首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Involvement of linear plasmids in aerobic biodegradation of vinyl chloride   总被引:1,自引:0,他引:1  
Pseudomonas putida strain AJ and Ochrobactrum strain TD were isolated from hazardous waste sites based on their ability to use vinyl chloride (VC) as the sole source of carbon and energy under aerobic conditions. Strains AJ and TD also use ethene and ethylene oxide as growth substrates. Strain AJ contained a linear megaplasmid (approximately 260 kb) when grown on VC or ethene, but it contained no circular plasmids. While strain AJ was growing on ethylene oxide, it was observed to contain a 100-kb linear plasmid, and its ability to use VC as a substrate was retained. The linear plasmids in strain AJ were cured, and the ability of strain AJ to consume VC, ethene, and ethylene oxide was lost following growth on a rich substrate (Luria-Bertani broth) through at least three transfers. Strain TD contained three linear plasmids, ranging in size from approximately 90 kb to 320 kb, when growing on VC or ethene. As with strain AJ, the linear plasmids in strain TD were cured following growth on Luria-Bertani broth and its ability to consume VC and ethene was lost. Further analysis of these linear plasmids may help reveal the pathway for VC biodegradation in strains AJ and TD and explain why this process occurs at many but not all sites where groundwater is contaminated with chloroethenes. Metabolism of VC and ethene by strains AJ and TD is initiated by an alkene monooxygenase. Their yields during growth on VC (0.15 to 0.20 mg of total suspended solids per mg of VC) are similar to the yields reported for other isolates (i.e., Mycobacterium sp., Nocardioides sp., and Pseudomonas sp.).  相似文献   

2.
The involvement of coenzyme M in aerobic biodegradation of vinyl chloride and ethene in Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD was demonstrated using PCR, hybridization, and enzyme assays. The results of this study extend the range of eubacteria known to use epoxyalkane:coenzyme M transferase.  相似文献   

3.
An epoxyalkane:coenzyme M (CoM) transferase (EaCoMT) enzyme was recently found to be active in the aerobic vinyl chloride (VC) and ethene assimilation pathways of Mycobacterium strain JS60. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples. In all cases, epoxyethane metabolism in cell extracts was dependent on CoM, with average specific activities of EaCoMT between 380 and 2,910 nmol/min/mg of protein. PCR with primers based on conserved regions of EaCoMT genes from Mycobacterium strain JS60 and the propene oxidizers Xanthobacter strain Py2 and Rhodococcus strain B-276 yielded fragments (834 bp) of EaCoMT genes from all of the VC- and ethene-assimilating isolates. The Mycobacterium EaCoMT genes form a distinct cluster and are more closely related to the EaCoMT of Rhodococcus strain B-276 than that of Xanthobacter strain Py2. The incongruence of the EaCoMT and 16S rRNA gene trees and the fact that isolates from geographically distant locations possessed almost identical EaCoMT genes suggest that lateral transfer of EaCoMT among the Mycobacterium strains has occurred. Pulsed-field gel electrophoresis revealed large linear plasmids (110 to 330 kb) in all of the VC-degrading strains. In Southern blotting experiments, the strain JS60 EaCoMT gene hybridized to many of the plasmids. The CoM-mediated pathway of epoxide metabolism appears to be universal in alkene-assimilating mycobacteria, possibly because of plasmid-mediated lateral gene transfer.  相似文献   

4.
The involvement of coenzyme M in aerobic biodegradation of vinyl chloride and ethene in Pseudomonas putida strain AJ and Ochrobactrum sp. strain TD was demonstrated using PCR, hybridization, and enzyme assays. The results of this study extend the range of eubacteria known to use epoxyalkane:coenzyme M transferase.  相似文献   

5.
6.
Bacteria belonging to the genus Dehalococcoides play a key role in the complete detoxification of chloroethenes as these organisms are the only microbes known to be capable of dechlorination beyond dichloroethenes to vinyl chloride (VC) and ethene. However, Dehalococcoides strains usually grow slowly with a doubling time of 1 to 2 days and have complex nutritional requirements. Here we describe the growth of Dehalococcoides ethenogenes 195 in a defined mineral salts medium, improved growth of strain 195 when the medium was amended with high concentrations of vitamin B12, and a strategy for maintaining Dehalococcoides strains on lactate by growing them in consortia. Although strain 195 could grow in defined medium spiked with ~0.5 mM trichloroethene (TCE) and 0.001 mg/liter vitamin B12, the TCE dechlorination and cellular growth rates doubled when the vitamin B12 concentration was increased 25-fold to 0.025 mg/liter. In addition, the final ratios of ethene to VC increased when the higher vitamin concentration was used, which reflected the key role that cobalamin plays in dechlorination reactions. No further improvement in dechlorination or growth was observed when the vitamin B12 concentration was increased to more than 0.025 mg/liter. In defined consortia containing strain 195 along with Desulfovibrio desulfuricans and/or Acetobacterium woodii and containing lactate as the electron donor, tetrachloroethene (~0.4 mM) was completely dechlorinated to VC and ethene and there was concomitant growth of Dehalococcoides cells. In the cultures that also contained D. desulfuricans and/or A. woodii, strain 195 cells grew to densities that were 1.5 times greater than the densities obtained when the isolate was grown alone. The ratio of ethene to VC was highest in the presence of A. woodii, an organism that generates cobalamin de novo during metabolism. These findings demonstrate that the growth of D. ethenogenes strain 195 in defined medium can be optimized by providing high concentrations of vitamin B12 and that this strain can be grown to higher densities in cocultures with fermenters that convert lactate to generate the required hydrogen and acetate and that may enhance the availability of vitamin B12.  相似文献   

7.
A mutant, strain PK10, of Streptomyces azureus ATCC 14921 and its two plasmids were characterized and compared with another mutant, PK 100, and its plasmid. One PK 10 plasmid of 8.8 kb was identical to a pock-forming plasmid, pSA1.1, of PK100. The other olasmid which was found only in PK10 nd named pSA1.2 (size, 7.6 kb), was a non-pock forming derivative of pSA1.1 with deletions in two different regions (about 1.2 kb and 30 b long). The pcok-forming ability of strain PK10 on a plasmid-free strain was lower than that of strain PK100 which contained only pSA1.1. Strain PK10 had fewer copies of pSA1.1 than strain PK100, and had normal spore formation and thiostrepton production, which were depressed in the strain PK100. The pSA1.1 from both PK10 and PK100 amplified to 20 to 30 copies in the transformants and inhibited theri spore formation and thiostrepton production. Thus, the function of pSA1.1 appeared to be depressed by pSA1.2.  相似文献   

8.
A novel Dehalococcoides isolate capable of metabolic trichloroethene (TCE)-to-ethene reductive dechlorination was obtained from contaminated aquifer material. Growth studies and 16S rRNA gene-targeted analyses suggested culture purity; however, the careful quantitative analysis of Dehalococcoides 16S rRNA gene and chloroethene reductive dehalogenase gene (i.e., vcrA, tceA, and bvcA) copy numbers revealed that the culture consisted of multiple, distinct Dehalococcoides organisms. Subsequent transfers, along with quantitative PCR monitoring, yielded isolate GT, possessing only vcrA. These findings suggest that commonly used qualitative 16S rRNA gene-based procedures are insufficient to verify purity of Dehalococcoides cultures. Phylogenetic analysis revealed that strain GT is affiliated with the Pinellas group of the Dehalococcoides cluster and shares 100% 16S rRNA gene sequence identity with two other Dehalococcoides isolates, strain FL2 and strain CBDB1. The new isolate is distinct, as it respires the priority pollutants TCE, cis-1,2-dichloroethene (cis-DCE), 1,1-dichloroethene (1,1-DCE), and vinyl chloride (VC), thereby producing innocuous ethene and inorganic chloride. Strain GT dechlorinated TCE, cis-DCE, 1,1-DCE, and VC to ethene at rates up to 40, 41, 62, and 127 μmol liter−1 day−1, respectively, but failed to dechlorinate PCE. Hydrogen was the required electron donor, which was depleted to a consumption threshold concentration of 0.76 ± 0.13 nM with VC as the electron acceptor. In contrast to the known TCE dechlorinating isolates, strain GT dechlorinated TCE to ethene with very little formation of chlorinated intermediates, suggesting that this type of organism avoids the commonly observed accumulation of cis-DCE and VC during TCE-to-ethene dechlorination.  相似文献   

9.
The Streptomyces strains CHR3 and CHR28, isolated from the Baltimore Inner Harbor, contained two and one, respectively, giant linear plasmids which carry terminally bound proteins. The plasmids pRJ3L (322 kb), from CHR3, and pRJ28 (330 kb), from CHR28, carry genes homologous to the previously characterized chromosomal Streptomyces lividans 66 operon encoding resistance against mercuric compounds. Both plasmids are transmissible (without any detectable rearrangement) to the chloramphenicol-resistant S. lividans TK24 strain lacking plasmids and carrying a chromosomal deletion of the mer operon. S. lividans TK24 conjugants harboring pRJ3L or pRJ28 exhibited profiles of mercury resistance to mercuric compounds similar to those of Streptomyces strains CHR3 and CHR28.  相似文献   

10.
An epoxyalkane:coenzyme M (CoM) transferase (EaCoMT) enzyme was recently found to be active in the aerobic vinyl chloride (VC) and ethene assimilation pathways of Mycobacterium strain JS60. In the present study, EaCoMT activity and genes were investigated in 10 different mycobacteria isolated on VC or ethene from diverse environmental samples. In all cases, epoxyethane metabolism in cell extracts was dependent on CoM, with average specific activities of EaCoMT between 380 and 2,910 nmol/min/mg of protein. PCR with primers based on conserved regions of EaCoMT genes from Mycobacterium strain JS60 and the propene oxidizers Xanthobacter strain Py2 and Rhodococcus strain B-276 yielded fragments (834 bp) of EaCoMT genes from all of the VC- and ethene-assimilating isolates. The Mycobacterium EaCoMT genes form a distinct cluster and are more closely related to the EaCoMT of Rhodococcus strain B-276 than that of Xanthobacter strain Py2. The incongruence of the EaCoMT and 16S rRNA gene trees and the fact that isolates from geographically distant locations possessed almost identical EaCoMT genes suggest that lateral transfer of EaCoMT among the Mycobacterium strains has occurred. Pulsed-field gel electrophoresis revealed large linear plasmids (110 to 330 kb) in all of the VC-degrading strains. In Southern blotting experiments, the strain JS60 EaCoMT gene hybridized to many of the plasmids. The CoM-mediated pathway of epoxide metabolism appears to be universal in alkene-assimilating mycobacteria, possibly because of plasmid-mediated lateral gene transfer.  相似文献   

11.
Nocardioides sp. strain JS614 grows on ethene and vinyl chloride (VC) as sole carbon and energy sources and is of interest for bioremediation and biocatalysis. Sequencing of the complete genome of JS614 provides insight into the genetic basis of alkene oxidation, supports ongoing research into the physiology and biochemistry of growth on ethene and VC, and provides biomarkers to facilitate detection of VC/ethene oxidizers in the environment. This is the first genome sequence from the genus Nocardioides and the first genome of a VC/ethene-oxidizing bacterium.  相似文献   

12.
Summary Anabaena variabilis ATCC 29413 contains two cryptic plasmids. Clones of the smaller (41 kb) plasmid, designated pRDS1, in cosmid vectors were used to construct a physical map. A clone bank of pRDS1 constructed by ligating fragments from aXhoII digest of a pRDS1 cosmid clone into a mobilizable plasmid was used to locate an origin of replication of pRDS1. Because we were unable to cureA. variabilis of pRDS1, the clone bank was transferred by conjugation to another strain ofAnabaena sp., strain M-131. A 5.3 kb fragment of pRDS1 contained all of the sequences necessary for replication inAnabaena sp. strain M-131 as judged by the ability to rescue the hybrid vector from exconjugants in unchanged form after many generations. Hybrid plasmids derived from pRDS1, one bearing genes for luciferase, were also transferred by conjugation toA. variabilis, where they appeared to recombine with pRDS1.  相似文献   

13.
Scirpus triqueter, a dominant species in wetland of Huangpu-Yangtze estuary can be used for phytoremediation. Endophytic bacteria from S. triqueter were investigated to evaluate the ability to degrade diesel. Bacterial incubation experiments were established to screen diesel degradation of endophytic microorganisms from S. triqueter. The oil-degrading bacterial strain J4AJ was discovered in vivo of S. triqueter and identified as Pseudomonas sp. U-3 bacterial strain also isolated from the root and stem of S. triqueter was identified to be the potent producer of biosurfactant as Bacillus subtilis. The minimum surface tension of U-3 was 30.9 mN/m. The bacterium manifested outstanding adaptation ability at extremes of temperature, pH and salinity. The removal ratio of J4AJ could be greatly improved by adding U-3 strain. However, the degradation ratio of J4AJ was obviously decreased by the addition of Alkyl Polysaccharide Glycoside (APG). The results suggested that J4AJ and U-3 inoculated were conducive to the degradation of diesel, which can be used for the remediation of oil-contaminated ecological environment.  相似文献   

14.
An aerobic bacterium, Ralstonia sp. strain TRW-1, that assimilates vinyl chloride (VC) or ethene (ETH) as the sole carbon source was isolated from a chloroethene-degrading enrichment culture. Phylogenetic analysis of 16S rDNA sequence of the isolate revealed almost 99% sequence similarity to Ralstonia pickettii. To our knowledge, this is the first report describing the isolation of a member of Ralstonia that can degrade VC as the growth substrate. The measured growth yield values for VC and ETH were 11.27 and 18.90 g protein/mole, respectively. The estimated half-velocity constant K m values for VC and ETH were 9.09±2.97 and 5.73±2.96 μM, respectively. These values are almost three- to tenfold higher than for other VC-assimilating Mycobacterium sp. The strain also degrades cis-dichloroethene (cis-DCE) in mineral salts medium containing yeast-extract, beef-extract, casamino acids, or peptone. This ability of the strain TRW-1 to degrade cis-DCE in the presence of a nontoxic, water-soluble substrate is relevant to in-situ remediation of cis-DCE-contaminated aquifers.  相似文献   

15.
Four marine bacteria, Alteromonas sp. strains A27, A28, A29, and A30, that lyse the diatom Skeletonema costatum NIES-324 were isolated from coastal seawater samples. They were also able to lyse the diatoms Thalassiosira sp. and Eucampia zodiacs and the raphidophycean flagellate Chattonella antiqua. Cryptic indigenous plasmids, designated pAS28 and pAS29, were detected in Alteromonas sp. strains A28 and A29, respectively. These plasmids appeared to be similar based on size and restriction site analysis. A shuttle vector that replicates in Escherichia coli and Alteromonas sp. strain A28 was constructed by fusing pAS28 and E. coli vector pCRIIc. The 16-kbp chimeric plasmid, designated pASS1, had the ability to transform strain A28 at a frequency of 106 transformants per μg of DNA. Deletion analysis of pASS1 showed that the 4.7-kb EcoRI-HindIII region of pAS28 was essential for plasmid maintenance in strain A28. This EcoRI-HindIII fragment contained an open reading frame which appeared to encode a 708-amino-acid protein.  相似文献   

16.
A highly enriched culture that reductively dechlorinates trichloroethene (TCE), cis-1,2-dichloroethene (cDCE), and vinyl chloride (VC) to ethene without methanogenesis is described. The Dehalococcoides strain in this enrichment culture had a yield of (5.6 ± 1.4) × 108 16S rRNA gene copies/μmol of Cl when grown on VC and hydrogen. Unlike the other VC-degrading cultures described in the literature, strains VS and BAV1, this culture maintained the ability to grow on TCE with a yield of (3.6 ± 1.3) × 108 16S rRNA gene copies/μmol of Cl. The yields on an electron-equivalent basis measured for the culture grown on TCE and on VC were not significantly different, indicating that both substrates supported growth equally well. PCR followed by denaturing gradient gel electrophoresis, cloning, and phylogenetic analyses revealed that this culture contained one Dehalococcoides 16S rRNA gene sequence, designated KB-1/VC, that was identical (over 1,386 bp) to the sequences of previously described organisms FL2 and CBDB1. A second Dehalococcoides sequence found in separate KB-1 enrichment cultures maintained on cDCE, TCE, and tetrachloroethene was no longer present in the VC-H2 enrichment culture. This second Dehalococcoides sequence was identical to that of BAV1. As neither FL2 nor CBDB1 can dechlorinate VC to ethene in a growth-related fashion, it is clear that current 16S rRNA gene-based analyses do not provide sufficient information to distinguish between metabolically diverse members of the Dehalococcoides group.  相似文献   

17.
Genome organization, plasmid content and localization of the pufLM genes of the photosynthesis reaction center were studied by pulsed-field gel electrophoresis (PFGE) in marine phototrophic Alphaproteobacteria. Both anaerobic phototrophs (Rhodobacter veldkampii and Rhodobacter sphaeroides) and strictly aerobic anoxygenic phototrophs from the Roseobacter-Sulfitobacter-Silicibacter clade (Roseivivax halodurans, Roseobacter litoralis, Staleya guttiformis, Roseovarius tolerans, and five new strains isolated from dinoflagellate cultures) were investigated. The complete genome size was estimated for R. litoralis DSM6996T to be 4,704 kb, including three linear plasmids. All strains contained extrachromosomal elements of various conformations (linear or circular) and lengths (between 4.35 and 368 kb). In strain DFL-12, a member of a putative new genus isolated from a culture of the toxic dinoflagellate Prorocentrum lima, seven linear plasmids were found, together comprising 860 kb of genetic information. Hybridization with probes against the pufLM genes of the photosynthesis gene cluster after Southern transfer of the genomic DNAs showed these genes to be located on a linear plasmid of 91 kb in R. litoralis and on a linear plasmid of 120 kb in S. guttiformis, theoretically allowing their horizontal transfer. In all other strains, the pufLM genes were detected on the bacterial chromosome. The large number and significant size of the linear plasmids found especially in isolates from dinoflagellates might account for the metabolic versatility and presumed symbiotic association with eukaryotic hosts in these bacteria.  相似文献   

18.
Arthrobacter globiformis D47 was shown to degrade a range of substituted phenylurea herbicides in soil. This strain contained two plasmids of approximately 47 kb (pHRIM620) and 34 kb (pHRIM621). Plasmid-curing experiments produced plasmid-free strains as well as strains containing either the 47- or the 34-kb plasmid. The strains were tested for their ability to degrade diuron, which demonstrated that the degradative genes were located on the 47-kb plasmid. Studies on the growth of these strains indicated that the ability to degrade diuron did not offer a selective advantage to A. globiformis D47 on minimal medium designed to contain the herbicide as a sole carbon source. The location of the genes on a plasmid and a lack of selection would explain why the degradative phenotype, as with many other pesticide-degrading bacteria, can be lost on subculture. A 22-kb EcoRI fragment of plasmid pHRIM620 was expressed in Escherichia coli and enabled cells to degrade diuron. Transposon mutagenesis of this fragment identified one open reading frame that was essential for enzyme activity. A smaller subclone of this gene (2.5 kb) expressed in E. coli coded for the protein that degraded diuron. This gene and its predicted protein sequence showed only a low level of protein identity (25% over ca. 440 amino acids) to other database sequences and was named after the enzyme it encoded, phenylurea hydrolase (puhA gene).  相似文献   

19.
Strain QM B1551 of Bacillus megaterium contains seven compatible plasmids: two small rolling circle plasmids and five theta-replicating plasmids with cross-hybridizing replicons. To expand our understanding of these plasmids, the replicon region (6.7 kb) from pBM300 was cloned, sequenced, and functionally characterized. Sequence analysis showed that the replication protein (RepM300) was highly homologous to two other plasmid Rep proteins of the same strain but to no other known proteins. Furthermore, the location of the replication origin was within the RepM300 coding region, and the origin contained three 12-base direct repeats. Deletion analysis of the replicon confirmed the role of the Rep protein and showed that open reading frame 2 (ORF2) was required for stability. However, the protein encoded by ORF2 is entirely different from the replicon stability proteins encoded by the other two replicons. The entire plasmid was isolated from the plasmid array by integrating a spectinomycin resistance gene and transforming a plasmidless strain, PV361. Complete sequencing showed that pBM300 was 26,300 bp long, had a G+C content of 35.2%, and contained 20 ORFs, two of which encoded proteins that had no similarity to other proteins in the database. The proteins encoded by the plasmid ORFs had similarity to proteins for mobilization and transfer, an integrase, a rifampin resistance protein, a cell wall hydrolase, glutathione synthase, and a biotin carboxylase. The similarities were to several gram-positive genera and a few gram-negative genera and archaea. oriT and ssoT-like regions were detected near two mob genes. These results suggest that pBM300 is a mobilizable hybrid plasmid that confers increased metabolic and germination ability on its host. Its replicon also helps define a new plasmid family.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号