exchange (NEE), ecosystem respiration (R eco), and gross ecosystem photosynthesis (GEP) responses to precipitation (P) at a semidesert grassland over spring (Feb 1–Apr 30) and summer (June 15–Oct 1) plant-active periods across eight years, including two with distinct patterns of extensive species-specific mortality. In addition, we quantified daily soil respiration (R soil) in high- (56–88%) and low-mortality (8–27%) plots the summer following the most recent mortality event. Plant mortality coincided with severely dry cool-season conditions (Dec 1–Apr 30). We found a positive relationship between springtime P and GEP, and that springtime conditions influenced GEP response to summer rainfall. High springtime R eco/GEP ratios followed plant mortality, suggesting increased available carbon after mortality was rapidly decomposed. R soil in low-mortality plots exceeded high-mortality plots over drier summer periods, likely from more root respiration. However, total cumulative R soil did not differ between plots, as variation in surviving plant conditions resulted in high and low C-yielding plots within both plot types. Vegetation status in high C-yielding R soil plots was similar to that across the grassland, suggesting R soil from such areas underlay higher R eco. This, coupled to springtime drought constraints to GEP, resulted in positive NEE under summer P accumulations that previously supported C-sink activity. These findings indicate that predicted lower cool-season precipitation may strongly and negatively affect summer season productivity in these semiarid grasslands.  相似文献   

14.
Understanding the response of ecosystem respiration (ER) to major environmental drivers is critical for estimating carbon sequestration and large-scale modeling research. Temperature effect on ER is modified by other environmental factors, mainly soil moisture, and such information is lacking for switchgrass (Panicum virgatum L.) ecosystems. The objective of this study was to examine seasonal variation in ER and its relationship with soil temperature (T s) and moisture in a switchgrass field. ER from the nighttime net ecosystem CO2 exchange measurements by eddy covariance system during the 2011 and 2012 growing seasons was analyzed. Nighttime ER ranged from about 2 (early growing season) to as high as 13 μmol m?2 s?1 (peak growing period) and showed a clear seasonality, with low rates during warm (>30 °C) and dry periods (<0.20 m3 m?3 of soil water content). No single temperature or moisture function described variability in ER on the seasonal scale. However, an exponential temperature–respiration function explained over 50 % of seasonal variation in ER at adequate soil moisture (>0.20 m3 m?3), indicating that soil moisture <0.20 m3 m?3 started to limit ER. Due to the limitation of soil–atmosphere gas exchange, ER rates declined markedly in wet soil conditions (>0.35 m3 m?3) as well. Consequently, both dry and wet conditions lowered temperature sensitivity of respiration (Q 10). Stronger ER–T s relationships were observed at higher soil moisture levels. These results demonstrate that soil moisture greatly influences the dynamics of ER and its relationship with T s in drought prone switchgrass ecosystems.  相似文献   

15.
Many wetland ecosystems such as peatlands and wet tundra hold large amounts of organic carbon (C) in their soils, and are thus important in the terrestrial C cycle. We have synthesized data on the carbon dioxide (CO2) exchange obtained from eddy covariance measurements from 12 wetland sites, covering 1–7 years at each site, across Europe and North America, ranging from ombrotrophic and minerotrophic peatlands to wet tundra ecosystems, spanning temperate to arctic climate zones. The average summertime net ecosystem exchange of CO2 (NEE) was highly variable between sites. However, all sites with complete annual datasets, seven in total, acted as annual net sinks for atmospheric CO2. To evaluate the influence of gross primary production (GPP) and ecosystem respiration (Reco) on NEE, we first removed the artificial correlation emanating from the method of partitioning NEE into GPP and Reco. After this correction neither Reco (P= 0.162) nor GPP (P= 0.110) correlated significantly with NEE on an annual basis. Spatial variation in annual and summertime Reco was associated with growing season period, air temperature, growing degree days, normalized difference vegetation index and vapour pressure deficit. GPP showed weaker correlations with environmental variables as compared with Reco, the exception being leaf area index (LAI), which correlated with both GPP and NEE, but not with Reco. Length of growing season period was found to be the most important variable describing the spatial variation in summertime GPP and Reco; global warming will thus cause these components to increase. Annual GPP and NEE correlated significantly with LAI and pH, thus, in order to predict wetland C exchange, differences in ecosystem structure such as leaf area and biomass as well as nutritional status must be taken into account.  相似文献   

16.
Precipitation is projected to change intensity and seasonal regime under current global projections. However, little is known about how seasonal precipitation changes will affect soil respiration, especially in seasonally dry tropical forests. In a seasonally dry tropical forest in South China, we conducted a precipitation manipulation experiment to simulate a delayed wet season (DW) and a wetter wet season (WW) over a three‐year period. In DW, we reduced 60% throughfall in April and May to delay the onset of the wet season and irrigated the same amount water into the plots in October and November to extend the end of the wet season. In WW, we irrigated 25% annual precipitation into plots in July and August. A control treatment (CT) receiving ambient precipitation was also established. Compared with CT, DW significantly increased soil moisture by 54% during October to November, and by 30% during December to April. The treatment of WW did not significantly affect monthly measured soil moisture. In 2015, DW significantly increased leaf area index and soil microbial biomass but decreased fine root biomass. In contrast, WW significantly decreased fine root biomass and forest floor litter stocks. Soil respiration was not affected by DW, which could be attributed to the increased microbial biomass offsetting the decrease in fine root biomass. In contrast, WW significantly increased soil respiration from 3.40 to 3.90 μmol m?2 s?1 in the third year, mainly due to the increased litter decomposition and soil pH (from 4.48 to 4.68). The present study suggests that both a delayed wet season and a wetter wet season will have significant impacts on soil respiration‐associated ecosystem components. However, the ecosystem components can respond in different directions to the same change in precipitation, which ultimately affected soil respiration.  相似文献   

17.
Climate change may alter ecosystem functioning, as assessed via the net carbon (C) exchange (NEE) with the atmosphere, composed of the biological processes photosynthesis (GPP) and respiration (R eco). In addition, in semi-arid Mediterranean ecosystems, a significant fraction of respired CO2 is stored in the vadose zone and emitted afterwards by subsoil ventilation (VE), contributing also to NEE. Such conditions complicate the prediction of NEE for future change scenarios. To evaluate the possible effects of climate change on annual NEE and its underlying processes (GPP, R eco and VE) we present, over a climate/altitude range, the annual and interannual variability of NEE, GPP, R eco and VE in three Mediterranean sites. We found that annual NEE varied from a net source of around 130 gC m?2 in hot and arid lowlands to a net sink of similar magnitude for alpine meadows (above 2,000 m a.s.l) that are less water stressed. Annual net C fixation increased because of increased GPP during intermittent and several growth periods occurring even during winter, as well as due to decreased VE. In terms of interannual variability, the studied subalpine site behaved as a neutral C sink (from emission of 49 to fixation of 30 gC m?2 year?1), with precipitation as the main factor controlling annual GPP and R eco. Finally, the importance of VE as 0–23 % of annual NEE is highlighted, indicating that this process could shift some Mediterranean ecosystems from annual C sinks to sources.  相似文献   

18.
Thus far, grassland ecosystem research has mainly been focused on low‐lying grassland areas, whereas research on high‐altitude grassland areas, especially on the carbon budget of remote areas like the Qinghai‐Tibetan plateau is insufficient. To address this issue, flux of CO2 were measured over an alpine shrubland ecosystem (37°36′N, 101°18′E; 325 above sea level [a. s. l.]) on the Qinghai‐Tibetan Plateau, China, for 2 years (2003 and 2004) with the eddy covariance method. The vegetation is dominated by formation Potentilla fruticosa L. The soil is Mol–Cryic Cambisols. To interpret the biotic and abiotic factors that modulate CO2 flux over the course of a year we decomposed net ecosystem CO2 exchange (NEE) into its constituent components, and ecosystem respiration (Reco). Results showed that seasonal trends of annual total biomass and NEE followed closely the change in leaf area index. Integrated NEE were ?58.5 and ?75.5 g C m?2, respectively, for the 2003 and 2004 years. Carbon uptake was mainly attributed from June, July, August, and September of the growing season. In July, NEE reached seasonal peaks of similar magnitude (4–5 g C m?2 day?1) each of the 2 years. Also, the integrated night‐time NEE reached comparable peak values (1.5–2 g C m?2 day?1) in the 2 years of study. Despite the large difference in time between carbon uptake and release (carbon uptake time < release time), the alpine shrubland was carbon sink. This is probably because the ecosystem respiration at our site was confined significantly by low temperature and small biomass and large day/night temperature difference and usually soil moisture was not limiting factor for carbon uptake. In general, Reco was an exponential function of soil temperature, but with season‐dependent values of Q10. The temperature‐dependent respiration model failed immediately after rain events, when large pulses of Reco were observed. Thus, for this alpine shrubland in Qinghai‐Tibetan plateau, the timing of rain events had more impact than the total amount of precipitation on ecosystem Reco and NEE.  相似文献   

19.
For decades, the productivity of tropical montane cloud forests (TMCF) has been assumed to be lower than in tropical lowland forests due to nutrient limitation, lower temperatures, and frequent cloud immersion, although actual estimates of gross primary productivity (GPP) are very scarce. Here, we present the results of a process-based modeling estimate of GPP, using a soil–plant–atmosphere model, of a high elevation Peruvian TMCF. The model was parameterized with field-measured physiological and structural vegetation variables, and driven with meteorological data from the site. Modeled transpiration corroborated well with measured sap flow, and simulated GPP added up to 16.2 ± SE 1.6 Mg C ha?1 y?1. Dry season GPP was significantly lower than wet season GPP, although this difference was 17% and not caused by drought stress. The strongest environmental controls on simulated GPP were variation of photosynthetic active radiation and air temperature (T air). Their relative importance likely varies with elevation and the local prevalence of cloud cover. Photosynthetic parameters (V cmax and J max) and leaf area index were the most important non-environmental controls on GPP. We additionally compared the modeled results with a recent estimate of GPP of the same Peruvian TMCF derived by the summing of ecosystem respiration and net productivity terms, which added up to 26 Mg C ha?1 y?1. Despite the uncertainties in modeling GPP we conclude that at this altitude GPP is, conservatively estimated, 30–40% lower than in lowland rainforest and this difference is driven mostly by cooler temperatures than changes in other parameters.  相似文献   

20.
The warm temperate deciduous forests in Asia have a relatively dense understory, hence, it is imperative that we understand the dynamics of transpiration in both the overstory (E O) and understory (E U) of forest stands under the influence of the Asian monsoon in order to improve the accuracy of forest water use budgeting and to identify key factors controlling forest water use under climate change. In this study, E O and E U of a temperate deciduous forest stand located in South Korea were measured during the growing season of 2008 using sap flow methods. The objectives of this study were (1) to quantify the total transpiration of the forest stand, i.e., overstory and understory, (2) to determine their relative contribution to ecosystem evapotranspiration (E eco), and (3) to identify factors controlling the transpiration of each layer. E O and E U were 174 and 22 mm, respectively. Total transpiration accounted for 55 % of the total E eco, revealing the importance of unaccounted contributions to E eco (i.e., soil evaporation and wet canopy evaporation). During the monsoon period, there was a strong reduction in the total transpiration, likely because of reductions in photosynthetic active radiation, vapor pressure deficit and plant area index. The ratio of E U to E O declined during the same period, indicating an effect of monsoon on the partitioning of E eco in its two components. The seasonal pattern of E O was synchronized with the overstory canopy development, which equally had a strong regulatory influence on E U.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号