首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pyrolysis bio-oil from rice husk was upgraded in sub- and super-critical ethanol using HZSM-5 as catalyst. The results showed that super-critical upgrading process performed more effectively than sub-critical upgrading process. Acidic HZSM-5 facilitates esterification in super-critical ethanol to convert acids contained in crude bio-oil into various kinds of esters. Stronger acidic HZSM-5 (low Si/Al ratio) can facilitate cracking of heavy components of crude bio-oil more effectively in super-critical upgrading process. The residue of distillated upgraded bio-oil from super-critical upgrading process decreased evidently, compared with that of distillated crude bio-oil. This work proved that crude bio-oil can be effectively upgraded in super-critical upgrading process with the aid of acidic catalyst.  相似文献   

2.
In this work, catalytic cracking of biomass waste oil fractions separated from food waste leachate was performed using microporous catalysts, such as HY, HZSM-5 and mesoporous Al-MCM-48. The experiments were carried out using pyrolysis gas chromatography/mass spectrometry (Py-GC/MS) to allow the direct analysis of the pyrolytic products. Most acidic components, especially oleic acid, contained in the food waste oil fractions were converted to valuable products, such as oxygenates, hydrocarbons and aromatics. High yields of hydrocarbons within the gasoline-range were obtained when microporous catalysts were used; whereas, the use of Al-MCM-48, which exhibits relatively weak acidity, resulted in high yields of oxygenated and diesel-range hydrocarbons. The HZSM-5 catalyst produced a higher amount of valuable mono aromatics due to its strong acidity and shape selectivity. Especially, the addition of gallium (Ga) to HZSM-5 significantly increased the aromatics content.  相似文献   

3.
Conversion of vegetable oils and animal fats composed predominantly of triglycerides using pyrolysis type reactions represents a promising option for the production of renewable fuels and chemicals. The purpose of this article was to collect and review literature on the thermo-chemical conversion of triglyceride based materials. The literature was divided and discussed as (1) direct thermal cracking and (2) combination of thermal and catalytic cracking. Typically, four main catalyst types are used including transition metal catalysts, molecular sieve type catalysts, activated alumina, and sodium carbonate. Reaction products are heavily dependant on the catalyst type and reaction conditions and can range from diesel like fractions to gasoline like fractions. Research in this area is not as advanced as bio-oil and bio-diesel research and there is opportunity for further study in the areas of reaction optimization, detailed characterization of products and properties, and scale-up.  相似文献   

4.
Waste high-density polyethylene was converted into different hydrocarbon fractions by thermal and thermo-catalytic batch cracking. For the catalytic degradation of waste plastics three different catalysts (equilibrium FCC, HZSM-5 and clinoptilolite) were used. Catalysts differ basically in their costs and activity due to the differences of micro- and macroporous surface areas and furthermore the Si/Al ratio and acidities are also different. Mild pyrolysis was used at 430 °C and the reaction time was 45 min in each case. The composition of products was defined by gas chromatography, Fourier transform infrared spectroscopy, size exclusion chromatography, energy-dispersive X-ray fluorescence spectroscopy and other standardized methods. The effects of catalysts on the properties of degradation products were investigated. Both FCC and clinoptilolite catalysts had considerably catalytic activity to produce light hydrocarbon liquids, while HZSM-5 catalyst produced the highest amount of gaseous products. In case of liquids, carbon numbers were distributed within the C5–C23 range depending on the cracking parameters. Decomposition of the carbon chain could be followed by GC and both by FTIR and SEC techniques in case of volatile fractions and residues. Catalysts increased yields of valuable volatile fractions and moreover catalysts caused both carbon chain isomerization and switching of the position of double bonds.  相似文献   

5.
Catalytic cracking of crude palm oil (CPO) and used palm oil (UPO) were studied in a transport riser reactor for the production of biofuels at a reaction temperature of 450 °C, with residence time of 20 s and catalyst-to-oil ratio (CTO) of 5 g g?1. The effect of HZSM-5 (differrent Si/Al ratios), beta zeolite, SBA-15 and AlSBA-15 were studied as physically mixed additives with cracking catalyst Rare earth-Y (REY). REY catalyst alone gave 75.8 wt% conversion with 34.5 wt% of gasoline fraction yield using CPO, whereas with UPO, the conversion was 70.9 wt% with gasoline fraction yield of 33.0 wt%. HZSM-5, beta zeolite, SBA-15 and AlSBA-15 as additives with REY increased the conversion and the yield of organic liquid product. The transport riser reactor can be used for the continuous production of biofuels from cracking of CPO and UPO over REY catalyst.  相似文献   

6.
Cationic iridium complexes with chiral phosphinooxazoline ligands are efficient catalysts for the enantioselective hydrogenation of olefins. The complexes are readily prepared, air-stable, and easy to handle. In contrast to chiral rhodium- and ruthenium-phosphine catalysts, they do not require the presence of a polar coordinating group near the C=C bond. In the hydrogenation of unfunctionalized trisubstituted 1,2-diaryl-olefins, high enantioselectivities of >95% ee with full conversion and turnover frequencies of >7,000 h-1 can be achieved, using 0.1 mol% of catalyst with tetrakis[3, 5-bis(trifluoromethyl)phenyl]borate (TFPB or BARF) as the counterion. The corresponding hexafluorophosphate or tetrafluoroborate salts give low conversion due to deactivation of the catalyst during the reaction. Substrates with polar substituents such as allylic alcohols, on the other hand, afford better results with the hexafluorophosphate salts.  相似文献   

7.
The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.  相似文献   

8.
Summary This study investigates the possibility of reusing metal-contaminated equilibrium fluid catalytic cracking (FCC) catalyst after bioleaching. Leaching with Aspergillus niger culture was found to be more effective in the mobilization of nickel from the catalyst particles compared to chemical leaching with citric acid. Bioleaching achieved 32% nickel removal whereas chemical leaching achieved only 21% nickel removal from catalyst particles. The enhanced nickel removal from the catalysts in the presence of A. niger culture was attributed to the biosorption ability of the fungal mycelium and to the higher local concentration of citric acid on the catalyst surface. It was found that 9% of solubilized nickel in the liquid medium was biosorbed to fungal biomass. After nickel leaching with A. niger culture, the hydrogen-to-methane molar ratio and coke yield, which are the measures of dehydrogenation reactions catalysed by nickel during cracking reactions, decreased significantly.  相似文献   

9.
Hu Y  Zhan N  Dou C  Huang H  Han Y  Yu D  Hu Y 《Biotechnology journal》2010,5(11):1186-1191
Bio-ethanol dehydration to ethylene is an attractive alternative to oil-based ethylene. The influence of fusel, main byproducts in the fermentation process of bio-ethanol production, on the bio-ethanol dehydration should not be ignored. We studied the catalytic dehydration of bio-ethanol to ethylene over parent and modified HZSM-5 at 250°C, with weight hourly space velocity (WHSV) equal to 2.0/h. The influences of a series of fusel, such as isopropanol, isobutanol and isopentanol, on the ethanol dehydration over the catalysts were investigated. The 0.5%La-2%PHZSM-5 catalyst exhibited higher ethanol conversion (100%), ethylene selectivity (99%), and especially enhanced stability (more than 70 h) than the parent and other modified HZSM-5. We demonstrated that the introduction of lanthanum and phosphorous to HZSM-5 could weaken the negative influence of fusel on the formation of ethylene. The physicochemical properties of the catalysts were characterized by ammonia temperature-programmed desorption (NH(3)-TPD), nitrogen adsorption and thermogravimetry (TG)/differential thermogravimetry (DTG)/differential thermal analysis (DTA) (TG/DTG/DTA) techniques. The results indicated that the introduction of lanthanum and phosphorous to HZSM-5 could inhibit the formation of coking during the ethanol dehydration to ethylene in the presence of fusel. The development of an efficient catalyst is one of the key technologies for the industrialization of bio-ethylene.  相似文献   

10.
Yu W  Tang Y  Mo L  Chen P  Lou H  Zheng X 《Bioresource technology》2011,102(17):8241-8246
This contribution focuses on one-step hydrogenation-esterification (OHE) of furfural and acetic acid, which are difficult to treat and typically present in crude bio-oil, as a model reaction for bio-oil upgrading. A bifunctional catalyst is needed for OHE reaction. Among tested bifunctional catalysts, the 5%Pd/Al2(SiO3)3 shows the best catalytic performance. Compared to the physical mixture of 5%Pd/C + Al2(SiO3)3, there is a synergistic effect between metal sites and acid sites over 5%Pd/Al2(SiO3)3 for the OHE reaction. A moderate reaction condition would be required to obtain high yields of alcohol and ester along with lower byproduct yields. In this work, the optimum selectivity to desired products (alcohol and ester) of 66.4% is obtained, where the conversion of furfural is 56.9%. Other components, typically present in bio-oils, have little effects on the OHE of FAL and HAc. This OHE method is a promising route for efficient upgrading of bio-oil.  相似文献   

11.
Bio-oil from hydro-liquefaction of Dunaliella salina over Ni/REHY catalyst   总被引:2,自引:0,他引:2  
Yang C  Jia L  Chen C  Liu G  Fang W 《Bioresource technology》2011,102(6):4580-4584
The hydro-liquefaction of Dunaliella salina over solid acid catalyst was examined under moderate conditions (200 °C, 2.0 MPa, 60 min). The significant increment of bio-oil yield was obtained over Ni/REHY catalyst, increasing about 20% compared without modified REHY. H2-temperature-programmed desorption (H2-TPD) and X-ray powder diffraction (XRD) demonstrated that Ni/REHY as bifunctional catalyst played roles in hydrogenation and cracking, and further achieved the deoxygenation and desulfurization of D. salina under hydrogen gas. The oxygen and sulfur contents of bio-oils decreased relative to D. salina, and the higher heating value (HHV) significantly increased to 30.11 MJ/kg. From gas chromatography/mass spectrometry (GC/MS), the dominant compounds of the bio-oils were found to be esters, glycerins. The qualities of bio-oils were greatly improved. Hydro-liquefaction was beneficial to the exploration of bio-oils from microalgae.  相似文献   

12.
以HZSM-5分子筛为乙醇脱水催化剂,考察了催化剂的硅铝摩尔比和反应工艺条件对乙醇转化率及生成乙烯选择性的影响,分析了反应初期的飞温现象,用X射线衍射(XRD)、环境扫描电镜(SEM)和热分析(TG-DTA)对其催化剂进行了表征。结果表明:硅铝摩尔比为50∶1的HZSM-5催化乙醇脱水制乙烯反应在温度300℃、液体质量空速7h-1时,乙醇转化率大于99.8%,乙烯选择性达99.1%。HZSM-5催化乙醇脱水反应初期的飞温过程生成的聚合物堵塞和覆盖部分催化剂孔道,导致催化剂活性下降和乙烯选择性显著降低,适当降低进料温度可有效控制飞温现象发生。  相似文献   

13.
Pyrolysis of jute stick for bio-oil production has been investigated in a continuous feeding fluidized bed reactor at different temperatures ranging from 300 degrees C to 600 degrees C. At 500 degrees C, the yields of bio-oil, char and non-condensable gas were 66.70 wt%, 22.60 wt% and 10.70 wt%, respectively based on jute stick. The carbon based non-condensable gas was the mixture of carbon monoxide, carbon dioxide, methane, ethane, ethene, propane and propene. The density and viscosity of bio-oil were found to be 1.11 g/mL and 2.34 cP, respectively. The lower heating value (LHV) of bio-oil was found to be 18.2 5 MJ/kg. Since bio-oil contains some organic acids such as formic acid, acetic acid, etc., the pH and acid value of the bio-oil were found to be around 4 and 135 mg KOH/g, respectively. The water, lignin, solid and ash contents of bio-oil were determined and found to be around 15 wt%, 4.90 wt%, 0.02 wt% and 0.10 wt%, respectively.  相似文献   

14.
生物质气化技术是生物质高值利用的重要技术之一,然而却存在副产品焦油难以处理的问题。为了解决生物质气化过程中副产品焦油的问题,以钙基催化剂为床料,在流化床反应器内开展焦油催化裂解试验。结果表明,钙基催化剂对焦油裂解具有很好的催化作用,可显著提高焦油裂解效率;流化床的操作条件对生物质焦油的催化裂解过程产生了重要影响,即操作温度越高,焦油裂解效率也越高,加入适当比例的水蒸气可以提高焦油裂解效率,且能增大产品气的产量。研究结果显示,添加钙基催化剂后,理想的操作温度为850℃,水蒸气与焦油质量比例为5∶1。研究结果为焦油的再利用相关研究提供了参考。  相似文献   

15.
Oxygenated fuel additives can be produced by acetylation of glycerol. A 91% glycerol conversion with a selectivity of 38%, 28% and 34% for mono-, di- and triacetyl glyceride, respectively, was achieved at 120 °C and 3 h of reaction time in the presence of a catalyst derived from activated carbon (AC) treated with sulfuric acid at 85 °C for 4h to introduce acidic functionalities to its surface. The unique catalytic activity of the catalyst, AC-SA5, was attributed to the presence of sulfur containing functional groups on the AC surface, which enhanced the surface interaction between the glycerol molecule and acyl group of the acetic acid. The catalyst was reused in up to four consecutive batch runs and no significant decline of its initial activity was observed. The conversion and selectivity variation during the acetylation is attributed to the reaction time, reaction temperature, catalyst loading and glycerol to acetic acid molar ratio.  相似文献   

16.
A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for ''dry'' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The ''dry'' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s ''dry'' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali and alkali earth metals (totaling ~2.8 wt% relative to the dry feedstock) which are catalytic and increase cracking reactions during pyrolysis.  相似文献   

17.
The removal of free fatty acid (FFA) in waste frying oil by esterification with methanol was conducted using various zeolite catalysts. The ZSM-5 (MFI), mordenite (MOR), faujasite (FAU), beta (BEA) zeolites, and silicalite were employed with different Si/Al molar ratio in the reaction. The effects of acidic properties and pore structure of the zeolite catalysts were discussed relating to the conversion of the FFA. The MFI zeolite induced an improvement of the removal efficiency of FFA by cracking to the FFA in its pore structure due to its narrow pore mouth. The catalytic activity for FFA removal was lowered with decreasing of acid strength of the zeolites. The strong acid sites of zeolites induced the high conversion of FFA comparatively. The acid strength and pore structure of acidic zeolites affected the catalytic activity in FFA removal.  相似文献   

18.
Chen T  Wu C  Liu R 《Bioresource technology》2011,102(19):9236-9240
Steam reforming of two kinds of bio-oil from rice husks fast pyrolysis was conducted for hydrogen production at three temperatures (650, 750 and 850 °C) with Ni-based catalyst in a fixed-bed reactor. The gas composition and organic compounds in liquid condensate were detected by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS), respectively. In addition, the carbon deposition was also investigated. The results showed that the mole fraction range of hydrogen was within 55.8-61.3% at all temperatures and more hydrogen was produced at the higher temperature. The highest H? efficiency of bio-oil steam reforming was 45.33% when extra water was added. The bio-oil with lower content of chemical compounds has a higher H? efficiency, but its hydrogen volume was less. Analysis of the liquid condensate showed that most of the organic compounds were circularity compounds. The carbon deposition can decrease the bio-oil conversion, and it was easier to form at the temperature of 750 °C.  相似文献   

19.
A new efficient catalytic system was investigated for the epoxidation of various olefins by cis-dioxo-bis[2-(2′-hydroxyphenyl)-oxazolinato]molybdenum(VI), cis-[MoO2(phox)2], and TBHP as oxidizing agent. Using this system as catalyst for the oxidation of aliphatic substrates at 80 °C gives the epoxide as the sole product with yields up to 100% and turnover frequency up to 5000 h−1. The efficiency of the catalyst is strongly influenced by the nature of solvent, reaction time and temperature, and a significant increase in the epoxide yields is observed in higher temperatures and longer reaction times.  相似文献   

20.
The catalytic cracking of waste cooking palm oil to biofuel was studied over different types of nano-crystalline zeolite catalysts in a fixed bed reactor. The effect of reaction temperature (400-500 °C), catalyst-to-oil ratio (6-14) and catalyst pore size of different nanocrystalline zeolites (0.54-0.80 nm) were studied over the conversion of waste cooking palm oil, yields of Organic Liquid Product (OLP) and gasoline fraction in the OLP following central composite design (CCD). The response surface methodology was used to determine the optimum value of the operating variables for maximum conversion as well as maximum yield of OLP and gasoline fraction, respectively. The optimum reaction temperature of 458 °C with oil/catalyst ratio=6 over the nanocrystalline zeolite Y with pore size of 0.67 nm gave 86.4 wt% oil conversion, 46.5 wt% OLP yield and 33.5 wt% gasoline fraction yield, respectively. The experimental results were in agreement with the simulated values within an experimental error of less than 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号