首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hyperammonemia is responsible for most neurological alterations in patients with hepatic encephalopathy by mechanisms that remain unclear. Hyperammonemia alters phosphorylation of neuronal protein kinase C (PKC) substrates and impairs NMDA receptor-associated signal transduction. The aim of this work was to analyse the effects of hyperammonemia on the amount and intracellular distribution of PKC isoforms and on translocation of each isoform induced by NMDA receptor activation in cerebellar neurons. Chronic hyperammonemia alters differentially the intracellular distribution of PKC isoforms. The amount of all isoforms (except PKC zeta) was reduced (17-50%) in the particulate fraction. The contents of alpha, beta1, and epsilon isoforms decreased similarly in cytosol (65-78%) and membranes (66-83%), whereas gamma, delta, and theta; isoforms increased in cytosol but decreased in membranes, and zeta isoform increased in membranes and decreased in cytosol. Chronic hyperammonemia also affects differentially NMDA-induced translocation of PKC isoforms. NMDA-induced translocation of PKC alpha and beta is prevented by ammonia, whereas PKC gamma, delta, epsilon, or theta; translocation is not affected. Inhibition of phospholipase C did not affect PKC alpha translocation but reduced significantly PKC gamma translocation, indicating that NMDA-induced translocation of PKC alpha is mediated by Ca2+, whereas PKC gamma translocation is mediated by diacylglycerol. Chronic hyperammonemia reduces Ca+2-mediated but not diacylglycerol-mediated translocation of PKC isoforms induced by NMDA.  相似文献   

2.
The subcellular redistribution of protein kinase C family members (alpha, beta, gamma, delta, epsilon and zeta isoforms) was examined in response to treatment with 12-O-tetradecanoyl-phorbol-13 acetate (TPA) or nerve growth factor (NGF) in a synaptosomal-enriched P2 fraction from rat brain. Treatment with TPA affected members of the classical-PKC family (alpha, beta and gamma), resulting in a final loss of total protein of each isoenzyme. The kinetics of changes of members of the novel-PKC family are different, the delta isoform being translocated, but not down-regulated, while the epsilon isoform showing only a slight diminishing of immunoreactivity in the soluble and particulate fractions. The atypical-PKC zeta isoform was not translocated in response to TPA. Incubation with NGF induced a loss of immunoreactivity of the cytosolic alpha, beta and epsilon isoforms, but the membrane fractions of these isoforms were not appreciably affected. In contrast, a marked translocation from cytosol to membrane was observed in the case of the gamma and delta isoforms. The zeta isoform presented a slight translocation from the particulate fraction to the soluble fraction. Thus, the results show that the effects of TPA and NGF on PKC isoforms are not coincident in synaptosomes, the 6 isoform being activated and not down-regulated by both treatments, whereas the gamma isoform is only down-regulated in the case of TPA, but presents sustained translocation with NGF, indicating that PKC isoform-specific degradation pathways exist in synaptic terminals. The effects of NGF on PKC isoforms coexist with an increase in NGF-induced polyphosphoinositide hydrolysis, suggesting the participation of phospholipases.  相似文献   

3.
Epand RM  Kam A  Bridgelal N  Saiga A  Topham MK 《Biochemistry》2004,43(46):14778-14783
We compared the diacylglycerol kinase (DGK) catalyzed phosphorylation of 1-O-hexanoyl-2-oleoylglycerol (HOG) with 1-O-hexanoyl-2-arachidonoylglycerol (HAG). We assayed the activity of DGKalpha and DGKzeta using a liposomal-based assay system. Liposomal assays show that the DGKalpha and, to a lesser extent, DGKzeta preferentially act on substrates containing an arachidonoyl group when this group is incorporated into alkylacylglycerols. The activity of DGKalpha was 82 times greater with HAG compared to HOG. DGKzeta is 10 times more active in catalyzing the phosphorylation of HAG compared to HOG. Although diacylglycerols were better substrates for both DGKalpha and DGKzeta than the alkylacylglycerols, no specificity was exhibited for arachidonoyl-containing diacylglycerols. However, this specificity for HAG over HOG is modulated by the phospholipid composition of the liposome. Addition of cholesterol and/or phosphatidylethanolamine partially reduces the substrate selectivity. We also analyzed the kinetic constants for the phosphorylation of both diacylglycerol and 1-alkyl-2-acylglycerol catalyzed by the alpha, epsilon, or zeta isoforms using a soluble Triton mixed micelle system. We found that all three isoforms of DGK can phosphorylate 1-alkyl-2-acylglycerols but generally at a lower rate than for the corresponding diacylglycerol. The specificity of DGKepsilon for diacylglycerols containing an arachidonoyl group was retained when the ester group in the C-1 position is replaced with an ether linkage. In contrast, DGKalpha and, to a lesser extent, DGKzeta had greater specificity for arachidonoyl-containing 1-alkyl-2-acylglycerols than for arachidonoyl-containing diacylglycerols. This demonstrates that the acyl chain specificity is affected by the structure of the lipid headgroup.  相似文献   

4.
Mammalian diacylglycerol kinases are a family of enzymes that catalyze the phosphorylation of diacylglycerol to produce phosphatidic acid. The extent of interaction of these enzymes with monoacylglycerols is the focus of the present study. Because of the structural relationship between mono- and diacylglycerols, one might expect the monoacylglycerols to be either substrates or inhibitors of diacylglycerol kinases. This would have some consequence to lipid metabolism. One of the lipid metabolites that would be affected is 2-arachidonoyl glycerol, which is an endogenous ligand for the CB1 cannabinoid receptor. We determined if the monoglycerides 2-arachidonoyl glycerol or 2-oleoyl glycerol affected diacylglycerol kinase activity. We found that 2-arachidonoyl glycerol is a very poor substrate for either the epsilon or the zeta isoforms of diacylglycerol kinases. Moreover, 2-arachidonoyl glycerol is an inhibitor for both of these diacylglycerol kinase isoforms. 2-oleoyl glycerol is also a poor substrate for these two isoforms of diacylglycerol kinases. As an inhibitor, 2-oleoyl glycerol inhibits diacylglycerol kinase ε less than does 2-arachidonoyl glycerol, while for diacylglycerol kinase ζ, these two monoglycerides have similar inhibitory potency. These results have implications for the known role of diacylglycerol kinase ε in neuronal function and in epilepsy since the action of this enzyme will remove 1-stearoyl-2-arachidonoylglycerol, the precursor of the endocannabinoid 2-arachidonoyl glycerol.  相似文献   

5.
Protein kinase C (PKC), which plays a pivotal role in lymphocyte activation, represents a homologous family of at least nine proteins. Seven genes that encode PKC proteins have been identified. Since the regulatory properties and substrate specificities of the isoforms are not identical in vitro, it is possible that each isoform plays a unique role in cell activation. Toward an understanding of the role of PKC isoforms in lymphocyte activation we have studied the expression of mRNA encoding six of the isoforms (alpha, beta, gamma, delta, epsilon, and zeta) in T cell clones and B cell lines. PKC isoform phenotyping was done by MAPPing using isoform-specific primers and slot-blot analyses of mRNA were performed using specific probes. T cell clones and B cell lines were determined to express levels of the delta, epsilon, and zeta isoforms of PKC that were detectable by MAPPing. Plasmacytomas did not express PKC-beta message detectable by MAPPing. Slot blot analyses and Western blot analyses with peptide-specific antibody confirmed that B cell plasmacytomas did not express PKC-beta mRNA or protein. T cell clones and B cell lines were similar in that none expressed PKC-gamma. In cells that expressed PKC isoforms that were detectable by the MAPPing protocol, there was heterogeneity in the relative abundance of isoform mRNA (PKC-delta and -beta) and protein (PKC-beta and -epsilon). Such diversity of isoform expression could be responsible for the differential responsiveness of lymphocyte clones to activating stimuli.  相似文献   

6.
Glutamate-induced changes in the subcellular distribution of protein kinase C isoforms and in the intracellular calcium concentration were investigated in rat primary cortical neurons. Western blot analysis of protein kinase C isoforms (alpha, beta1, beta2, gamma, delta, epsilon, zeta and theta), performed 30 min after a 10 min treatment with 30 microM glutamate, revealed a decrease in the total beta1 (-24%) and beta2 (-40%) isoform levels, without any significant change in any of the other isozymes. All conventional isoforms translocated to the membrane compartment, while delta, epsilon, zeta and theta; maintained their initial subcellular distribution. Twenty-four hours after glutamate treatment, the total protein kinase C labelling had increased, particularly the epsilon isoform, which accounted for 34% of the total densitometric signal. At this time, protein kinase C beta1, delta, epsilon and zeta isoforms were mainly detected in the membrane compartment, while gamma and theta; signals were displayed almost solely in the cytosol. Basal intracellular calcium concentration (FURA 2 assay) was concentration-dependently increased (maximum effect +77%) 30 min, but not 24h after a 10 min glutamate (10-100 microM) treatment, while the net increase induced by electrical stimulation (10 Hz, 10s) was consistently reduced (maximum effect -64%). The N-methyl-d-aspartate receptor antagonist, MK-801, 1 microM, prevented glutamate action both 30 min and 24 h after treatment, while non-selective protein kinase C inhibitors, ineffective at 30 min, potentiated it at 24 h. These findings show that protein kinase C isoforms are differently activated and involved in the early and delayed glutamate actions, and that the prevailing effect of their activation is neuroprotective.  相似文献   

7.
We report the identification and characterization of a novel lipid kinase that phosphorylates multiple substrates. This enzyme, which we term MuLK for multi-substrate lipid kinase, does not belong to a previously described lipid kinase family. MuLK has orthologs in many organisms and is broadly expressed in human tissues. Although predicted to be a soluble protein, MuLK co-fractionates with membranes and localizes to an internal membrane compartment. Recombinant MuLK phosphorylates diacylglycerol, ceramide, and 1-acylglycerol but not sphingosine. Although its affinity for diacylglycerol and ceramide are similar, MuLK exhibits a higher V(max) toward diacylglycerol in vitro, consistent with it acting primarily as a diacylglycerol kinase. MuLK activity was inhibited by sphingosine and enhanced by cardiolipin. It was stimulated by calcium when magnesium concentrations were low and inhibited by calcium when magnesium concentrations were high. The effects of charged lipids and cations on MuLK activity in vitro suggest that its activity in vivo is tightly regulated by cellular conditions.  相似文献   

8.
The zeta isoform of protein kinase C (PKC zeta) was purified to near homogeneity from the cytosolic fraction of bovine kidney by successive chromatography on DEAE-Sephacel, heparin-Sepharose, phenyl-5PW, hydroxyapatite, and Mono Q. The purified enzyme had a molecular mass of 78 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein was recognized by an antibody raised against a synthetic oligopeptide corresponding to the deduced amino acid sequence of rat PKC zeta. The enzymatic properties of PKC zeta were examined and compared with conventional protein kinase C purified from rat brain. The activity of PKC zeta was stimulated by phospholipid but was unaffected by phorbol ester, diacylglycerol, or Ca2+. PKC zeta did not bind phorbol ester, and autophosphorylation was not affected by phorbol ester. Unsaturated fatty acid activated PKC zeta, but this activation was neither additive nor synergistic with phospholipid. These results indicate that regulation of PKC zeta is distinct from that of other isoforms and suggest that hormone-stimulated increases in diacylglycerol and Ca2+ do not activate this isoform in cells. It is possible that PKC zeta belongs to another enzyme family, in which regulation is by a different mechanism from that for other isoforms of protein kinase C.  相似文献   

9.
The specificity of the phospholipid cofactor requirement of rat brain protein kinase C was investigated using Triton X-100 mixed micellar methods. Sixteen analogues of phosphatidylserine were prepared and tested for their ability to support protein kinase C activity, [3H]phorbol 12,13-dibutyrate binding, and protein kinase C binding to mixed micelles. Phosphatidylserinol, -L-serine methyl ester, -N-acetyl-L-serine, -2-hydroxyacetate, -3-hydroxypropionate, and -4-hydroxybutyrate did not activate protein kinase C in mixed micelles containing 2 mol % of sn-1,2-dioleoylglycerol. This indicates that both the carboxyl and amino moieties are important for activation. Phosphatidyl-D-serine and -L-homoserine were incapable of supporting full activation; this demonstrates stereospecificity and the importance of the distance between the phosphate and carboxyl and amino moieties. Since 1,2-rac-phosphatidyl-L-serine and 1,3-phosphatidyl-L-serine fully supported protein kinase C activity, the stereochemistry within the glycerol backbone at the interface was not necessary for maximal activation. Neither lysophosphatidyl-L-serine nor 1-oleoyl-2-acetyl-sn-glycero-3-phospho-L-serine supported protein kinase C activity implying that the interfacial conformation is critical to the activation process. The phospholipid dependencies of [3H]phorbol 12,13-dibutyrate binding and of protein kinase C binding to mixed micelles containing sn-1,2-dioleoylglycerol did not mirror those for activation. The data demonstrate that protein kinase C possesses a high degree of specificity with respect to phospholipid activation and implicate several functional groups within the phospho-L-serine polar head group in binding and activation.  相似文献   

10.
Individual isoforms of the protein kinase C (PKC) family of kinases may have assumed distinct responsibilities for the control of complex and diverse cellular functions. In this study, we show that an isoform specific interaction between PKC epsilon and filamentous actin may serve as a necessary prelude to the enhancement of glutamate exocytosis from nerve terminals. Using a combination of cosedimentation, overlay, and direct binding assays, we demonstrate that filamentous actin is a principal anchoring protein for PKC epsilon within intact nerve endings. The unusual stability and direct nature of this physical interaction indicate that actin filaments represent a new class of PKC- binding protein. The binding of PKC epsilon to actin required that the kinase be activated, presumably to expose a cryptic binding site that we have identified and shown to be located between the first and second cysteine-rich regions within the regulatory domain of only this individual isoform of PKC. Arachidonic acid (AA) synergistically interacted with diacylglycerol to stimulate actin binding to PKC epsilon. Once established, this protein-protein interaction securely anchored PKC epsilon to the cytoskeletal matrix while also serving as a chaperone that maintained the kinase in a catalytically active conformation. Thus, actin appears to be a bifunctional anchoring protein that is specific for the PKC epsilon isoform. The assembly of this isoform-specific signaling complex appears to play a primary role in the PKC-dependent facilitation of glutamate exocytosis.  相似文献   

11.
Respiratory syncytial virus (RSV) is an important respiratory pathogen that preferentially infects epithelial cells in the airway and causes a local inflammatory response. Very little is known about the second messenger pathways involved in this response. To characterize some of the acute response pathways involved in RSV infection, we used cultured human epithelial cells (A549) and optimal tissue culture-infective doses (TCID(50)) of RSV. We have previously shown that RSV-induced IL-8 release is linked to activation of the extracellular signal-related kinase (ERK) mitogen-activated protein kinase pathway. In this study, we evaluated the upstream events involved in ERK activation by RSV. RSV activated ERK at two time points, an early time point consistent with viral binding and a later sustained activation consistent with viral replication. We next evaluated the role of protein kinase C (PKC) isoforms in RSV-induced ERK kinase activity. We found that A549 cells contain the Ca(2+)-dependent isoforms alpha and beta1, and the Ca(2+)-independent isoforms delta, epsilon, eta, mu, theta, and zeta. Western analysis showed that RSV caused no change in the amounts of these isoforms. However, kinase activity assays demonstrated activation of isoform zeta within 10 min of infection, followed by a sustained activation of isoforms beta1, delta, epsilon, and mu 24-48 h postinfection. A cell-permeable peptide inhibitor specific for the zeta isoform decreased early ERK kinase activation by RSV. Down-regulation of the other PKC isoforms with PMA blocked the late sustained activation of ERK by RSV. These studies suggest that RSV activates multiple PKC isoforms with subsequent downstream activation of ERK kinase.  相似文献   

12.
Protein kinase C (PKC) is involved in signaling that modulates the proliferation and differentiation of many cell types, including mammary epithelial cells. In addition, changes in PKC expression or activity have been observed during mammary carcinogenesis. In order to examine the involvement of specific PKC isoforms during normal mammary gland development, the expression and localization of PKCs alpha, delta, epsilon and zeta were examined during puberty, pregnancy, lactation, and involution. By immunoblot analysis, expression of PKC alpha, delta, epsilon and zeta proteins was increased in mammary epithelial organoids during the transition from puberty to pregnancy. In mammary gland frozen sections, PKCs alpha, delta, epsilon and zeta were stained in the luminal epithelium and myoepithelium, in varying isoform-and developmental stage-specific locations. PKC alpha was found in a punctate apical localization in the luminal epithelium during pregnancy. During lactation, PKC epsilon was present in the nucleus, and PKC zeta was concentrated in the subapical region of the luminal epithelium. Additionally, marked staining for PKCs alpha, delta, epsilon, and zeta was observed in the myoepithelial cells at the base of ducts and alveoli. This basal ductal and alveolar staining differed in intensity in a developmentally-specific fashion. During most time points (virgin, pregnant, lactating, and early involution), myoepithelial cells of the duct were more intensely stained than those lining the alveoli for PKCs alpha, delta, epsilon and zeta. During late involution (days 9-12), the preferential staining of ducts was lost or reversed, and the myoepithelial cells lining the regressing alveolar structures stained equally (PKCs epsilon and zeta) or more intensely (PKCs alpha and delta), coincident with the thickening of the myoepithelial cells surrounding the regressing alveoli. The increased PKC isoform staining at the base of alveoli during involution suggests that alveolar regression may be influenced by alterations in signaling in the alveolar myoepithelium.  相似文献   

13.
To characterize age-induced effects on muscle protein kinase C (PKC) and its regulation by the steroid hormone 1,25(OH)2-vitamin D3 [1,25(OH)2D3], changes in PKC activity and the expression and translocation of the specific PKC conventional isoforms alpha and beta, novel isoforms delta, epsilon, and theta and atypical isoform zeta were studied in homogenates and subcellular fractions from skeletal muscle of young (3 months) and aged (24 months) rats treated in vitro with 1,25(OH)2D3. The hormone (10(-9) M) increased total and membrane PKC activity, within 1 min, and these effects were completely blunted in muscle from aged rats. The presence of PKC isoenzymes was shown by Western blot analysis with the use of specific antibodies. The expression of PKC alpha, beta and delta was greatly diminished in old rats, whereas age-related changes were less pronounced in the isoforms epsilon, theta and zeta. After a short exposure (1 min) of muscle to 1,25(OH)2D3, increased amounts of PKC alpha and beta in muscle membranes and reverse translocation (from membrane to cytosol) of PKC epsilon were observed only in young animals. The data indicate that, in rat muscle, ageing impairs calcium-dependent PKC (alpha and beta) and calcium-independent PKC (delta, epsilon, theta and zeta) signal transduction pathways under selective regulation by 1,25(OH)2D3.  相似文献   

14.
The binding of Ab (IgG)-opsonized particles by FcgammaRs on macrophages results in phagocytosis of the particles and generation of a respiratory burst. Both IgG-stimulated phagocytosis and respiratory burst involve activation of protein kinase C (PKC). However, the specific PKC isoforms required for these responses have yet to be identified. We have studied the involvement of PKC isoforms in IgG-mediated phagocytosis and respiratory burst in the mouse macrophage-like cell line, RAW 264.7. Like primary monocyte/macrophages, their IgG-mediated phagocytosis was calcium independent and diacylglycerol sensitive, consistent with novel PKC activation. Respiratory burst in these cells was Ca2+ dependent and inhibited by staurosporine and calphostin C as well as by the classic PKC-selective inhibitors G? 6976 and CGP 41251, suggesting that classic PKC is required. In contrast, phagocytosis was blocked by general PKC inhibitors but not by the classic PKC-specific drugs. RAW 264.7 cells expressed PKCs alpha, betaI, delta, epsilon, and zeta. Subcellular fractionation demonstrated that PKCs alpha, delta, and epsilon translocate to membranes during phagocytosis. In Ca2+-depleted cells, only novel PKCs delta and epsilon increased in membranes, and the time course of their translocation was consistent with phagosome formation. Confocal microscopy of cells transfected with green fluorescent protein-conjugated PKC alpha or epsilon confirmed that these isoforms translocated to the forming phagosome in Ca-replete cells, but only PKC epsilon colocalized with phagosomes in Ca2+-depleted cells. Taken together, these results suggest that the classic PKC alpha mediates IgG-stimulated respiratory burst in macrophages, whereas the novel PKCs delta and/or epsilon are necessary for phagocytosis.  相似文献   

15.
Diacylglycerol kinase (DGK) terminates diacylglycerol (DAG) signaling by phosphorylating DAG to produce phosphatidic acid, which also has signaling properties. Thus, precise control of DGK activity is essential for proper signal transduction. We demonstrated previously that a peptide corresponding to the myristoylated alanine-rich C kinase substrate (MARCKS) phosphorylation site domain (PSD) in DGK zeta was phosphorylated in vitro by an active fragment of protein kinase C (PKC). In the present study, we tested full-length DGK zeta and found that PKC alpha phosphorylated DGK zeta on serines within the MARCKS PSD in vitro and in vivo. DGK zeta also coimmunoprecipitated with PKC alpha, suggesting that they reside in a regulated signaling complex. We then tested whether phosphorylation affected DAG kinase activity. We found that a mutant (DGK zeta S/D) in which serines within the MARCKS PSD were altered to aspartates (to mimic phosphorylation) had lower activity compared with wild-type DGK zeta or a control mutant (DGK zeta S/N) in which the same serines were changed to asparagines. Furthermore, activation of PKC alpha by phorbol 12-myristate 13-acetate inhibited the activity of wild-type DGK zeta, but not DGK zeta S/D, in human embryonic kidney 293 cells. These results suggest that by phosphorylating the MARCKS PSD, PKC alpha attenuates DGK zeta activity. Supporting this, we found that cells expressing DGK zeta S/D had higher DAG levels and grew more rapidly compared with cells expressing DGK zeta S/N that could not be phosphorylated. Taken together, these results indicate that PKC alpha phosphorylates DGK zeta in cells, and this phosphorylation inhibits its kinase activity to remove cellular DAG, thereby affecting cell growth.  相似文献   

16.
Protein kinase C is a serine/threonine protein kinase which is activated in the cell in response to production of diacylglycerol. Gene cloning has revealed the presence of a highly related family of enzymes, which can be sub-divided into groups on the basis of sequence conservation. Differences are seen in both isoform distribution and associated biochemical activity, for example in substrate specificity and activator requirements. Comparison of the protein sequences andin vitro activities of the protein kinase C isoforms has identified regions important for particular aspects of kinase function. Some of these regions are also found associated with other proteins, allowing confirmation of the assigned activity. Site-directed mutagenesis has confirmed the presence of an autoinhibitory sequence involved in protein kinase C regulation and generated constitutively activated proteins which can be used to study differential isoform function. These same sequences have been shown to play a role in substrate selection, perhaps by competition for binding to the active site. Protein kinase C is known to be a phosphoprotein and the identification of regulatory sites phosphorylated by a ‘PKC-kinase’ suggest a possible alternative route for regulation of protein kinase C activity.  相似文献   

17.
We identified a conserved pattern of residues L-X(3-4)-R-X(2)-L-X(4)-G, in which -X(n)- is n residues of any amino acid, in two enzymes acting on the polyunsaturated fatty acids, diacylglycerol kinase epsilon (DGK?) and phosphatidylinositol-4-phosphate-5-kinase Iα (PIP5K Iα). DGK? is the only one of the 10 mammalian isoforms of DGK that exhibits arachidonoyl specificity and is the only isoform with the motif mentioned above. Mutations of the essential residues in this motif result in the loss of arachidonoyl specificity. Furthermore, DGKα can be converted to an enzyme having this motif by substituting only one residue. When DGKα was mutated so that it gained the motif, the enzyme also gained some specificity for arachidonoyl-containing diacylglycerol. This motif is present also in an isoform of phosphatidylinositol-4-phosphate-5-kinase that we demonstrated had arachidonoyl specificity for its substrate. Single residue mutations within the identified motif of this isoform result in the loss of activity against an arachidonoyl substrate. The importance of acyl chain specificity for the phosphatidic acid activation of phosphatidylinositol-4-phosphate-5-kinase is also shown. We demonstrate that the acyl chain dependence of this phosphatidic acid activation is dependent on the substrate. This is the first demonstration of a motif that endows specificity for an acyl chain in enzymes DGKε and PIP5K Iα.  相似文献   

18.
Protein kinase C eta (PKCeta) is one of several PKC isoforms found in humans. It is a novel PKC isoform in that it is activated by diacylglycerol and anionic phospholipids but not calcium. The crystal structure of the PKCeta-C2 domain, which is thought to mediate anionic phospholipid sensing in the protein, was determined at 1.75 A resolution. The structure is similar to that of the PKC epsilon C2 domain but with significant variations at the putative lipid-binding site. Two serine residues within PKC eta were identified in vitro as potential autophosphorylation sites. In the unphosphorylated structure both serines line the putative lipid-binding site and may therefore play a role in the lipid-regulation of the kinase.  相似文献   

19.
20.
Protein kinase C (PKC) isoforms play distinct roles in cellular functions. We have previously shown that ionizing radiation activates PKC isoforms (alpha, delta, epsilon, and zeta), however, isoform-specific sensitivities to radiation and its exact mechanisms in radiation mediated signal transduction are not fully understood. In this study, we showed that overexpression of PKC isoforms (alpha, delta, epsilon, and zeta) increased radiation-induced cell death in NIH3T3 cells and PKC epsilon overexpression was predominantly responsible. In addition, PKC epsilon overexpression increased ERK1/2 activation without altering other MAP-kinases such as p38 MAPK or JNK. Co-transfection of dominant negative PKC epsilon (PKC epsilon -KR) blocked both PKC epsilon -mediated ERK1/2 activation and radiation-induced cell death, while catalytically active PKC epsilon construction augmented these phenomena. When the PKC epsilon overexpressed cells were pretreated with PD98059, MEK inhibitor, radiation-induced cell death was inhibited. Co-transfection of the cells with a mutant of ERK1 or -2 (ERK1-KR or ERK2-KR) also blocked these phenomena, and co-transfection with dominant negative Ras or Raf cDNA revealed that PKC epsilon -mediated ERK1/2 activation was Ras-Raf-dependent. In conclusion, PKC epsilon -mediated ERK1/2 activation was responsible for the radiation-induced cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号