首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper has two purposes. The first is to review the past studies on the structure, biosynthesis, and immunological properties of a class of glycoproteins, the lysosomal enzymes, in Dictyostelium discoideum. The second purpose is to present new data on the analysis of mutant strains altered in the biosynthesis of the lipid-linked precursor of N-linked oligosaccharides, and on the characterization of new carbohydrate antigenic determinants found on multiple proteins in Dictyostelium. We will also show how a combination of genetic, biochemical and immunochemical approaches have been used to unravel a portion of the glycosylation pathway in Dictyostelium.The long-term goal of these studies is to use Dictyostelium discoideum as a model system to understand the functions of a variety of glycoconjugates in a multicellular organism. The existence of a large number of mutant strains which are altered in a variety of cellular functions, development and the posttranslational modification of multiple proteins, offers a great opportunity to explore this area.  相似文献   

2.
Evidence has been found for a generalized change in the post-translational modification of lysosomal enzymes during development of Dictyostelium discoideum. The physical and antigenic properties of four developmentally regulated lysosomal enzymes, N-acetylglucosaminidase, beta-glucosidase, alpha-mannosidase, and acid phosphatase, have been examined throughout the life cycle. In vegetative cells, a single major isoelectric species is detected for each enzymatic activity on native nonequilibrium isoelectric focusing gels. Between 6 and 10 hr of development, all activities, including the preformed enzyme, become less negatively charged, resulting in a modest but reproducible shift in the isoelectric focusing pattern. This alteration is not detected by native gel electrophoresis at constant pH. As development continues, the specific activity of beta-glucosidase, alpha-mannosidase, and acid phosphatase continues to increase and coincidentally, new, less acidic isozymic bands of activity can be observed on both gel systems. Some of these new isozymes accumulate preferentially in anterior cells, while others accumulate preferentially in posterior cells of migrating slugs. N-Acetylglucosaminidase does not increase in specific activity late in development and no new isozymic species appear. Using a monoclonal antibody that reacts with sulfated N-linked oligosaccharides shared by vegetative lysosomal enzymes in D. discoideum, the antigenicity of the developmental isozymes has been characterized. All of the enzymatic activity present during vegetative growth and early development is immunoprecipitable. However, the less negatively charged isozymes that accumulate after aggregation are not recognized by the antibody. Nonantigenic acid phosphatase and alpha-mannosidase are found in both anterior and posterior cells from migrating pseudoplasmodia. Since each enzyme is coded by a single structural gene, these results suggest that the isozymes present late in development arise from the synthesis of the same polypeptides with altered post-translational modifications. The appearance of anterior and posterior specific isozymes is likely to be the result of cell type specific changes in the glycoprotein modification pathway for newly synthesized proteins.  相似文献   

3.
Although previous studies have indicated that N-linked oligosaccharides on lysosomal enzymes in Dictyostelium discoideum are extensively phosphorylated and sulfated, the role of these modifications in the sorting and function of these enzymes remains to be determined. We have used radiolabel pulse-chase, subcellular fractionation, and immunofluorescence microscopy to analyze the transport, processing, secretion, and sorting of two lysosomal enzymes in a mutant, HL244, which is almost completely defective in sulfation. [3H]Mannose-labeled N-linked oligosaccharides were released from immunoprecipitated alpha-mannosidase and beta-glucosidase of HL244 by digestion with peptide: N-glycosidase. The size, Man9-10GlcNAc2, and processing of the neutral species were similar to that found in the wild type, but the anionic oligosaccharides were less charged than those from the wild-type enzymes. All of the negative charges on the oligosaccharides for HL244 were due to the presence of 1, 2, or 3 phosphodiesters and not to sulfate esters. The rate of proteolytic processing of precursor forms of alpha-mannosidase and beta-glucosidase to mature forms in HL244 was identical to wild type. The precursor polypeptides in the mutant and the wild type were membrane associated until being processed to mature forms; therefore, sulfated sugars are not essential for this association. Furthermore, the rate of transport of alpha-mannosidase and beta-glucosidase from the endoplasmic reticulum to the Golgi complex was normal in the mutant as determined by the rate at which the newly synthesized proteins became resistant to the enzyme, endo-beta-N-acetylglucosaminidase H. There was no increase in the percentage of newly synthesized mutant precursors which escaped sorting and were secreted, and the intracellularly retained lysosomal enzymes were properly localized to lysosomes as determined by fractionation of cell organelles on Percoll gradients and immunofluorescence microscopy. However, the mutant secreted lysosomally localized mature forms of the enzymes at 2-fold lower rates than wild-type cells during both growth and during starvation conditions that stimulate secretion. Furthermore, the mutant was more resistant to the effects of chloroquine treatment which results in the missorting and oversecretion of lysosomal enzymes. Together, these results suggest that sulfation of N-linked oligosaccharides is not essential for the transport, processing, or sorting of lysosomal enzymes in D. discoideum, but these modified oligosaccharides may function in the secretion of mature forms of the enzymes from lysosomes.  相似文献   

4.
Dictyostelium discoideum is a useful system to study the biosynthesis of lysosomal enzymes because of the relative ease with which it can be manipulated genetically and biochemically. Previous studies have revealed that lysosomal enzymes are synthesized in vegetatively growing amoebae as glycosylated precursor polypeptides that are phosphorylated and sulfated on their N-linked oligosaccharide side-chains upon arrival in the Golgi complex. The precursor polypeptides are membrane associated until they are proteolytically processed and deposited as soluble mature enzymes in lysosomes. In this paper we review biochemical experiments designed to determine the roles of post-translational modification, acidic pH compartments, and proteolytic processing in the transport and sorting of lysosomal enzymes. We also describe molecular genetic approaches that are being employed to study the biosynthesis of these enzymes. Mutants altered in the sorting and secretion of lysosomal enzymes are being analyzed biochemically, and we describe recent efforts to clone the genes coding for three lysosomal enzymes in order to better understand the molecular mechanisms involved in the targeting of these enzymes.  相似文献   

5.
In Dictyostelium discoideum, the lysosomal enzyme alpha-mannosidase is first synthesized as an N-glycosylated precursor of Mr 140,000. After a 20-30-min lag period, up to 30% of the precursor molecules are rapidly secreted, whereas the rest remain cellular and are proteolytically processed (t 1/2 = 8 min) to mature subunits of Mr 58,000 and 60,000. The secreted precursor is modified more extensively than the cellular form, as is revealed by differences in size, charge, and sensitivity to endoglycosidase H. Subcellular fractionation has shown that, following synthesis in the rough endoplasmic reticulum, the precursor is transported to a low density membrane fraction that contains Golgi membranes. Proteolytic processing takes place in these vesicles, since newly cleaved mature enzyme, but no precursor, co-fractionates with lysosomes. Under conditions that disrupt vesicular membranes, the precursor remains associated with the membrane fraction, whereas the newly processed mature enzyme is soluble. Proteolytic cleavage of the precursor thus coincides with the release of the mature enzyme into the lumen of a lysosomal compartment. These findings suggest a possible mechanism for lysosomal targeting that involves the specific association of enzyme precursors with Golgi membranes.  相似文献   

6.
We report the cloning and analysis of a clathrin heavy-chain cDNA from the eukaryotic microorganism, Dictyostelium discoideum. A single gene, designated chcA, for the clathrin heavy chain encoded a protein of 1,694 amino acids with a molecular mass of 193,618 daltons. Comparison of the amino acid sequence with the rat and with the yeast sequence showed that the highly conserved protein was more similar to the mammalian clathrin heavy chain (57% identity) than to the yeast heavy chain (45% identity). The mRNA for the clathrin heavy chain was regulated during development. mRNA levels were highest during vegetative growth and declined as the cells progressed through the 24-hr developmental cycle. The concentration of clathrin heavy-chain protein was the same in cells grown in liquid media (high rates of pinocytosis) as in cells grown with bacteria (low rates of pinocytosis), which suggests that regulation of pinocytosis in these cells is not achieved by altering the concentration of clathrin.  相似文献   

7.
Two different Dictyostelium discoideum cell lines that lack myosin heavy chain protein (MHC A) have been previously described. One cell line (mhcA) was created by antisense RNA inactivation of the endogenous mRNA and the other (HMM) by insertional mutagenesis of the endogenous myosin gene. The two cell lines show similar developmental defects; they are delayed in aggregation and become arrested at the mound stage. However, when cells that lack myosin heavy chain are mixed with wild-type cells, some of the mutant cells are capable of completing development to form mature spores. The pattern of expression of a number of developmentally regulated genes has been examined in both mutant cell lines. Although morphogenesis becomes aberrant before aggregation is completed, all of the markers that we have examined are expressed normally. These include genes expressed prior to aggregation as well as prespore genes expressed later in development. It appears that the signals necessary for cell-type differentiation are generated in the aborted structures formed by cells lacking MHC A. The mhcA cells have negligible amounts of MHC A protein while the HMM cells express normal amounts of a fragment of the myosin heavy chain protein similar to heavy meromyosin (HMM). The expression of myosin light chain was examined in these two cell lines. HMM cells accumulate normal amounts of the 18,000-D light chain, while the amount of light chain in mhcA cells is dramatically reduced. It is likely that the light chains assemble normally with the HMM fragment in HMM cells, while in cells lacking myosin heavy chain (mhcA) the light chains are unstable.  相似文献   

8.
A Dictyostelium discoideum myosin heavy chain kinase has been purified 14,000-fold to near homogeneity. The enzyme has a Mr = 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and greater than 700,000 as determined by gel filtration on Bio-Gel A-1.5m. The enzyme has a specific activity of 1 mumol/min X mg when assayed at a Dictyostelium myosin concentration of 0.3 mg/ml. A maximum of 2 mol of phosphate/mol of myosin is incorporated by the kinase, and the phosphorylated amino acid is threonine. Phosphate is incorporated only into the myosin heavy chains, not into the light chains. The actin-activated Mg2+-ATPase of Dictyostelium myosin is inhibited 70-80% following maximal phosphorylation with the kinase. The myosin heavy chain kinase requires 1-2 mM Mg2+ for activity and is most active at pH 7.0-7.5. The activity of the enzyme is not significantly altered by the presence of Ca2+, Ca2+ and calmodulin, EGTA, cAMP, or cGMP. When incubated with Mg2+ and ATP, phosphate is incorporated into the myosin heavy chain kinase, perhaps by autophosphorylation.  相似文献   

9.
To explain the different secretion kinetics of lysosomal enzymes in Dictyostelium discoideum, previous investigators have hypothesized the existence of a heterogeneous population of lysosomes containing either the enzyme acid phosphatase or other hydrolase enzymes. This proposal predicts that at least two targeting mechanisms exist for lysosomal enzymes in this organism. To begin to investigate this possibility, the transport, processing, and targeting of acid phosphatase was studied by using a combination of radiolabel pulse-chase procedures, subcellular fractionations, and indirect immunofluorescence microscopy. Acid phosphatase was initially synthesized in axenically growing cells as a 56-kDa precursor polypeptide that was proteolytically processed after 20 min to a 55-kDa mature protein. This enzyme was rapidly transported from the endoplasmic reticulum to Golgi complex (halftime of 3 min) as measured by the acquisition of resistance to the enzyme endoglycosidase H. Furthermore, Percoll gradient fractionations indicated that radiolabeled forms of acid phosphatase reached dense lysosomal vesicles at about the same time as final processing was occurring. Proper sorting of acid phosphatase in D. discoideum apparently was not critically dependent on low intravacuolar pH since the addition of ammonium chloride did not stimulate the missorting and secretion of acid phosphatase. These results are very similar to previous observations concerning other Dictyostelium lysosomal enzymes. Consistent with the existence of a heterogeneus population of lysosomes, the percentage of radiolabeled acid phosphatase secreted 4 h into a chase period was 15-fold lower as compared with another lysosomal enzyme, beta-glucosidase. However, acid phosphatase, alpha-mannosidase, and beta-glucosidase were all predominantly colocalized as determined by indirect immunofluorescence, which for the first time demonstrates the homogeneous nature of the lysosomal system in D. discoideum. Taken together these results suggest that the processing and transport of acid phosphatase may be similar in nature to the glycosidases. However, the different kinetics of secretion of acid phosphatase versus the colocalized glycosidase enzymes suggests that an undefined mechanism operates to distinguish these classes of enzymes at a step after localization to lysosomes but prior to secretion.  相似文献   

10.
The four earliest developmentally controlled enzymes in the cellular slime mold, Dictyostelium discoideum, accumulate during axenic growth in rich media. We have shown that at low cell titers the specific activities of N-acetylglucosaminidase, α-mannosidase, leucine aminopeptidase, and alanine transaminase are each at very low or vegetative levels comparable to amoebae which have been grown on bacteria as the food source. During the exponential phase of growth all four enzymes accumulate dramatically reaching cellular specific activities at least as high as during development. The magnitude of this accumulation is influenced by alterations in the growth medium. We suggest that these results, combined with those of prior investigations, indicate that a restricted segment of early development is initiated during axenic growth. This means that growth and early development are not mutually exclusive events in this organism. The secretion of lysosomal enzymes is also affected by the composition of the growth media. In all media, including growth in bacterial suspensions, lysosomal enzymes are secreted in significant quantities. There is a correspondence in the effects of media composition on the secretion of these enzymes and on the regulation of developmentally controlled enzymes during axenic growth. The secretion of lysosomal enzymes that are not developmentally regulated is affected in these media, suggesting that the regulation and secretion of these enzymes are under separate control. It is clear that studies of the regulation of lysosomal enzymes in this organism must take into account the secretion of the enzymes as well as their cellular specific activities to properly reflect levels of gene expression.  相似文献   

11.
Clathrin heavy chain, light chain interactions   总被引:13,自引:5,他引:13       下载免费PDF全文
Purified pig brain clathrin can be reversibly dissociated and separated into heavy chain trimers and light chains in the presence of non-denaturing concentrations of the chaotrope thiocyanate. The isolated heavy chain trimers reassemble into regular polygonal cage structures in the absence of light chains. The light chain fraction can be further resolved into its two components L alpha and L beta which give different one-dimensional peptide maps. Radiolabelled light chains bind with high affinity (KD < 10(-10) M) to heavy chain trimers, to heavy chain cages and to a 110,000 mol. wt. tryptic fragment of the heavy chain. Both light chains compete with each other and with light chains from other sources for the same binding sites on heavy chains and c.d. spectroscopy shows that the two pig brain light chains possess very similar structures. We conclude that light chains from different sources, despite some heterogeneity, have a highly conserved, high affinity binding site on the heavy chain but are not essential for the formation of regular cage structures.  相似文献   

12.
Western blotting and immunoprecipitation data indicated that lysosomal enzymes represent a subset of the sulfated macromolecules present in vegetative Dictyostelium discoideum amoebae and account for less than 2.5% of the total sulfate incorporated during vegetative growth. These data suggest that the majority of the highly sulfated macromolecules of vegetative D. discoideum amoebae are not related to the lysosomal enzymes.  相似文献   

13.
We have examined the relationship of N-linked oligosaccharide structures to the proper targeting and proteolytic processing of two lysosomal enzymes, alpha-mannosidase and beta-glucosidase, in the slime mold Dictyostelium discoideum. Two different mutant strains, HL241 and HL243, each synthesize the same nonglucosylated, truncated, lipid-linked oligosaccharide precursor, Man6GlcNAc2. [3H]Mannose-labeled N-linked oligosaccharides were studied following their release from immunoprecipitated alpha-mannosidase and beta-glucosidase by digestion with peptide:N-glycosidase F. The oligosaccharides from both mutants resembled each other, but they were smaller and contained fewer anionic groups than those from the wild-type. The oligosaccharides from the mutants strains were reduced in sulfate and Man-6-P content, and all Man-6-P was in the form of acid-stable phosphodiesters. Pulse-chase radiolabeling experiments using [35S] methionine indicated that the precursor forms of both enzymes were smaller than wild-type, and that this difference was due solely to differences in N-linked oligosaccharides. The precursor forms of the enzymes were not over-secreted, but appeared to be proteolytically processed into mature forms at approximately 50% the rate of wild-type. This is mainly due to their prolonged retention in the rough endoplasmic reticulum, but, ultimately, both enzymes were properly targeted to lysosomes. These studies indicate that a reduction in the amount of sulfation, phosphorylation or size of the N-linked oligosaccharides in these mutants is not critical for the proteolytic processing and targeting of the lysosomal enzymes, but that these changes may influence their rate of exit from the rough endoplasmic reticulum.  相似文献   

14.
Cell sorting within the prestalk zone of Dictyostelium discoideum   总被引:2,自引:0,他引:2  
Abstract. The prestalk zone of slugs of Dictyostelium discoideum has been shown to contain three subregions in which the extracellular matrix genes ecmA and ecmB are differentially expressed; it is generally thought that these regions are defined by extracellular signals. Using β-galactosidase as a cell marker, we have shown that cells can sort specifically to all three regions. Cells from the posterior-prestalk zone ("prestalk 0 zone") which are injected into the slug tip move within 60 min back to their position of origin. When cells from the anterior prestalk zone (presumably containing a mixture of ecmA and ecmB expressers) are transplanted to the posterior prestalk zone, they move to the tip ("prestalk A zone") within 1 h and about 30 min subsequently are often found in a cone-shaped region within the tip ("prestalk B zone"). Cells transplanted to their own positions do not move significantly within this period. Since the sub-regions of the prestalk zone can be defined by sorting, it is possible that they are normally formed in this way rather than by position-dependent signals. Cells transplanted without a change in anterior-posterior position and cells which have sorted back to their positions of origin eventually spread out throughout the prestalk zone. This suggests that sorting preferences of cells are respecified. When posterior prestalk cells are transplanted to the prespore zone, respecification of sorting preference is suspended until the cells return to the prestalk zone and anterior-prestalk cells acquire posterior-prestalk sorting preferences.  相似文献   

15.
To study sorting in the endocytic pathway of a phagocytic and macropinocytic cell, monoclonal antibodies to membrane proteins of Dictyostelium discoideum were generated. Whereas the p25 protein was localized to the cell surface, p80 was mostly present in intracellular endocytic compartments as observed by immunofluorescence as well as immunoelectron microscopy analysis. The p80 gene was identified and encodes a membrane protein presumably involved in copper transport. Expression of chimeric proteins revealed that the cytoplasmic domain of p80 was sufficient to cause constitutive endocytosis and localization of the protein to endocytic compartments. Dileucine- and tyrosine-based endocytic signals described previously in mammalian systems were also capable of targeting chimera to endocytic compartments. In phagocytosing cells no membrane sorting was observed during formation of the phagosome. Both p25 and p80 were incorporated non-selectively in nascent phagosomes, and then retrieved shortly after phagosome closure. Our results emphasize the fact that very active membrane traffic takes place in phagocytic and macropinocytic cells. This is coupled with precise membrane sorting to maintain the specific composition of endocytic compartments.  相似文献   

16.
17.
To investigate the intracellular role of the clathrin heavy chain in living cells, we have used "antisense" RNA to engineer mutant Dictyostelium discoideum cells that are severely deficient in clathrin heavy chain expression. Immunoblots stained with an anti-clathrin heavy chain antiserum revealed that mutant cells contained undetectable amounts of clathrin heavy chain protein. Similarly, Northern blots showed an absence of clathrin heavy chain mRNA. Clathrin heavy chain-deficient Dictyostelium cells were viable, but exhibited growth rates twofold slower than parental cells. Whereas many morphological features of the mutant cells were normal, mutant cells lacked coated pits and coated vesicles. Clathrin-deficient cells were also missing large translucent vacuoles that serve as endosomes and contractile vacuoles. In the absence of clathrin heavy chain, mutant cells displayed three distinct functional defects: (a) impairment in endocytosis of fluid phase markers, but competence in another endocytic pathway, the phagocytosis of solid particles; (b) defects in osmoregulation; and (c) inability to complete the starvation-induced development cycle.  相似文献   

18.
Abstract. Changes during the development of Dictyostelium discoideum , in the abundance, synthesis, and cell-type-specific distribution of modifications on N-linked oligosaccharides, were measured using specific affinity probes for N-linked moeities. Total proteins and individual lysosomal enzymes were reacted with three monoclonal antibodies raised against Dictyostelium proteins (recognizing epitopes containing mannose 6-sulfate, sulfated N-acetylglucosamine, and an undefined but unsulfated N-linked group, respectively), the mammalian 215-kDa phosphomannosyl receptor, and Con A. Independent and dramatic changes in the reaction of the antibodies and phosphomannosyl receptor with protein were observed during development, whereas modest changes were observed in Con A binding. The two sulfated antigens, but not the other moeities, were reduced preferentially in prestalk and mature stalk cells. The lysosomal enzyme β-glucosidase, which is synthesized late in development, binds poorly to the phosphomannosyl receptor and contains little of the three antigens. The subcellular transport of lysosomal enzymes also changes during development, as most are not targeted to lysosomes as is normal, but are secreted in precursor form.  相似文献   

19.
The cellular specific activity of lysosomal alpha-mannosidase-1 increases dramatically during development in Dictyostelium discoideum. alpha-Mannosidase-1 is composed of two subunits (Mr = 58,000 and 60,000) which are derived from a common precursor polypeptide (Mr = 140,000). Using enzyme-specific monoclonal antibodies we have determined that throughout development (a) the relative rate of precursor biosynthesis closely parallels the rate of accumulation of cellular enzyme activity and (b) the newly synthesized precursor is efficiently processed to mature enzyme (t1/2 less than 10 min). This indicates that the developmental accumulation of alpha-mannosidase-1 activity is primarily controlled by de novo enzyme synthesis. Furthermore, the change in the relative rate of enzyme precursor synthesis can be accounted for by an increase in the cellular level of functional alpha-mannosidase-1 mRNA during development.  相似文献   

20.
Dictyostelium discoideum cells have been generated that lack myosin heavy chain (MHC) due to antisense RNA inactivation of the endogenous mRNA or to insertional mutagenesis of the myosin gene. These cells retain chemotactic movement in gradients of the chemoattractant cAMP. Furthermore, cAMP does induce many biochemical and physiological responses in aggregative cells, including binding of cAMP to surface receptors, modification, and down-regulation of the receptor; activation of adenylate and guanylate cyclase, secretion of cAMP; and the association of actin to the Triton-insoluble cytoskeleton. Cells lacking MHC were found to have a requirement for bivalent cations in the medium for optimal chemotaxis and cell aggregation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号