首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Collagen lysyl and prolyl hydroxylase activities were measured in cultured fibroblasts from a child with clinical features of Ehlers-Danlos syndrome. Lysyl-to-prolyl hydroxylase activity ratios in cells from the proband, mother, father, and control were .24, .86, .52, and 1.00, respectively, providing a biochemical diagnosis of Ehlers-Danlos syndrome type VI and indicating an autosomal recessive mode of inheritance in this family. Prenatal assessment of lysyl hydroxylase deficiency was requested and accomplished for the first time during a subsequent pregnancy in the family. A series of control cultures established lysyl hydroxylase activity to be similar in cultured amniotic fluid cells (AF and F cells) and in cultured dermal fibroblasts. Cultured F and AF cells from the monitored pregnancy had enzyme activity similar to controls, indicating that the fetus should not be affected by lysyl hydroxylase deficiency. This finding was confirmed by demonstration of normal lysyl hydroxylase activity in fibroblasts cultured from the newborn baby. These studies show that cells cultured from second trimester amniotic fluid have collagen lysyl hydroxylase activity similar to that in dermal fibroblasts, making prenatal diagnosis of lysyl hydroxylase deficiency possible.  相似文献   

2.
The activity and antigenicity of the collagen crosslinking enzyme, lysyl oxidase, and the proportions of reducible crosslink in skin biopsies from Ehlers-Danlos Type V subjects were equivalent to those of control skin. These results reveal that both the potential for crosslinking, and the ability to form reducible crosslinks is present in Ehlers-Danlos syndrome Type V subjects, clearly demonstrating that the defect in this disorder is not due to a defective crosslinking mechanism.  相似文献   

3.
To examine mechanisms by which reduced type V collagen causes weakened connective tissues in the Ehlers-Danlos syndrome (EDS), we examined matrix deposition and collagen fibril morphology in long-term dermal fibroblast cultures. EDS cells with COL5A1 haplo-insufficiency deposited less than one-half of hydroxyproline as collagen compared to control fibroblasts, though total collagen synthesis rates are near-normal because type V collagen represents a small fraction of collagen synthesized. Cells from patients with osteogenesis imperfecta (OI) and haplo-insufficiency for proalpha1(I) chains of type I collagen also incorporated about one-half the collagen as controls, but this amount was proportional to their reduced rates of total collagen synthesis. Collagen fibril diameter was inversely proportional to type V/type I collagen ratios (EDS > control > OI). However, a reduction of type V collagen, in the EDS derived cells, was associated with the assembly of significantly fewer fibrils compared to control and OI cells. These data indicate that in cell culture, the quantity of collagen fibrils deposited in matrix is highly sensitive to reduction in type V collagen, far out of proportion to type V collagen's contribution to collagen mass.  相似文献   

4.
Summary Ehlers-Danlos syndrome (EDS) type IV is a clinically and genetically heterogeneous disorder characterized by thin skin, prominent venous vascular markings, markedly increased bruising, and an increased likelihood of large bowel and large artery rupture. We studied two type IV EDS patients. Both have decreased amounts of type III collagen in skin, but ultrastructural examination of dermis showed massive dilation of rough endoplasmic reticulum in dermal fibroblasts in one, but not the other. Both had a major population of collagen fibrils of small diameter. Although previous studies suggested absent synthesis of type III collagen as the hallmark of one type of EDS IV, several abnormalities in metabolism of that type of collagen may be responsible for the phenotype in these disorders. Such disorders are likely to provide better understanding of the function of specific collagens in tissues.  相似文献   

5.
Summary The parents of a child with the clinical symptoms of Ehlers-Danlos syndrome type VI were identified as third-degree cousins. Biochemical analysis of the dermis of the patient revealed a complete lack of hydroxylysine in the dermal collagen. The dermis of both parents contained only half the amount of hydroxylysine found in healthy individuals. Hydroxylation of prolyl residues was normal in the skin of the patient and his parents. Investigation of the collagen synthesized by fibroblasts derived from the skin of the patient showed a normal proportion of type I and type III collagen. However, while hydroxylation of prolyl residues was normal in type I and type III collagen, hydroxylation of lysyl residues was markedly lower than normal in both type I and type III collagen.Presented at the Annual Meeting of the Arbeitsgemeinschaft Dermatologische Forschung (ADF) Frankfurt, November 18–20, 1977  相似文献   

6.
Lumican, a prototypic leucine-rich proteoglycan with keratan sulfate side chains, is a major component of the cornea, dermal, and muscle connective tissues. Mice homozygous for a null mutation in lumican display skin laxity and fragility resembling certain types of Ehlers-Danlos syndrome. In addition, the mutant mice develop bilateral corneal opacification. The underlying connective tissue defect in the homozygous mutants is deregulated growth of collagen fibrils with a significant proportion of abnormally thick collagen fibrils in the skin and cornea as indicated by transmission electron microscopy. A highly organized and regularly spaced collagen fibril matrix typical of the normal cornea is also missing in these mutant mice. This study establishes a crucial role for lumican in the regulation of collagen assembly into fibrils in various connective tissues. Most importantly, these results provide a definitive link between a necessity for lumican in the development of a highly organized collagenous matrix and corneal transparency.  相似文献   

7.
Ehlers-Danlos syndrome is an inherited collagen disorder characterized by skin hyperextensibility, joint laxity, and tissue friability. In this study, it was hypothesized that Ehlers-Danlos syndrome is frequently undiagnosed in patients who present for repair of ventral abdominal wall hernias. A retrospective chart review was conducted, and patients who had presented for elective repair of recurrent abdominal wall herniation were identified. In all patients, one or more prior attempts at repair with either mesh or autologous tissues had failed. Patients in whom abdominal wall components were lost secondary to extirpation or trauma, patients who had required acute closure, and patients with less than 2 months of follow-up were excluded. Twenty patients met these criteria. Twenty cases of recurrent ventral hernia repairs were reviewed, with special attention to identification of the preoperative diagnosis of Ehlers-Danlos syndrome. Patients ranged in age from 29 to 75 years, with a mean age of 54 years. Five patients were male (25 percent), and 15 were female (75 percent). The majority (95 percent) were Caucasian. The most common initial procedures were gynecologic in origin (35 percent). A precise closure technique that minimizes recurrence after ventral hernia repairs was used. With use of this technique, there was only one recurrence over a follow-up period that ranged from 2 to 60 months (mean follow-up duration, 25.7 months). Two patients with Ehlers-Danlos syndrome were identified, and their cases are presented in this article. The "components separation" technique with primary component approximation and mesh overlay was used for defect closure in the two cases presented. The identification of these two patients suggests the possibility of underdiagnosis of Ehlers-Danlos syndrome among patients who undergo repeated ventral hernia repair and who have had previous adverse postoperative outcomes. There are no previous reports in the literature that address recurrent ventral abdominal herniation in patients with Ehlers-Danlos syndrome.  相似文献   

8.
Collagen was isolated by acetic acid extraction in the presence of protease inhibitors and also by pepsin digestion from the skins of dogs affected with the Ehlers-Danlos syndrome and the skins on non-affected dogs. The collagen preparations isolated by acetic acid extraction from the Ehlers-Danlos syndrome-affected dog skin contained a greater proportion of alpha-chains than the collagen preparations from the normal dog skin. When the collagen from the Ehlers-Danlos syndrome-affected dog skin was reduced with NaBH4 before heat denaturation, and electrophoresis, there was a greater proportion of beta-chains present. The collagen isolated from the normal dog skin was not affected by the NaBH4 reduction. Collagen preparations isolated by pepsin digestion from both the Ehlers-Danlos syndrome-affected dog skin and the non-affected dog skin contained the same quantity of alpha- and beta-chains. In addition, collagen from both affected and non-affected dog skins isolated by pepsin digestion contained 10-11% type III collagen as determined by the interrupted sodium dodecyl sulfate polyacrylamide gel electrophoresis method. Pepsin digestion of the collagens isolated by acetic acid extraction in the presence of protease inhibitors from the skins of affected and non-affected dogs eliminated the differences between the alpha:beta ratios of the affected and non-affected collagen preparations.  相似文献   

9.
Type I collagen is the most abundant structural protein in the mammalian body. It exists as a heterotrimer of two subunits in the form [alpha1(I)]2alpha2(I). Pathogenic mutations in COL1A1 and COL1A2, the genes that encode the two subunits, cause a range of phenotypes including mild to lethal forms of osteogenesis imperfecta and a restricted set of Ehlers-Danlos syndrome phenotypes. Lethal mutations usually result from missense mutations that disrupt the normal triple helical structure of the molecule. Multi-exon duplication or deletion in type I collagen genes has rarely been observed and has generally resulted in a lethal or severe phenotype. We report a partial duplication in the COLIA2 gene that causes a relatively mild phenotype, despite the addition of 477 amino acids to the triple helical domain of the proalpha2(I) chain. The abnormal molecule is synthesized and secreted by cultured dermal fibroblasts in a normal fashion. Electron microscopy of dermal tissue reveals small but otherwise near normal collagen fibrils. The gene duplication occurred by mitotic sister chromatid exchange in the mother who is mosaic for the duplication allele. Examination of the abnormal sequence suggests a means by which the duplicated molecule could be processed and properly incorporated into mature collagen fibrils.  相似文献   

10.
Collagen synthesis was examined in skin fibroblasts from a patient with a variant of Ehlers-Danlos syndrome. The relative rate of collagen synthesis to total protein synthesis in the patient's fibroblasts was always one-half of that in fibroblasts from normal controls. Total collagen synthesis, as assessed by quantification of total hydroxyproline, was also significantly lower than that of controls, indicating that the rate of collagen synthesis by the patient's fibroblasts was decreased compared with that by normal fibroblasts. Analysis of procollagen and collagen components showed the absence of the pro alpha 2(I) chain and its derivatives. Dot-blot and Northern-blot analyses showed the patient's fibroblasts to contain less than 10% of the mRNAs for pro alpha 2(I) found in control fibroblasts. In spite of these results, Southern blot analysis of genomic DNA indicated the presence of the same number of genes for the pro alpha 2(I) collagen chain in the patient's fibroblasts as in control fibroblasts, suggesting malfunctioning pro alpha 2(I) collagen genes as the cause for failure of the patient's fibroblasts to synthesize pro alpha 2(I) collagen chains.  相似文献   

11.
The electrophoretic mobilities of the collagen and procollagen type I and III chains synthesized by the fibroblasts isolated from patients with type I Ehlers-Danlos syndrome as well as a set of peptides obtained by splitting of pro alpha 1(I) and pro alpha 2(I) type I procollagens by cyanbromide are not different from the normal ones. The fact demonstrates the absence of long insertions or deletions, or the sufficient defects in intracellular chain modifications. The changes were also nor registered for the ratio of type I and III collagens from the digested by pepsin preparations of protein accumulating in the culture media of the cultured skin fibroblasts from patients. The studied strains of cultured fibroblasts from patients suffering the Ehlers-Danlos syndrome have the trend to increased accumulation of partially processed chains of proc alpha 1(I) and proc alpha 2(I) type I procollagen and to the increased ratio of pro alpha 1(I) to pro alpha 2(I).  相似文献   

12.
13.
Among the different subtypes of Ehlers-Danlos syndrome (EDS), the dominant types I–III have, so far, been uninformative biochemically and molecular genetically, and diagnostic problems with subgroup boundaries often arise. We have investigated the ultrastructural pattern of connective tissue macromolecules in skin biopsy specimens of some 85 patients aged 4 months-54 years who exhibit clinical symptoms or the suspicion of EDS I–IV. Based on the differential features of collagen fibrils and ground substance material, four distinct groups could be established. Group I (clinically EDS type I) showed disorganized collagen bundles and dense aggregations of collagen fibrils with bizarre shapes. Group II (clinically varying from EDS types I–III) revealed collagen bundles that regularly contained numerous “composite collagen fibrils” with enlarged “flower-like” cross-sections and rope-like longitudinal sections, often associated with increased amounts of matrix substances in the form of electron-dense irregular strands and filaments in a branched network. Group III (clinically EDS types II–III) presented smaller isolated collagen flowers and ropes associated with excessive filamentous ground substance material and flocculent material. Group IV (with clinical symptoms of EDS type IV) had a dermis thinned to one third of the normal and a reduced number of collagen bundles with small diameter fibrils. In 13 patients, the abnormal ultrastructural dermal architecture did not coincide with any of these four groups or with the pattern of any other inherited connective tissue disorder. In 16 additional patients with mostly mild clinical symptoms, such as muscle weakness and small joint hyperlaxity, no ultrastructural aberrations could be found. Even though the primary defects underlying the respective aberration of the collagen fibrils are still unknown, the differential ultrastructural changes of the collagen fibrils together with clinical symptoms should, as in other heterogeneous genetic disorders, facilitate the (provisional?) classification of EDS and permit the diagnosis of individual cases.  相似文献   

14.
The predominant form of type V collagen is the [α1(V)]?α2(V) heterotrimer. Mutations in COL5A1 or COL5A2, encoding respectively the α1(V)- and α2(V)-collagen chain, cause classic EDS (Ehlers-Danlos syndrome), a heritable connective tissue disorder, characterized by fragile hyperextensible skin and joint hypermobility. Approximately half of the classic EDS cases remain unexplained. Type V collagen controls collagen fibrillogenesis through its conserved α1(V)-N-propeptide domain. To gain an insight into the role of this domain, a yeast two-hybrid screen among proteins expressed in human dermal fibroblasts was performed utilizing the N-propeptide as a bait. We identified 12 interacting proteins, including extracellular matrix proteins and proteins involved in collagen biosynthesis. Eleven interactions were confirmed by surface plasmon resonance and/or co-immunoprecipitation: α1(I)- and α2(I)-collagen chains, α1(VI)-, α2(VI)- and α3(VI)-collagen chains, tenascin-C, fibronectin, PCPE-1 (procollagen C-proteinase enhancer-1), TIMP-1 (tissue inhibitor of metalloproteinases-1), MMP-2 (matrix metalloproteinase 2) and TGF-β1 (transforming growth factor β1). Solid-phase binding assays confirmed the involvement of the α1(V)-N-propeptide in the interaction between native type V collagen and type VI collagen, suggesting a bridging function of this protein complex in the cell-matrix environment. Enzymatic studies showed that processing of the α1(V)-N-propeptide by BMP-1 (bone morphogenetic protein 1)/procollagen C-proteinase is enhanced by PCPE-1. These interactions are likely to be involved in extracellular matrix homoeostasis and their disruption could explain the pathogenetic mechanism in unresolved classic EDS cases.  相似文献   

15.
Normal and Ehlers-Danlos syndrome type VI human skin and cornea fibroblasts were assayed for lysyl hydroxylase activity using two different collagen types as substrates. The enzyme from normal fibroblasts hydroxylated type I collagen more readily than type IV collagen. In the diseased cells the enzyme activity was significantly reduced, and the residual activity was preferentially directed towards type IV collagen. This suggests the existence of isoenzymes of lysyl hydroxylase or an alteration in the Ehlers-Danlos syndrome type VI that affects the binding of type I collagen more than that of type IV collagen.  相似文献   

16.
Skin fibrosis is characterized by activated fibroblasts and an altered architecture of the extracellular matrix. Excessive deposition of extracellular matrix proteins and altered cytokine levels in the dermal collagen matrix are common to several pathological situations such as localized scleroderma and systemic sclerosis, keloids, dermatosclerosis associated with venous ulcers and the fibroproliferative tissue surrounding invasively growing tumors. Which factors contribute to altered organization of dermal collagen matrix in skin fibrosis is not well understood. We recently demonstrated that cartilage oligomeric matrix protein (COMP) functions as organizer of the dermal collagen I network in healthy human skin (Agarwal et al., 2012). Here we show that COMP deposition is enhanced in the dermis in various fibrotic conditions. COMP levels were significantly increased in fibrotic lesions derived from patients with localized scleroderma, in wound tissue and exudates of patients with venous leg ulcers and in the fibrotic stroma of biopsies from patients with basal cell carcinoma. We postulate enhanced deposition of COMP as one of the common factors altering the supramolecular architecture of collagen matrix in fibrotic skin pathologies. Interestingly, COMP remained nearly undetectable in normally healing wounds where myofibroblasts transiently accumulate in the granulation tissue. We conclude that COMP expression is restricted to a fibroblast differentiation state not identical to myofibroblasts which is induced by TGFβ and biomechanical forces.  相似文献   

17.
Molecular sieve column chromatography was used to determine the amount of type I and III collagen synthesized by normal dermis and keloid biopsies and fibroblasts derived from these tissues. After incubation with radioactive proline, the collagen was extracted and separated into types I and III and then quantitated. There was no significant difference in the percent type III collagen synthesized by fresh keloid biopsies compared to normal dermis. Likewise, there was no significant difference in the percent type III collagen synthesized by keloid fibroblasts compared to normal dermal fibroblasts, However, fibroblasts from both keloid and normal dermis synthesized a lower percentage of type III collagen in cell culture compared to the original biopsies. These findings demonstrate that keloid collagen has the same type distribution as normal dermis and suggest that increased collagen synthesis in these lesions is not related to altered collagen types.  相似文献   

18.
Molecular sieve column chromatography was used to determine the amount of type I and III collagen synthesized by normal dermis and keloid biopsies and fibroblasts derived from these tissues. After incubation with radioactive proline, the collagen was extracted and separated into types I and III and then quantitated. There was no significant difference in the percent type III collagen synthesized by fresh keloid biopsies compared to normal dermis. Likewise, there was no significant difference in the percent type III collagen synthesized by keloid fibroblasts compared to normal dermal fibroblasts. However, fibroblasts from both keloid and normal dermis synthesized a lower percentage of type III collagen in cell culture compared to the original biopsies. These findings demonstrate that keloid collagen has the same type distribution as normal dermis and suggest that increased collagen synthesis in these lesions is not related to altered collagen types.  相似文献   

19.
It has been previously shown that dermis from subjects with hydroxylysine-deficient collagen contains approximately 5% of normal levels of hydroxylysine and sonicates of skin fibroblasts contain less than 15% of normal levels of collagen lysyl hydroxylase activity. However, cultures of dermal fibroblasts from two siblings with hydroxylysine-deficient collagen (Ehlers-Danlos Syndrome Type VI) compared to fibroblasts from normal subjects synthesize collagen containing approximately 50% of normal amounts of hydroxylysine. The lysyl hydroxylase deficient cultures synthesize both Type I and Type III collagen in the same proportion as control cultures. Both alpha 1(I) and alpha 2 chains are similarly reduced in hydroxylysine content. Collagen prolyl hydroxylation by normal collagen lysyl hydroxylation is the same with or without ascorbate supplementation. In mutant cells the rate of prolyl hydroxylation measured after release of inhibition by alpha, alpha'-dipyridyl is the same as in control cells. The rate of lysyl hydroxylation is reduced in mutant cells but only to approximately 50% of normal.  相似文献   

20.
This is a study of the processing of procollagen to collagen in cultures of skin and tendon fibroblasts. Processing was markedly increased by growing cells for 2-4 days postconfluence and then adding ascorbate to the medium for 2 days prior to labeling with [3H] proline. With this system, more than two-thirds of the pro-alpha chains of type I procollagen in the culture medium, and more than 90% of those in the cell layer, were rapidly processed to pC-alpha, pN-alpha, or alpha chains. Purified, exogenous procollagen was also rapidly processed in cell-free culture medium. The results showed for the first time that exogenous procollagen can be processed in conditioned cell-free medium. The system was then used to compare the processing of procollagen in the medium of normal fibroblasts, cells from one bovine and four human variants of osteogenesis imperfecta, and those from eight human variants of the Ehlers-Danlos syndrome. The cells could be divided into three groups, based on their ability to process type I procollagen: normal, consistently slow, and very slow. The cause of the decreased processing was shown to be associated with either a mutation causing a shortening of an alpha chain or decreased activity of procollagen N-proteinase in cell-free culture medium. Decreased processing of procollagen to collagen occurred with cultured fibroblasts from patients with different forms of both osteogenesis imperfecta and Ehlers-Danlos syndrome. Both of these disease syndromes are associated with abnormalities in the structure or metabolism of procollagen in fibrous connective tissues, bones, and teeth. The results show that defects in the structure, synthesis, or processing of procollagen are readily demonstrated with cultured fibroblasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号