首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus.  相似文献   

2.
Cell surface receptors for molecular chaperones   总被引:2,自引:0,他引:2  
Heat shock proteins are intracellular molecular chaperones. However, extracellular heat shock proteins have recently been shown to mediate a range of powerful effects in inflammatory cells, neuronal cells and immune cells. These effects are transmitted by a number of cell surface receptors including LRP/CD91, CD40, Toll-like receptors, Scavenger receptors and c-type Lectins. However, although extracellular heat shock proteins are products of at least five different gene superfamilies, similar receptor types often trigger their effects. We have assessed heat shock protein binding to the different receptor types with particular regard to its role in tumor immunology. Heat shock protein 70 released from dying tumor cells or injected as part of a vaccine induces a remarkable range of immune effects. This molecular chaperone induces powerful pro-inflammatory signaling cascades leading to the activation of antigen presenting cells. In addition, heat shock protein 70 is able to transport antigenic peptides as cargo from the tumor cell cytoplasm across the membranes of antigen presenting cells and deliver them to major histocompatability class I molecules, a process known as "cross-presentation". The resulting major histocompatability class I-peptide complexes are then displayed on the cell surface by antigen presenting cells, leading to activation of cytotoxic T lymphocytes and tumor cell killing. Understanding how heat shock protein-receptor binding orchestrates individual components of tumor immunity will permit enhanced design of molecular chaperone based immunotherapy.  相似文献   

3.
Shock waves nowadays are well known for their regenerative effects. Basic research findings showed that shock waves do cause a biological stimulus to target cells or tissue without any subsequent damage. Therefore, in vitro experiments are of increasing interest. Various methods of applying shock waves onto cell cultures have been described. In general, all existing models focus on how to best apply shock waves onto cells.However, this question remains: What happens to the waves after passing the cell culture? The difference of the acoustic impedance of the cell culture medium and the ambient air is that high, that more than 99% of shock waves get reflected! We therefore developed a model that mainly consists of a Plexiglas built container that allows the waves to propagate in water after passing the cell culture. This avoids cavitation effects as well as reflection of the waves that would otherwise disturb upcoming ones. With this model we are able to mimic in vivo conditions and thereby gain more and more knowledge about how the physical stimulus of shock waves gets translated into a biological cell signal (“mechanotransduction").  相似文献   

4.
The large cells in early vertebrate development face an extreme physical challenge in organizing their cytoplasm. For example, amphibian embryos have to divide cytoplasm that spans hundreds of micrometres every 30 min according to a precise geometry, a remarkable accomplishment given the extreme difference between molecular and cellular scales in this system. How do the biochemical reactions occurring at the molecular scale lead to this emergent behaviour of the cell as a whole? Based on recent findings, we propose that the centrosome plays a crucial role by initiating two autocatalytic reactions that travel across the large cytoplasm as chemical waves. Waves of mitotic entry and exit propagate out from centrosomes using the Cdk1 oscillator to coordinate the timing of cell division. Waves of microtubule-stimulated microtubule nucleation propagate out to assemble large asters that position spindles for the following mitosis and establish cleavage plane geometry. By initiating these chemical waves, the centrosome rapidly organizes the large cytoplasm during the short embryonic cell cycle, which would be impossible using more conventional mechanisms such as diffusion or nucleation by structural templating. Large embryo cells provide valuable insights to how cells control chemical waves, which may be a general principle for cytoplasmic organization.  相似文献   

5.
Heat shock proteins (Hsps) are ubiquitous molecular chaperones with indispensable roles in assisting protein folding and giving protection from proteotoxic environmental harm. Members of the 70-kDa heat shock protein family have been demonstrated to recognize and bind with distinguished RNA sequences, which function as determinants of eukaryotic mRNA stability. We have earlier identified the molecular domains involved in RNA-binding and characterized in detail the specificity, affinity and some regulatory aspects of this molecular interaction using various deletion mutants and homologues of Hsp70. We have shown that wild type, but not any of the tested truncated mutants of Hsp70, is efficiently taken up by P388 mouse macrophage cells. Here we addressed the question of whether Hsp70 is capable of delivering bound RNA into mammalian cells. Employing fluorescence and confocal microscopy, we demonstrated that full length Hsp70 facilitates the uptake of RNA molecules into the cytoplasm of mammalian cells. We propose that further optimization of this system might enable the development of a valuable tool to deliver RNA molecules, such as siRNA, dsRNA or other regulatory RNA sequences to probe or influence various regulatory processes in eukaryotic cells.  相似文献   

6.
Permeabilization of L1210 cells by lithotripter shock waves in vitro was monitored by evaluating the accumulation of fluorescein-labeled dextrans with a relative molecular mass ranging from 3,900–2,000,000. Incubation with labeled dextran alone caused a dose- and time-dependent increase in cellular fluorescence as determined by flow cytometry, with a vesicular distribution pattern in the cells consistent with endocytotic uptake. Shock wave exposure prior to incubation with labeled dextran revealed similar fluorescence intensities compared to incubation with labeled dextran alone. When cells were exposed to shock waves in the presence of labeled dextran, mean cellular fluorescence was further increased, indicating additional internalization of the probe. Confocal laser scanning microscopy confirmed intracellular fluorescence of labeled dextran with a diffuse distribution pattern. Fluorescence-activated cell sorting with subsequent determination of proliferation revealed that permeabilized cells were viable and able to proliferate. Permeabilization of the membrane of L1210 cells by shock waves in vitro allowed loading of dextrans with a relative molecular mass up to 2,000,000.Permeabilization of tumor cells by shock waves provides a useful tool for introducing molecules into cells which might be of interest for drug targeting in tumor therapy in vivo.This work was supported by the Deutsche Forschungsgemeinschaft grant De 531/1-1. We are particularly grateful to Dr. Ulrich Dirnagl (Department of Neurology, University of Munich, Marchioninistr. 15, 81377 Munich, Germany) for performing the confocal laser scanning microscopy and to Gerhard Adams for excellent technical assistance.  相似文献   

7.
The interaction of lithotripter-generated shock waves with adherent cells is investigated using high-speed optical techniques. We show that shock waves permeabilize adherent cells in vitro through the action of cavitation bubbles. The bubbles are formed in the trailing tensile pulse of a lithotripter-generated shock wave where the pressure drops below the vapor pressure. Upon collapse of cavitation bubbles, a strong flow field is generated which accounts for two effects: first, detachment of cells from the substrate; and second, the temporary opening of cell membranes followed by molecular uptake, a process called sonoporation. Comparison of observed cell detachment with results from a theoretical model considering peeling cell detachment by a wall jet-induced shear stress shows reasonable agreement.  相似文献   

8.
Unsteady and nonequilibrium molecular dynamics simulations of the response of dipalmitoylphosphatidylcholine (DPPC) bilayers to the shock waves of various incident angles are presented. The action of an incident shock wave is modeled by adding a momentum in an oblique direction to water molecules adjacent to a bilayer. We thereby elucidate the effects of incident shock angles on (i) collapse and rebound of the bilayer, (ii) lateral displacement of headgroups, (iii) tilts of lipid molecules, (iv) water penetration into the hydrophobic region of the bilayer, and (v) momentum transfer across the bilayer. The number of water molecules delivered into the hydrophobic region is found to be insensitive to incident shock angles. The most important structural changes are the lateral displacement of headgroups and tilts of lipid molecules, which are observed only in the half of the bilayer directly exposed to a shock wave for all incident shock angles studied here. As a result, only the normal component of the added oblique momentum is substantially transferred across the bilayer. This also suggests that the irradiation by shock waves may induce a jet-like streaming of the cytoplasm toward the nucleus.  相似文献   

9.
Unsteady and nonequilibrium molecular dynamics simulations of the response of dipalmitoylphosphatidylcholine (DPPC) bilayers to the shock waves of various incident angles are presented. The action of an incident shock wave is modeled by adding a momentum in an oblique direction to water molecules adjacent to a bilayer. We thereby elucidate the effects of incident shock angles on (i) collapse and rebound of the bilayer, (ii) lateral displacement of headgroups, (iii) tilts of lipid molecules, (iv) water penetration into the hydrophobic region of the bilayer, and (v) momentum transfer across the bilayer. The number of water molecules delivered into the hydrophobic region is found to be insensitive to incident shock angles. The most important structural changes are the lateral displacement of headgroups and tilts of lipid molecules, which are observed only in the half of the bilayer directly exposed to a shock wave for all incident shock angles studied here. As a result, only the normal component of the added oblique momentum is substantially transferred across the bilayer. This also suggests that the irradiation by shock waves may induce a jet-like streaming of the cytoplasm toward the nucleus.  相似文献   

10.
To clarify the physiological roles of heat shock proteins induced by copper, we studied the synthesis of these proteins and metallothionein, as well as the level and nature of copper incorporated into HeLa cells. Incubation in medium containing 200 microM cupric sulfate and above induced the synthesis of 70,000-Da heat shock protein (hsp70) in these cells. However, the synthesis of hsp70 did not increase in the presence of less than 200 microM cupric sulfate. On the other hand, the synthesis of metallothionein increased due to 100 microM cupric sulfate. The uptake of copper into the cells depended on the cupric sulfate concentration in the medium. To analyze the nature of the intracellular copper, cell extracts were separated by gel filtration chromatography into three fractions: the high molecular weight, metallothionein, and low molecular weight fractions. No copper was found in the low molecular weight fraction of control cells, but appeared distinctly at 200 microM cupric sulfate and above. Copper in the high molecular weight fraction also began to increase at 200 microM cupric sulfate and above, whereas in the metallothionein fraction it began to increase even at 50 to 100 microM cupric sulfate. Furthermore, inhibition of cell growth was also observed at 200 microM cupric sulfate and above but not at 100 microM and below.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
During infection of cultured epithelial cells, surface-located Yersinia pseudotuberculosis deliver Yop (Yersinia outer protein) virulence factors into the cytoplasm of the target cell. A non-polar yopB mutant strain displays a wild-type phenotype with respect to in vitro Yop regulation and secretion but fails to elicit a cytotoxic response in cultured HeLa cells and is unable to inhibit phagocytosis by macrophage-like J774 cells. Additionally, the yopB mutant strain was avirulent in the mouse model. No YopE or YopH protein were observed within HeLa cells infected with the yopB mutant strain, suggesting that the loss of virulence of the mutant strain was due to its inability to translocate Yop effector proteins through the target cell plasma membrane. Expression of YopB is necessary for Yersinia-induced lysis of sheep erythrocytes. Purified YopB was shown to have membrane disruptive activity in vitro. YopB-dependent haemolytic activity required cell contact between the bacteria and the erythrocytes and could be inhibited by high, but not low, molecular weight carbohydrates. Similarly, expression of YopE reduced haemolytic activity. Therefore, we propose that YopB is essential for the formation of a pore in the target cell membrane that is required for the cell-to-cell transfer of Yop effector proteins.  相似文献   

12.
Bergsdorf C  Beyer C  Umansky V  Werr M  Sapp M 《FEBS letters》2003,536(1-3):120-124
Human papillomavirus virus-like particles (VLPs) have recently been used to deliver genes into mammalian cells in vitro and in vivo. Here, we investigated whether VLPs may serve as an efficient carrier of low molecular weight compounds (e.g. hormones, vitamins, peptides etc.) into cells. COS7 cells were incubated with recombinant HPV-16L1/L2 VLPs labelled with the fluorescence dye carboxyfluorescein diacetate succinimidyl ester. Using flow cytometry, we demonstrate that labelled VLPs can specifically bind to the cell surface followed by their complete internalisation. Our results indicate that VLPs are promising vehicles for highly efficient delivery of low molecular weight compounds into cells.  相似文献   

13.
We have shown that Hsp20, one of small molecular weight heat shock protein, which is present at a high concentration both in vascular smooth muscle cells and in circulating blood in patient with vascular disease, strongly inhibits platelet aggregation in vitro and ex vivo. To clarify the mechanism, we investigated the effect of Hsp20 on free calcium concentration in human platelet cytoplasm using fura 2. Hsp20 inhibited thrombin-induced calcium influx without affecting calcium release from intracellular calcium stores. The degree of inhibition is well-correlated with that of suppression of thrombin-induced platelet aggregation by this substance. Hsp20 also inhibited the elevation of cytoplasmic free calcium level triggered by collagen, but not that by A-23187. In contrast, Hsp28, another type of small molecular weight Hsp, failed to affect the cytoplasmic free calcium level. These findings suggest that Hsp20 inhibits the receptor-mediated calcium influx of platelets without affecting calcium release from intracellular calcium stores, leading to its anti-platelet activity.  相似文献   

14.
A chimeric protein consisting of enhanced green fluorescent protein (EGFP) fused to the N-terminus of human Hsp27 conferred stress protection in human A549 lung carcinoma and murine L929 cells that were stably transfected to express the chimera constitutively. The resultant protection was comparable with that in the same cell lines when they were transfected to express corresponding levels of Hsp27. Unlike L929 cells, A549 cells exhibit endogenous Hsp27 expression, whose expression was inhibited in proportion to the amount of fluorescent chimera expressed, suggesting that the A549 cells recognized the latter as Hsp27. Upregulation of Hsp27 or chimeric Hsp27 in all transfected cell lines (stable or transient transfection) caused no measurable change in cellular glutathione levels, indicating that glutathione played no role in the stress protection associated with either protein. Chimeric Hsp27 had a monomeric molecular weight of 55 kDa (that of Hsp27 plus EGFP) in both cell types and formed a 16-mer complex twice as massive as that formed by Hsp27. Heat shock or sodium arsenite induced phosphorylation of both chimeric Hsp27 and Hsp27, which resulted in the disaggregation of Hsp27 multimers in both cell types and disaggregation of 20% of the chimeric multimers in L929 cells. But chimeric Hsp27 multimers did not disaggregate after stress in A549 cells. Epifluorescence and confocal microscopy demonstrated that chimeric Hsp27 was restricted to the cytoplasm under normal growth conditions and after heat shock in all cells. This study supports the conclusions that Hsp27 stress protection requires neither its translocation into the nucleus nor the dissociation of its multimeric complex. Furthermore, it demonstrates that fluorescent chimeras of heat shock proteins can be functional and used to observe the protein's distribution within living cells.  相似文献   

15.
Biomolecules such as proteins, DNA, and RNA are macromolecules and can not cross the cell membrane. However, cell-penetrating peptide (CPP) has been shown to deliver therapeutic biomolecules successfully into cells. The various and widely used CPPs including TAT, VP22, and Antp are mostly non-human originated CPPs, and are limited by their potential toxicity and immunogenicity. We report here on a newly identified novel cell-penetrating sequence (LPIN; RRKRRRRRK) from the nuclear localization sequence (NLS) of human nuclear phosphatase, LPIN3. LPIN-EGFP recombinant protein was concentration- and time-dependently delivered into cells and localized to the nucleus as well as the cytoplasm. It penetrated the cell membrane by lipid raft-mediated endocytosis by binding to heparan sulfate proteoglycan. LPIN-EGFP was successfully delivered into primary mouse splenocytes in vitro and it could be delivered into various tissues including liver, kidney, and intestine in mice after intra-peritoneal injection. This research suggests that LPIN-CPP could be used in a drug delivery system to deliver therapeutic biomolecules including peptides, proteins, DNA, and RNA and without the limitations of non-human originated CPPs such as TAT-CPP.  相似文献   

16.
Actin filament (F-actin) assembly kinetics determines the locomotion and shape of crawling eukaryotic cells, but the nature of these kinetics and their determining reactions are unclear. Live BHK21 fibroblasts, mouse melanoma cells, and Dictyostelium amoebae, locomoting on glass and expressing Green Fluorescent Protein-actin fusion proteins, were examined by confocal microscopy. The cells demonstrated three-dimensional bands of F-actin, which propagated throughout the cytoplasm at rates usually ranging between 2 and 5 microm/min in each cell type and produced lamellipodia or pseudopodia at the cell boundary. F-actin's dynamic behavior and supramolecular spatial patterns resembled in detail self-organized chemical waves in dissipative, physico-chemical systems. On this basis, the present observations provide the first evidence of self-organized, and probably autocatalytic, chemical reaction-diffusion waves of reversible actin filament assembly in vertebrate cells and a comprehensive record of wave and locomotory dynamics in vegetative-stage Dictyostelium cells. The intensity and frequency of F-actin wavefronts determine locomotory cell projections and the rotating oscillatory waves, which structure the cell surface. F-actin assembly waves thus provide a fundamental, deterministic, and nonlinear mechanism of cell locomotion and shape, which complements mechanisms based exclusively on stochastic molecular reaction kinetics.  相似文献   

17.
Incubation of Chinese Hamster Ovary (CHO) cells for one hour at 43 degrees C results in several obvious changes in protein distribution and protein synthesis. One major protein of the cytoplasm (molecular weight 45,000 daltions), also present as a minor component in the nucleus, rapidly disappeared while several proteins, especially high molecular weight peptides, were induced by heat shock. Localization of the proteins in the cytoplasm, extra-nucleolar chromatin and nucleolar bodies has been carried out. Different sets of induced proteins appear in each subcellular compartment. Four hours after restoration of the normal temperature, the normal pattern of protein synthesis was observed. The 45,000 dalton protein reappeared first. Relations between structural and functional alterations and changes in protein distribution are suggested.  相似文献   

18.
When Drosophila cells were heat shocked, low molecular weight RNA of a novel type was synthesized and accumulated in the cytoplasm. This RNA, which is about 320 nucleotides long, inhibited the translation of Drosophila mRNAs in rabbit reticulocyte lysate. It remains to be clarified whether this RNA is involved in the regulation mechanism of heat shock at the translational level.  相似文献   

19.
Flaviviruses deliver their genome into the cell by fusing the viral lipid membrane to an endosomal membrane. The sequence and kinetics of the steps required for nucleocapsid delivery into the cytoplasm remain unclear. Here we dissect the cell entry pathway of virions and virus-like particles from two flaviviruses using single-particle tracking in live cells, a biochemical membrane fusion assay and virus infectivity assays. We show that the virus particles fuse with a small endosomal compartment in which the nucleocapsid remains trapped for several minutes. Endosomal maturation inhibitors inhibit infectivity but not membrane fusion. We propose a flavivirus cell entry mechanism in which the virus particles fuse preferentially with small endosomal carrier vesicles and depend on back-fusion of the vesicles with the late endosomal membrane to deliver the nucleocapsid into the cytoplasm. Virus entry modulates intracellular calcium release and phosphatidylinositol-3-phosphate kinase signaling. Moreover, the broadly cross-reactive therapeutic antibody scFv11 binds to virus-like particles and inhibits fusion.  相似文献   

20.
The osmotic lysis of pinosomes procedure has been adapted to deliver small interfering RNAs (siRNAs) into cells in culture. Under hypertonic conditions, siRNAs were internalized into pinosomes. A subsequent osmotic shock in hypotonic buffer disrupted the pinosomes and caused the release of siRNAs into the cell cytoplasm. Both steps could be demonstrated directly using fluorescein-labeled siRNAs and confocal laser-scanning microscopy. Uptake by the pinocytosis/osmotic lysis procedure is concentration- and time-dependent. At an siRNA concentration of 0.4 microM, treatment for 40 or 80 min results in silencing efficiencies of 60% and 90%, respectively, after 44 h. A double treatment resulted in approximately equal silencing efficiencies but in reduced viability. This method has been used on a variety of human and murine cell lines including HEK293, HeLa SS6, and SW3T3 cells. Targets such as lamin A/C and Eg5 were effectively silenced. Novel silencing data are provided for Ki67, one of the few reliable prognostic markers for tumor patients. The new procedure avoids certain technical problems encountered with commercial transfection reagents while yielding silencing efficiencies that are comparable to those obtained with liposome-mediated siRNA transfection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号