首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
IL-2, a cytokine produced by T cells, is a key regulator of immune responses and T cell homeostasis. Controlling the availability of IL-2 is consequently of significant import to the immune system. Like other cytokines, IL-2 is thought to function as a soluble agonist, transiently present when secreted in response to appropriate stimuli. In this study, we show that the most salient properties of IL-2, propagation and control of T cell responses, are mediated in vivo by bound and not free cytokine and specifically by heparan sulfate-bound IL-2. These findings necessitate a new look at how IL-2 regulates immune responses and support the notion that the microenvironment plays a determining role in modulating the character of immune responses.  相似文献   

2.
IL-27, a member of the IL-6/IL-12 family, activates both STAT1 and STAT3 through its receptor, which consists of WSX-1 and gp130 subunits, resulting in augmentation of Th1 differentiation and suppression of proinflammatory cytokine production. In the present study, we investigated the role of STAT3 in the IL-27-mediated immune functions. IL-27 induced phosphorylation of STAT1, -2, -3 and -5 in wild-type naive CD4+ T cells, but failed to induce that of STAT3 and STAT5 in STAT3-deficient cohorts. IL-27 induced not only proinflammatory responses including up-regulation of ICAM-1, T-box expressed in T cells, and IL-12Rbeta2 and Th1 differentiation, but also anti-inflammatory responses including suppression of proinflammatory cytokine production such as IL-2, IL-4, and IL-13 even in STAT3-deficient naive CD4+ T cells. In contrast, IL-27 augmented c-Myc and Pim-1 expression and induced cell proliferation in wild-type naive CD4+ T cells but not in STAT3-deficient cohorts. Moreover, IL-27 failed to activate STAT3, augment c-Myc and Pim-1 expression, and induce cell proliferation in pro-B BaF/3 transfectants expressing mutant gp130, in which the putative STAT3-binding four Tyr residues in the YXXQ motif of the cytoplasmic region was replaced by Phe. These results suggest that STAT3 is activated through gp130 by IL-27 and is indispensable to IL-27-mediated cell proliferation but not to IL-27-induced Th1 differentiation and suppression of proinflammatory cytokine production. Thus, IL-27 may be a cytokine, which activates both STAT1 and STAT3 through distinct receptor subunits, WSX-1 and gp130, respectively, to mediate its individual immune functions.  相似文献   

3.
There is growing interest in the fundamental roles that B cells may play in regulating immune responses. Emerging animal studies point to an important contribution of B cell effector cytokines to immune modulation, yet little is known about the factors regulating such cytokine production. We report that the profile of human B cell cytokine production is context dependent, being critically influenced by the balance of signals through the B cell receptor and CD40. B cells appropriately stimulated by sequential B cell receptor and CD40 stimulation proliferate and secrete TNF-alpha, lymphotoxin, and IL-6, which can act not only as autocrine growth and differentiation factors, but also serve to amplify the ongoing immune response. In contrast, CD40 stimulation alone, a mimic of a B cell receiving bystander T cell help in the absence of specific Ag recognition, induces negligible proinflammatory cytokines, but significant production of IL-10 that serves to suppress inappropriate immune responses. We thus describe a novel paradigm of reciprocal regulation of B cell effector cytokines, and ascribe active roles for human B cells in either promoting or suppressing local immune responses through context-dependent cytokine production.  相似文献   

4.
Educating dendritic cells (DC) to become tolerogenic DC, which promote regulatory IL-10 immune responses, represents an effective immune evasion strategy for pathogens. Yersinia pestis virulence factor LcrV is reported to induce IL-10 production via interaction with Toll-like receptor (TLR) 2. However, TLR2-/- mice are not protected against subcutaneous plague infection. Using complementary in vitro and in vivo approaches and LcrV as a model, we show that TLR6 associates with TLR2 to induce tolerogenic DC and regulatory type-1 T cells selectively secreting IL-10. In contrast, TLR1 heterodimerizes with TLR2 to promote proinflammatory IL-12p40 cytokine, producing DC and inflammatory T cell differentiation. LcrV specifically hijacks the TLR2/6 pathway to stimulate IL-10 production, which blocks host protective inflammatory responses. These results explain why TLR2 can mediate both pro- and anti-inflammatory responses and identify TLR6 as a distinct receptor driving regulatory IL-10 responses.  相似文献   

5.
Interleukin-2 (IL-2) has been extensively used to boost the body's immune cells, especially T cells. IL-2 is a cytokine that for many years was used to activate and amplify T cells. Due to its potent T cell growth-inducing functions in vitro, for many years, IL-2 was used for the culture and expansion of various T cell products, including tumor-infiltrating lymphocytes (TIL), T cell receptors T cells (TCR T), or genetically engineered cells with chimeric antigen receptors T cells (CAR T). Despite its positive effect on T cell production, the side-effect is not well studied. Here, we reported that long-term culture with IL-2 promotes terminal differentiation and impairs rather than boosts the function of chimeric antigen receptor T cells. However, short-term culture with IL-2 predominantly generates memory CAR T cell favorable for cancer treatment.  相似文献   

6.
7.
Agrawal S  Gupta S  Agrawal A 《PloS one》2010,5(10):e13418

Background

Dendritic cells capture antigens through PRRs and modulate adaptive immune responses. The type of adaptive immune T cell response generated is dependent upon the type of PRR activated by the microbes. Dectin-1 is a C-type lectin receptor present on dendritic cells.

Methodology/Principal Findings

Here we show that selective dectin-1 agonist Curdlan can activate human DCs and induce the secretion of large amounts of IL-23, IL-1β, IL-6 and low levels of IL-12p70 as determined by ELISA. The Curdlan-stimulated DCs are efficient at priming naïve CD4 cells to differentiate into Th17 and Th1 cells. Furthermore, these CD4 T cells induce differentiation of B cells to secrete IgG and IgA. In addition, Curdlan-stimulated DCs promote the expansion and differentiation of Granzyme and perforin expressing cytotoxic T lymphocyte that display high cytolytic activity against target tumor cells in vitro.

Conclusions/Significance

These data demonstrate that DCs stimulated through Dectin-1 can generate efficient Th, CTL and B cell responses and can therefore be used as effective mucosal and systemic adjuvants in humans.  相似文献   

8.
T-cell-dependent antigenic stimulation drives the differentiation of B cells into antibody-secreting plasma cells and memory B cells, but how B cells regulate this process is unclear. We show that LKB1 expression in B cells maintains B-cell quiescence and prevents the premature formation of germinal centers (GCs). Lkb1-deficient B cells (BKO) undergo spontaneous B-cell activation and secretion of multiple inflammatory cytokines, which leads to splenomegaly caused by an unexpected expansion of T cells. Within this cytokine response, increased IL-6 production results from heightened activation of NF-κB, which is suppressed by active LKB1. Secreted IL-6 drives T-cell activation and IL-21 production, promoting T follicular helper (TFH) cell differentiation and expansion to support a ∽100-fold increase in steady-state GC B cells. Blockade of IL-6 secretion by BKO B cells inhibits IL-21 expression, a known inducer of TFH-cell differentiation and expansion. Together, these data reveal cell intrinsic and surprising cell extrinsic roles for LKB1 in B cells that control TFH-cell differentiation and GC formation, and place LKB1 as a central regulator of T-cell-dependent humoral immunity.  相似文献   

9.
10.
Regulation of CD8 T cell expansion and contraction is essential for successful immune defense against intracellular pathogens. IL-10 is a regulatory cytokine that can restrict T cell responses by inhibiting APC functions. IL-10, however, can also have direct effects on T cells. Although blockade or genetic deletion of IL-10 enhances T cell-mediated resistance to infections, the extent to which IL-10 limits in vivo APC function or T cell activation/proliferation remains unknown. Herein, we demonstrate that primary and memory CD8 T cell responses following Listeria monocytogenes infection are enhanced by the absence of IL-10. Surface expression of the IL-10R is transiently up-regulated on CD8 T cells following activation, suggesting that activated T cells can respond to IL-10 directly. Consistent with this notion, CD8 T cells lacking IL-10R2 underwent greater expansion than wild-type T cells upon L. monocytogenes infection. The absence of IL-10R2 on APCs, in contrast, did not enhance T cell responses following infection. Our studies demonstrate that IL-10 produced during bacterial infection directly limits expansion of pathogen-specific CD8 T cells and reveal an extrinsic regulatory mechanism that modulates the magnitude of memory T cell responses.  相似文献   

11.
Generation of CD8 T cell memory is regulated by IL-12   总被引:2,自引:0,他引:2  
Various signals during infection influence CD8 T cell memory generation, but these factors have yet to be fully defined. IL-12 is a proinflammatory cytokine that has been shown to enhance IFN-gamma-producing T cell responses and has been widely tested as a vaccine adjuvant. In this study, we show that IL-12-deficient mice generate a weaker primary CD8 T cell response and are more susceptible to Listeria monocytogenes infection, but have substantially more memory CD8 T cells and greater protective immunity against reinfection. Kinetic analyses show that in the absence of IL-12 there is a reduced contraction of Ag-specific CD8 T cells and a gradual increase in memory CD8 T cells as a result of increased homeostatic renewal. By signaling directly through its receptor on CD8 T cells, IL-12 influences their differentiation to favor the generation of fully activated effectors, but hinders the formation of CD8 T cell memory precursors and differentiation of long-term CD8 T cell memory(.) These results have implications for understanding memory T cell development and enhancing vaccine efficacy, and offer new insight into the role of IL-12 in coordinating the innate and adaptive immune response.  相似文献   

12.
Inhibitors of the JAK family of nonreceptor tyrosine kinases have demonstrated clinical efficacy in rheumatoid arthritis and other inflammatory disorders; however, the precise mechanisms by which JAK inhibition improves inflammatory immune responses remain unclear. In this study, we examined the mode of action of tofacitinib (CP-690,550) on JAK/STAT signaling pathways involved in adaptive and innate immune responses. To determine the extent of inhibition of specific JAK/STAT-dependent pathways, we analyzed cytokine stimulation of mouse and human T cells in vitro. We also investigated the consequences of CP-690,550 treatment on Th cell differentiation of naive murine CD4(+) T cells. CP-690,550 inhibited IL-4-dependent Th2 cell differentiation and interestingly also interfered with Th17 cell differentiation. Expression of IL-23 receptor and the Th17 cytokines IL-17A, IL-17F, and IL-22 were blocked when naive Th cells were stimulated with IL-6 and IL-23. In contrast, IL-17A production was enhanced when Th17 cells were differentiated in the presence of TGF-β. Moreover, CP-690,550 also prevented the activation of STAT1, induction of T-bet, and subsequent generation of Th1 cells. In a model of established arthritis, CP-690,550 rapidly improved disease by inhibiting the production of inflammatory mediators and suppressing STAT1-dependent genes in joint tissue. Furthermore, efficacy in this disease model correlated with the inhibition of both JAK1 and JAK3 signaling pathways. CP-690,550 also modulated innate responses to LPS in vivo through a mechanism likely involving the inhibition of STAT1 signaling. Thus, CP-690,550 may improve autoimmune diseases and prevent transplant rejection by suppressing the differentiation of pathogenic Th1 and Th17 cells as well as innate immune cell signaling.  相似文献   

13.
B lymphocyte stimulator (BLyS) is a well-known direct costimulator of adaptive immune cells, particularly B lineage cells. However, we have reported recently that BLyS is also able to activate monocytes. Other innate immune cells, such as dendritic cells (DCs), play a key role in the initiation of adaptive immune responses and the purpose of the current study was to assess whether there is a direct role for BLyS in modulating human DC functions. In this study, we show that BLyS induces DC activation and maturation. Thus, BLyS strongly induced up-regulation of surface costimulatory molecule expression and secretion of specific cytokines and chemokines in DCs. BLyS-stimulated DCs (BLyS-DCs) were also able to augment allogeneic CD4 T cell proliferation to a greater extent than control DCs. BLyS-DCs secreted elevated levels of the major Th1-polarizing cytokine, IL-12p70, and they promoted naive CD4 T cell differentiation into Th1 T cells. Regarding BLyS receptor expression, DCs primarily express cytoplasmic transmembrane activator and CAML interactor; however, low levels of cell surface transmembrane activator and CAML interactor are expressed as well. Collectively, our data suggest that BLyS may modulate adaptive immune cells indirectly by inducing DC maturation.  相似文献   

14.
During T cell-B cell collaboration, plasma cell (PC) differentiation and Ig production are known to require T cell-derived soluble factors. However, the exact nature of the cytokines produced by activated T cells that costimulate PC differentiation is not clear. Previously, we reported that costimulation of purified human B cells with IL-21 and anti-CD40 resulted in efficient PC differentiation. In this study, we addressed whether de novo production of IL-21 was involved in direct T cell-induced B cell activation, proliferation, and PC differentiation. We found that activated human peripheral blood CD4(+) T cells expressed mRNA for a number of cytokines, including IL-21, which was confirmed at the protein level. Using a panel of reagents that specifically neutralize cytokine activity, we addressed which cytokines are essential for B cell activation and PC differentiation induced by anti-CD3-activated T cells. Strikingly, neutralization of IL-21 with an IL-21R fusion protein (IL-21R-Fc) significantly inhibited T cell-induced B cell activation, proliferation, PC differentiation, and Ig production. Inhibition of PC differentiation was observed even when the addition of IL-21R-Fc was delayed until after initial B cell activation and expansion had occurred. Importantly, IL-21 was found to be involved in PC differentiation from both naive and memory B cells. Finally, IL-21R-Fc did not inhibit anti-CD3-induced CD4(+) T cell activation, but rather directly blocked T cell-induced B cell activation and PC differentiation. These data are the first to document that B cell activation, expansion, and PC differentiation induced by direct interaction of B cells with activated T cells requires IL-21.  相似文献   

15.
IL-18 induces inflammation resulting in either enhanced protection from pathogens or exacerbation of autoimmunity, and T cells are profoundly activated during these responses. How IL-18 influences T cell activation is unknown, but this study in mice shows that IL-18 boosted Ag-specific T cell clonal expansion of effector T cells and induced a subpopulation of IFN-gamma superproducing T cells. Commitment to IFN-gamma production through IL-18 was independent of NK cells and IL-12 but dependent on host-derived IFN-gamma. To determine how expansion of these effectors occurred, IL-18 was shown to induce OX40L on dendritic cells, whereas peptide stimulation induced CD134 (OX40) on specific T cells. CD134 blockade inhibited T cell effector expansion thereby reducing the number of IFN-gamma superproducers by 12-fold. Thus, independent of IL-12, IL-18 impacts T cell immunity throughout lymphoid and nonlymphoid tissue by bridging the innate and adaptive arms of the immune system through IFN-gamma and the CD134 costimulatory pathway.  相似文献   

16.
Lee WW  Lee N  Fujii H  Kang I 《Cellular immunology》2012,275(1-2):19-23
The differentiation of T helper (Th) cells is critically dependent on cytokine milieu. The innate immune monocytes produce IL-1β which can affect the development of Th17 and Th1 cells that predominantly produce IL-17 and IFN-γ, respectively. Oligosaccharides from microorganisms, crops and mushrooms can stimulate innate immune cells. Active Hexose Correlated Compound (AHCC) that contains a large amount of oligosaccharides is a natural extract prepared from the mycelium of the edible Basidiomycete fungus. This compound is reported to modulate immune responses against pathogens although the mechanisms for this effect are largely unknown. Here we show that AHCC could induce high levels of IL-1β production from human monocytes. Furthermore, AHCC-treated monocytes increased the production of IL-17 and IFN-γ from autologous CD4(+) T cells, which was blocked by adding IL-1 receptor antagonist. These finding provide new insight into how food supplements like AHCC could enhance human immunity by modulating monocytes and Th cells.  相似文献   

17.
Multisubunit cytokine receptors such as the heterotrimeric receptor for interleukin-2 (IL-2) are ubiquitous in hematopoeitic cell types of importance in biotechnology and are crucial regulators of cell proliferation and differentiation behavior. Dynamics of cytokine/receptor endocytic trafficking can significantly impact cell responses through effects of receptor down-regulation and ligand depletion, and in turn are governed by ligand/receptor binding properties. We describe here a computational model for trafficking dynamics of the IL-2 receptor (IL-2R) system, which is able to predict T cell proliferation responses to IL-2. This model comprises kinetic equations describing binding, internalization, and postendocytic sorting of IL-2 and IL-2R, including an experimentally derived dependence of cell proliferation rate on these properties. Computational results from this model predict that IL-2 depletion can be reduced by decreasing its binding affinity for the IL-2R betagamma subunit relative to the alpha subunit at endosomal pH, as a result of enhanced ligand sorting to recycling vis-à-vis degradation, and that an IL-2 analogue with such altered binding properties should exhibit increased potency for stimulating the T cell proliferation response. These results are in agreement with our recent experimental findings for the IL-2 analogue termed 2D1 [Fallon, E. M. et al. J. Biol. Chem. 2000, 275, 6790-6797]. Thus, this type of model may enable prediction of beneficial cytokine/receptor binding properties to aid development of molecular design criteria for improvements in applications such as in vivo cytokine therapies and in vitro hematopoietic cell bioreactors.  相似文献   

18.
Interleukin-25 (IL-25) is a cytokine associated with allergy and asthma that functions to promote type 2 immune responses at mucosal epithelial surfaces and serves to protect against helminth parasitic infections in the intestinal tract. This study identifies the IL-25 receptor, IL-17RB, as a key mediator of both innate and adaptive pulmonary type 2 immune responses. Allergen exposure upregulated IL-25 and induced type 2 cytokine production in a previously undescribed granulocytic population, termed type 2 myeloid (T2M) cells. Il17rb(-/-) mice showed reduced lung pathology after chronic allergen exposure and decreased type 2 cytokine production in T2M cells and CD4(+) T lymphocytes. Airway instillation of IL-25 induced IL-4 and IL-13 production in T2M cells, demonstrating their importance in eliciting T cell-independent inflammation. The adoptive transfer of T2M cells reconstituted IL-25-mediated responses in Il17rb(-/-) mice. High-dose dexamethasone treatment did not reduce the IL-25-induced T2M pulmonary response. Finally, a similar IL-4- and IL-13-producing granulocytic population was identified in peripheral blood of human subjects with asthma. These data establish IL-25 and its receptor IL-17RB as targets for innate and adaptive immune responses in chronic allergic airway disease and identify T2M cells as a new steroid-resistant cell population.  相似文献   

19.
20.
MRL/MpJ-Fas(lpr/lpr)/J (MRL(lpr)) mice develop lupus-like disease manifestations in an IL-21-dependent manner. IL-21 is a pleiotropic cytokine that can influence the activation, differentiation, and expansion of B and T cell effector subsets. Notably, autoreactive CD4(+) T and B cells spontaneously accumulate in MRL(lpr) mice and mediate disease pathogenesis. We sought to identify the particular lymphocyte effector subsets regulated by IL-21 in the context of systemic autoimmunity and, thus, generated MRL(lpr) mice deficient in IL-21R (MRL(lpr).IL-21R(-/-)). Lymphadenopathy and splenomegaly, which are characteristic traits of the MRL(lpr) model were significantly reduced in the absence of IL-21R, suggesting that immune activation was likewise decreased. Indeed, spontaneous germinal center formation and plasma cell accumulation were absent in IL-21R-deficient MRL(lpr) mice. Correspondingly, we observed a significant reduction in autoantibody titers. Activated CD4(+) CD44(+) CD62L(lo) T cells also failed to accumulate, and CD4(+) Th cell differentiation was impaired, as evidenced by a significant reduction in CD4(+) T cells that produced the pronephritogenic cytokine IFN-γ. T extrafollicular helper cells are a recently described subset of activated CD4(+) T cells that function as the primary inducers of autoantibody production in MRL(lpr) mice. Importantly, we demonstrated that T extrafollicular helper cells are dependent on IL-21R for their generation. Together, our data highlighted the novel observation that IL-21 is a critical regulator of multiple pathogenic B and T cell effector subsets in MRL(lpr) mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号