首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
极端嗜热古菌——芝田硫化叶菌DNA结合蛋白Ssh7a和Ssh7b的编码基因(ssh7a和ssh7b)在大肠杆菌中得到表达,表达量均达到细胞蛋白总量的10%~15%。重组蛋白通过一个包括热处理步骤的简单纯化程序得到纯化。重组Ssh7a和Ssh7b与松弛及负超螺旋DNA的结合与天然Ssh7蛋白无异,与天然Ssh7相似,Ssh7a在与DNA结合时能够固定负超螺旋,每固定一个负超螺旋约需22个Ssh7a分子。这些结果表明天然Ssh7蛋白中的两个同源多肽与DNA结合时无明显差异。另外,Ssh7的甲基化与否似乎不影响该蛋白对DNA的亲和力及固定DNA超螺旋的能力。  相似文献   

2.
采用pExSecⅠ载体系统进行了蓖麻毒素A链的原核表达,经CM-Sepharose一步纯化后,获得了纯度约80%的重组蓖麻毒素A链.将其与几种天然单链核糖体失活蛋白进行了超螺旋DNA裂解研究和无细胞体系中蛋白合成抑制试验,结果表明,重组蓖麻毒素A链具有类似于天然单链核糖体失活蛋白的活性,但两种测活方法之间没有明显的相关性  相似文献   

3.
牛生长激素基因的人工合成,重组克隆及高效表达   总被引:2,自引:0,他引:2  
本文通过设计选择大肠杆菌高频利用密码子代替天然密码子,人工全合成32个寡聚核苷酸片段;连接并克隆获得A(278bp)、B(88bp)、C(224bp)3个较大DNA片段;经重组克隆、定位突变等获得阳性克隆;双向DNA序列测定分析表明获得了两种人工全合成牛生长激素(bGH)编码基因,即编码N-Met-Ala-bGH和N-Met-Phe-bGH的两个基因,而至今尚未见有人工全合成bGH基因的报道。构建了在PLpromoter控制下含上述合成基因的表达质位pBLbGHE7A1和pBLbGHE8,并在大肠杆菌中进行了温敏诱导表达。经SDS-PAGE分析,表达产物占全菌蛋白的37%以上。Western-blot分析和纯化产物的N端氨基酸序列测定结果都表明上述两种人工全合成bGH基因在大肠杆菌中得到了高效表达,表达量为现今国际文献报道的高限水平。  相似文献   

4.
将抗癌胚抗原(CEA)单链抗体基因插入家蚕杆状病毒转移载体pBacPAKHis, 与修饰的家蚕核型多角体病毒BmBacPAKDNA共转染家蚕细胞, 经同源重组得到含有在多角体蛋白基因启动子控制下的抗CEAScFv 基因的重组病毒BmBacScFv。用重组病毒分别感染家蚕细胞和幼虫, 在两者中均得到了高效表达, 产物分子量为28kD, 前者占细胞总蛋白的6 % , 后者为0 .3 mg/ 蚕。目的基因在家蚕细胞和幼虫中表达产物经Ni2+IDASepharose6B亲和柱纯化, 前者纯度可达90% 以上, 后者纯度较低; 纯化后的融合蛋白具有CEA 结合活力, 其亲和常数分别为5 .4×108/mol·L- 1 和2.3 ×108/mol·L-1 , 略低于其亲本单抗E7B10 2.7 ×109/mol·L- 1 。  相似文献   

5.
通过SPSepharose,DNA纤维素和磷酸纤维素等柱层析 ,从极端嗜热古菌———芝田硫化叶菌 (Sulfolobusshibatae)中纯化得到分子量为 11.5ku的DNA结合蛋白Ssh12 .Ssh12约占细胞总蛋白的 4% .该蛋白既能与负超螺旋DNA也能与松弛DNA结合 .利用含单切刻环状DNA进行的切刻闭合分析表明 ,Ssh12在与DNA结合时能够固定负超螺旋 .这种能力在室温 ( 2 2℃ )下很弱 ,而在 3 7℃以上则大大增强 .Ssh12的细胞内含量和固定负超螺旋的能力提示 ,该蛋白对于芝田硫化叶菌染色体DNA的组织以及热稳定性起着重要作用 .  相似文献   

6.
王健伟  李晓成 《病毒学报》1999,15(3):238-243
对蓝舌病毒结构蛋白VP7作为组特异性诊断抗原进行了研究,将编码BTV13主要组特异性抗原VP7的S7cDNA插入杆状病毒表达载体pFastBac1,通过同源重组获得了重组杆状病毒evBacBTVP7。用此重组病毒感染昆虫细胞获得VP7蛋白的高效表达,表达量可占细胞蛋白总量的12.4%。  相似文献   

7.
Sepharose6B经环氧氯丙烷活化后,与亚氨基二乙酸钠偶联。用钙离子作配体从光系统Ⅱ中分离纯化得到一种钙结合蛋白,在SDS-聚丙烯酰胺凝胶上此蛋白呈现单一电泳谱带,分子量约为30kDa。根据Arnon和Bradford方法测定的结果表明该蛋白质是叶绿素a/b结合蛋白,每分子蛋白约结合有5分子叶绿素a,2分子叶绿素b和一定数量的胡萝卜素分子。  相似文献   

8.
吴炯  费炎灵  温晓燕   《生物工程学报》1997,13(4):394-399
碱性成纤维细胞生长因子(bFGF)参与了许多细胞生长和分化的调控过程。本文采用重组DNA技术在大肠杆菌中高效表达了人bFGF。首先将编码人bFGF基因克隆到pXT表达载体中与其上游的一短S导肽共一阅读框架,bFGF基因的表达受强的T7启动子调控。采用BL21(DE3)大肠杆菌作为宿主菌,用IPTG诱导BL21(DE3)细菌合成的T7RNA聚合酶,后者可催化高水平的bFGF基因表达,其bFGF产量可占总菌体蛋白的42.5%。采用肝素Sepharose一步亲和层析法直接从诱导后的细菌裂解产物中得到纯化的重组人bFGF蛋白。经Western印迹分析证明该蛋白可被人bFGF特异性单克隆抗体所识别。进一步研究证明该蛋白具有刺激NR6R-3T3成纤维细胞增殖的生物学活性,并且这一活性可被人bFGF特异性中和抗体所中和。  相似文献   

9.
用PCR 方法从芝田硫化叶菌中扩增了编码一种新酶,即麦芽寡糖基海藻糖合酶( MTSase) 的基因,扩增的2-2kb DNA 插入到原核表达载体pBV220 中,构建成重组质粒pSBGT1 。pSBGT1 中MTSase 基因在大肠杆菌中得到表达。SDSPAGE 分析表达产物MTSase蛋白的分子量约为74kDa ,同核苷酸序列测定所推导的值相符。表达产物占细胞总蛋白约4-4 % 。pSBGT1 产生的重组酶作用于淀粉部分水解物,使DE 值降低,得到非还原糖或低还原糖。  相似文献   

10.
以鲑鱼基因组DNA为模板,采用PCR获得sCT基因,并为DNA序列分析所证实.以pGEX-3X为表达载体,利用体外定点突变技术成功地构建了融合蛋白GST-sCT的重组表达质粒pGEX-3X-sCT,在大肠杆菌中得到高效表达,其表达量约为菌体总蛋白的30%;利用亲合层析法对融合蛋白GST-sCT进行纯化,再经Fac-torΧa酶切后获得了重组sCT,并对其进行活性检测.初步实验证明,重组sCT具有较强的生物活性  相似文献   

11.
The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DMA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both n  相似文献   

12.
The thermoacidophilic archaeonSulfolobus shibatae synthesizes a large amount of the 7-ku DNA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S.shibatae. These two genes, designatedssh7a andssh7b, have been cloned, sequenced and expressed inEscherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, thecis-regulatory sequences of thessh7a andssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein inSulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation ofSulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both native and recombinant forms of the protein behaved in a similar fashion in the assays, suggesting that the interaction of Ssh7 with DNA is not affected either by specific lysine methylation found in the native Ssh7 proteins or by the difference between the two Ssh7 isomers in amino acid sequence. Our data show that Ssh7 binds duplex DNA fragments with a binding size of ∼ 6.6 base pairs and an apparent dissociation constant of (0.7–1.0) × 10-7 mol/L under the assay conditions employed in the present study. In addition, Ssh7 binds more tightly to negatively supercoiled DNA than to linear or relaxed DNA.  相似文献   

13.
The thermoacidophilic archaeon Sulfolobus shibatae synthesizes a large amount of the 7-ku DNA binding proteins known as Ssh7. Our hybridization experiments showed that two Ssh7-encoding genes existed in the genome of S. shibatae. These two genes, designated ssh7a and ssh7b, have been cloned, sequenced and expressed in Escherichia coli. The two Ssh7 proteins differ only at three amino acid positions. In addition, the cis-regulatory sequences of the ssh7a and ssh7b genes are highly conserved. These results suggest the presence of a selective pressure to maintain not only the sequence but also the expression of the two genes. We have also found that there are two genes encoding the 7-ku protein in Sulfolobus solfataricus. Based on this and other studies, we suggest that the gene encoding the 7-ku protein underwent duplication before the separation of Sulfolobus species. Binding of native Ssh7 and recombinant (r)Ssh7 to short duplex DNA fragments was analyzed by electrophoretic mobility shift assays. Both native and recombinant forms of the protein behaved in a similar fashion in the assays, suggesting that the interaction of Ssh7 with DNA is not affected either by specific lysine methylation found in the native Ssh7 proteins or by the difference between the two Ssh7 isomers in amino acid sequence. Our data show that Ssh7 binds duplex DNA fragments with a binding size of ~ 6.6 base pairs and an apparent dissociation constant of (0.7—1.0)×10-7 mol/L under the assay conditions employed in the present study. In addition, Ssh7 binds more tightly to negatively supercoiled DNA than to linear or relaxed DNA. :  相似文献   

14.
极端嗜热古菌———芝田硫化叶菌(Sulfolobus shibatae)基因组含一对亲缘关系较远的同源基因,ssh10b和ssh10b2。这对同源基因编码的蛋白(Ssh10b和Ssh10b2)属于古菌Sac10b DNA结合蛋白家族。关于Ssh10b以及与其极为相似的硫矿硫化叶菌(S.solfataricus)Sso10b、嗜酸热硫化叶菌(S.acidocaldarius)Sac10b蛋白已有较多研究,推测这些蛋白可能在染色体组织和包装、DNA重组、基因表达调控等方面起作用。克隆并在大肠杆菌中表达了ssh10b2基因,纯化了重组Ssh10b2蛋白。免疫印迹定量分析表明,ssh10b2在芝田硫化叶菌中有表达,但其细胞含量仅相当于Ssh10b的约十分之一。重组Ssh10b2对双链DNA的亲和力低于Ssh10b。此外,Ssh10b2和Ssh10b在与双链DNA结合时表现出相似的凝胶阻滞模式。有意思的是,Ssh10b2固定DNA负超螺旋的能力明显低于Ssh10b。这些结果提示,Ssh10b和Ssh10b2可能具有不同的生理作用。  相似文献   

15.
The ssh10b and ssh10b2 genes, a pair of distantly related paralogues in Sulfolobus shibatae, encode members of the Sac10b DNA binding protein family in thermophilic archaea. It has been shown previously that Ssh10b exists in abundance in S. shibatae and is capable of constraining negative DNA supercoils, properties that are consistent with a speculated architectural role for the protein in chromosomal organization. In this study, the ssh10b2 gene was cloned and expressed in Escherichia coli, and the recombinant Ssh10b2 protein was purified to apparent homogeneity. Immunoblotting analysis using a specific anti - Ssh10b2 antibody showed that ssh10b2 was expressed in S. shibatae, but the cellular level of Ssh10b2 was only - 10% of that of Ssh10b. Recombinant Ssh10b2 was capable of interacting with both double-stranded and single-stranded DNA. The affinity of the protein for double-stranded DNA was higher than that reported for Ssh10b. The Ssh10b2 and Ssh10b proteins appeared to generate similar gel shift patterns on duplex DNA fragments. However, unlike Ssh10b, Ssh10b2 was unable to constrain DNA supercoils. These data suggest that Ssh10b2 does not serve as a general architectural factor in DNA compaction and organization in S. shibatae.  相似文献   

16.
The α/β-mixed dimeric protein Ssh10b from the hyperthermophile Sulfolobus shibatae is a member of the Sac10b family that is thought to be involved in chromosomal organization or DNA repair/recombination. The equilibrium unfolding/refolding of Ssh10b induced by denaturants and heat was fully reversible, suggesting that Ssh10b could serve as a good model for folding/unfolding studies of protein dimers. Here, we investigate the folding/unfolding kinetics of Ssh10b in detail by stopped-flow circular dichroism (SF-CD) and using GdnHCl as denaturant. In unfolding reactions, the native Ssh10b turned rapidly into fully unfolded monomers within the stopped-flow dead time with no detectable kinetic intermediate, agreeing well with the results of equilibrium unfolding experiments. In refolding reactions, two unfolded monomers associate in the burst phase to form a dimeric intermediate that undergoes a further, slower, first-order folding process to form the native dimer. Our results demonstrate that the dimerization is essential for maintaining the native tertiary interactions of the protein Ssh10b. In addition, folding mechanisms of Ssh10b and several other α/β-mixed or pure β-sheet proteins are compared.  相似文献   

17.
The DNA-binding protein Ssh10b from the hyperthermophilic archaeon Sulfolobus shibatae is a member of the Sac10b family, which has been speculated to be involved in the organization of the chromosomal DNA in Archaea. Ssh10b affects the DNA topology in a temperature dependent fashion that has not been reported for any other DNA-binding proteins. Heteronuclear NMR and site-directed mutagenesis were used to analyze the structural basis of the temperature-dependent Ssh10b-DNA interaction. The data analysis indicates that two forms of Ssh10b homodimers co-exist in solution, and the slow cis-trans isomerization of the Leu61-Pro62 peptide bond is the key factor responsible for the conformational heterogeneity of the Ssh10b homodimer. The T-form dimer, with the Leu61-Pro62 bond in the trans conformation, dominates at higher temperature, whereas population of the C-form dimer, with the bond in the cis conformation, increases on decreasing the temperature. The two forms of the Ssh10b dimer show the same DNA binding site but have different conformational features that are responsible for the temperature-dependent nature of the Ssh10b-DNA interaction.  相似文献   

18.
Xue H  Guo R  Wen Y  Liu D  Huang L 《Journal of bacteriology》2000,182(14):3929-3933
The DNA binding protein Ssh10b, a member of the Sac10b family, has been purified from the hyperthermophilic archaeon Sulfolobus shibatae. Ssh10b constitutes about 4% of the cellular protein. Electrophoretic mobility shift assays showed that Ssh10b first bound a double-stranded DNA fragment with an estimated binding size of approximately approximately 12 bp, forming distinct shifts, until the DNA was coated with the protein. Binding of more Ssh10b resulted in the formation of smears of lower mobilities. The migration pattern of the smearing Ssh10b-DNA complexes was affected by temperature, whereas that of complexes associated with the distinct shifts was not. Interestingly, Ssh10b was capable of constraining negative DNA supercoils in a temperature-dependent fashion. While the ability of the protein to constrain supercoils was weak at 25 degrees C, it was enhanced substantially at 45 degrees C or higher temperatures (up to 80 degrees C). Taken together, our data suggest that archaeal proteins of the Sac10b family may affect the topology of chromosomal DNA in thermophilic archaea at their growth temperatures.  相似文献   

19.
Fang X  Cui Q  Tong Y  Feng Y  Shan L  Huang L  Wang J 《Biochemistry》2008,47(43):11212-11221
The hyperthermophilic Ssh10b from Sulfolobus shibatae is a member of the Sac10b family, which has been postulated to play a role in chromosomal organization in Archaea. Ssh10b is capable of significantly constraining negative DNA supercoils at elevated temperatures. In this study, the solution structure of the dimeric P62A mutant Ssh10b ([P62A]Ssh10b) was determined by multidimensional NMR spectroscopy. The backbone 15N dynamics, H/D exchange with and without the denaturant GdmSCN, and chemical and thermal denaturation experiments were performed to investigate the molecular basis of high thermostability of [P62A]Ssh10b. Data analysis has revealed an alpha/beta-hydrophobic core consisting of two alpha-helices and one beta-sheet which are stabilized by cooperative hydrophobic and hydrogen-bonding interactions. This stabilizing alpha/beta-hydrophobic core of [P62A]Ssh10b exhibiting highly restricted internal motions is composed of residues having highly protected amide protons which exchange with solvent mostly by means of a global unfolding process. The K40N mutation greatly destabilizes the mutant [P62A]Ssh10b because this mutation disturbs the packing of alpha-helix against the beta-sheet reducing the stability of the alpha/beta-hydrophobic core in the mutant protein. In comparison with homologous mesophilic and thermophilic proteins, it can be presumed that the stabilizing alpha/beta-hydrophobic core in the [P62A]Ssh10b structure greatly contributes to the high thermostability of the protein.  相似文献   

20.
Guo R  Xue H  Huang L 《Molecular microbiology》2003,50(5):1605-1615
Proteins of the Sac10b family, which is highly conserved among hyperthermophilic archaea, have been regarded as DNA-binding proteins. Based on their in vitro DNA-binding properties, these proteins are thought to be involved in chromosomal organization or DNA repair/recombination. We show that Ssh10b, a member of the Sac10b family from Sulfolobus shibatae, bound with similar affinities to double-stranded DNA, single-stranded DNA and RNA in vitro. However, the protein was exclusively bound to RNA in S. shibatae cells, as revealed by in vivo UV cross-linking and co-immunoprecipitation. Ribosomal RNAs were among the RNA species co-immunoprecipitated with Ssh10b. Consistent with this observation, Ssh10b was co-purified with ribosomes under low salt conditions. Furthermore, we demonstrate by UV-cross-linking hybridization that, when the cells were irradiated with UV, Ssh10b became cross-linked to 16S, 23S rRNAs and mRNAs. Our data indicate that RNA is the physiological binding target of the Sac10b family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号