首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Gaucher disease (GD), which results from mutations in the human acid beta-glucosidase (beta-Glc) gene, was used as a model system to compare the utility of three methods capable of detecting single base substitutions. PCR-amplified beta-Glc exon 9 sequences of GD patients were screened for single base mutations by GC-clamped denaturing gradient gel electrophoresis (DGGE) and RNase A cleavage of RNA-DNA heteroduplexes, and by chemical (hydroxylamine/osmium tetroxide) cleavage of dsDNA heteroduplexes. PCR products showing abnormal behaviour were cloned and sequenced. Three new point mutations were detected by this strategy. A G to C (Asp409 to His409) substitution was present in two Type 1 and one Type 3 GD patients; an A to T transversion (Asp409 to Val409) was detected in only a single Type 3 individual, and a G to T mutation (Val394 to Leu394) was present in one Type 1 and one Type 3 patient. GD thus exhibits extensive molecular heterogeneity, with at least five single base mutations in beta-Glc exon 9. In every case verified by ASO hybridization, DGGE had correctly identified the presence of the three new mutations, as well as the two previously described exon 9 mutations. In comparison, although RNase A and the chemical method were both able to detect some of these mutations, neither method reproducibly detected all of them. Additionally, DGGE was the only method that was able to reliably determine whether a given mutation was present homozygously or heterozygously. These results suggest that GC-clamped DGGE may be a more reliable and informative screening method for point mutation detection.  相似文献   

2.
Gaucher disease (GD) is the most prevalent lysosomal storage disease. This autosomal recessive trait results from the defective activity of acid beta-glucosidase (beta-Glc). Four different exonic point mutations have been identified as causal alleles for GD. To facilitate screening for these alleles, assays were developed using allele-specific oligonucleotide hybridization to amplified genomic DNA sequences. Specifically, intron bases flanking exons 5, 9, and 10 were determined, and conditions for PCR amplification of these exons were obtained. Two different procedures were developed to distinguish signals obtained from the structural beta-Glc gene exons and those from the pseudogene. These procedures were used to determine the distribution of all known GD alleles in a population of 44 affected patients of varying phenotypes and ethnicity. The high frequency of one of the exon 9 mutations in Ashkenazi Jewish GD type 1 patients was confirmed, and, in addition, this mutation was present in ethnically diverse non-Jewish type 1 GD patients. Homozygotes (N = 5) for this allele were midly affected older individuals, and this mutant allele was not found in any patient with neuronopathic disease. The exon 10 mutation was confirmed as the predominant allele in types 2 and 3 GD. However, several type 1 GD patients, including one of Ashkenazi-Jewish heritage, also were heterozygous for this allele. The presence of this allele in type 1 patients did not correlate with the severity of clinical symptoms. The second exon 9 mutation and the exon 5 mutation were rare, since they occurred only heterozygously either in one type 2 GD patient or in two related Ashkenazi-Jewish GD patients, respectively. Although most GD patients (38 of 44) had at least one of the known mutant alleles, 57% were heterozygotes for only one of these mutations. Fourteen percent of patients were negative for all mutations. A total of 73% of GD patients had at least one unknown allele. The varying clinical phenotypes and ethnic origins of these incompletely characterized patients suggest that multiple other GD alleles exist.  相似文献   

3.
The origin of new single-gene mutations resulting in inherited disease is an issue which may be at least partially resolved by our enhanced ability to detect these changes. In this report we describe the identification of a missense mutation at codon 553 (guanine to adenine) in the von Willebrand factor (vWf) gene in affected members of a family with type IIB von Willebrand's disease (vWd). We found no evidence for this substitution in 190 normal vWf genes. The encoded substitution of a methionine for a valine at this residue is nonconservative in nature and has affected a vWf protein region which has been shown to facilitate binding to the platelet receptor glycoprotein Ib. In patients with type IIB vWd this interaction is characteristically increased in affinity. This mutation has also recently been recorded in four other type IIB vWd families. Thus, there is strong circumstantial evidence to incriminate this substitution as the disease causing mutation in this family. As further supporting evidence for this claim, we have shown by vWf polymorphism analysis that the mutation originated in a vWf gene transmitted from a phenotypically normal grandfather. Analysis of the sperm from this individual showed that approximately 5% of the germ line contained the mutant 553 sequence. These results confirm (1) that the candidate type IIB vWd mutation in this family occurred at some time during the development of the germ line of the grandfather and presumably was related to a mitotic cell division and (2) that, as a result, he is a low-level germ-line mosaic for the mutation.  相似文献   

4.
Gaucher disease type III (GD) is found at a high frequency in northern Sweden. The contemporary Swedish index families are found in two geographically distinct clusters with the highest world-wide frequency of type III GD. A single T-to-C transition in exon 10 has previously been identified in patients from one of the two isolates and we report there the same mutation in the second isolate. Mutational analysis was combined with a genealogical reconstruction of 19 contemporary index families. Both clusters were traced back to two corresponding pairs of ancestors over a 9–13 generation span. Molecular studies show that the two clusters are compatible with a single founder who arrived in northern Sweden in or before the 16th century.  相似文献   

5.
We have synthesized and sequenced alanine:glyoxylate aminotransferase (AGT; HGMW-approved symbol for the gene--AGXT) cDNA from the liver of a primary hyperoxaluria type 1 (PH1) patient who had normal levels of hepatic peroxisomal immunoreactive AGT protein, but no AGT catalytic activity. This revealed the presence of a single point mutation (G----A at cDNA nucleotide 367), which is predicted to cause a glycine-to-glutamate substitution at residue 82 of the AGT protein. This mutation is located in exon 2 of the AGT gene and leads to the loss of an AvaI restriction site. Exon 2-specific PCR followed by AvaI digestion showed that this patient was homozygous for this mutation. In addition, three other PH1 patients, one related to and two unrelated to, but with enzymological phenotype similar to that of the first patient, were also shown to be homozygous for the mutation. However, one other phenotypically similar PH1 patient was shown to lack this mutation. The mechanism by which the glycine-to-glutamate substitution at residue 82 causes loss of catalytic activity remains to be resolved. However, the protein sequence in this region is highly conserved between different mammals, and the substitution at residue 82 is predicted to cause significant local structural alterations.  相似文献   

6.
Graves' disease (GD) is an autoimmune disease, which develops on the basis of an interaction between genetic, environmental and endogenous factors. GD is associated with some HLA genes. Closely linked with them are TNF genes (TNF and LTalpha). Their role in the pathogenesis of GD is still unclear. Two functional polymorphisms within TNF genes include a substitution of G with A in intron I of LTalpha gene and the same one at position -308 in the TNF gene promoter. We carried out a case-control study for the analysis of the contribution of TNF genes to GD in Polish patients. 156 patients with GD diagnosed by clinical data were investigated and compared to 80 healthy persons with negative familial anamnesis. Both TNF and LTalpha were analysed by PCR/Nco I RFLP. The allelic frequency of the rarer TNF2 (A) allele, was 24.7% in GD patients, significantly higher than in healthy persons (9.3%; p<0.0001). The OR was 4.38 for this allele. The frequency of heterozygotes was 41.8% in GD, as compared to 13.6% in the control group. The allelic frequency of the rarer LTB*1 (G) allele was also significantly increased: from 21.9% in the control group to 37.2% in GD patients (p<0.01; OR 2.81). The frequency of heterozygotes was 48.7% in GD, and 28.8% in the control group. The results indicate that TNF genes may contribute to GD in the Polish population.  相似文献   

7.
Only two Gaucher disease (GD) patients bearing mutations in the prosaposin gene (PSAP), and not in the glucocerebrosidase gene (GBA), have been reported. In both cases, one mutant allele remained unidentified. We report here the identification of the second mutation in one of these patients, being the first complete genotype described so far in a SAP-C-deficient GD patient. This mutation, p.Q430X, is the first one reported in the saposin D domain and probably produces a null allele by nonsense mediated mRNA decay.  相似文献   

8.
Two patients in a consanguineous Indian family with infantile glycogenosis type II were found to have a G to A transition in exon 11 of the human lysosomal alpha-glucosidase gene. Both patients were homozygous and both parents were heterozygous for the mutant allele. The mutation causes a Glu to Lys substitution at amino acid position 521, just three amino acids downstream from the catalytic site at Asp-518. The mutation was introduced in wild type lysosomal alpha-glucosidase cDNA and the mutant construct was expressed in vitro and in vivo. The Glu to Lys substitution is proven to account for the abnormal physical properties of the patients lysosomal alpha-glucosidase precursor and to prevent the formation of catalytically active enzyme. In homozygous form it leads to the severe infantile phenotype of glycogenosis type II.  相似文献   

9.
Gaucher disease (GD) is an autosomal recessive inborn error of metabolism, resulting from a deficiency of the enzyme glucocerebrosidase, causing an accumulation of the glycolipid glucocerebroside within lysosomes of macrophages in the reticuloendothelial system. Three major clinical forms have been assigned and more than 200 gene mutations have been identified. We herein report a Lebanese boy born with a novel combined mutation L371V/Rec-NciI, who presented with moderate-severe type 1 GD. An overview of the clinical and biomarker improvement following enzyme replacement therapy with imiglucerase is described in a follow-up of 30 months. Imiglucerase seems to be efficacious in decreasing the severity of the disease associated with this mutation. However, a high dose may be required to achieve optimal growth, platelet count, and hemoglobin level.  相似文献   

10.
This study reports the entire nucleotide sequence of the protein coding region sequence of the alpha 1-antitrypsin (alpha 1AT) Z gene, a common form of the alpha 1AT gene associated with serum alpha 1AT deficiency. In addition to Glu342 to Lys342 mutation in exon V which has been previously identified by peptide analysis, another point mutation (GTG to GCG in exon III) in the gene sequence predicts a second amino acid substitution (Val213 to Ala213) in the Z protein. This Val213 to Ala213 mutation was confirmed to be a general finding in Z type alpha 1AT gene by evaluating genomic DNA from 40 Z haplotypes using synthetic oligonucleotide gene probes directed toward the mutated exon III sequences in the Z gene. Furthermore, the exon III Val213 to Ala213 mutation eliminates a BstEII restriction endonuclease site in the alpha 1AT Z gene, allowing rapid identification of this Val213 to Ala213 substitution at the genomic DNA level. Surprisingly, when genomic DNA samples from individuals thought to be homozygous for the M1 gene (the most common alpha 1AT normal haplotype) were evaluated with BstEII, 23% of the M1 haplotypes were BstEII site negative, thus identifying a new form of M1 (i.e. M1(Ala213], likely identical to M1 but with an isoelectric focusing "silent" amino acid substitution (Val213 to Ala213). Although the relative importance of the newly identified exon III Val213 to Ala213 mutation to the pathogenesis of the abnormalities associated with the Z gene is not known, it is likely that M1(Ala213) gene represents a common "normal" polymorphism of the alpha 1AT gene that served as an evolutionary intermediate between the M1(Val213) and Z genes.  相似文献   

11.
A family with three heterozygote and two homozygote carriers of the rare apolipoprotein E1 isoform was detected by isoelectric focusing. One of the homozygous patients had type III hyperlipidemia, while the other showed normolipemic dysbetalipoproteinemia. Restriction fragment length analysis as well as allele specific oligonucleotides were used to identify the structural alterations forming the abnormal epsilon 1 genotype. Comparison with the most common epsilon 3 allele showed that two base exchanges A for G in codon 127 and T for G in codon 158 (Asp for Gly and Cys for Arg, respectively) are responsible for the amino acid substitution which causes the charge shift observed in isoelectric focusing. The same defects have been described in the only previously characterized apoE1 (Weisgraber et al. 1984. J. Clin. Invest. 73: 1024-1033). In addition to the study by Weisgraber and coworkers, who reported on a heterozygous patient, we here describe the metabolic and clinical consequences of a homozygosity for this rare allele. Changes in lipoprotein metabolism, as well as in clinical phenotypes, were exactly identical to those seen in patients homozygous for the epsilon 2 allele, which has in common with the epsilon 1 allele the mutation in codon 158, but lacks the substitution in codon 127. In addition, lipoprotein profiles of the epsilon 3/epsilon 1 heterozygotes were indistinguishable from those of epsilon 3/epsilon 2 heterozygotes. Therefore, we conclude that the additional mutation in codon 127 that characterizes the epsilon 1 allele is of no functional importance in vivo.  相似文献   

12.
Drosophila ma-l gene was suggested to encode an enzyme for sulfuration of the desulfo molybdenum cofactor for xanthine dehydrogenase (XDH) and aldehyde oxidase (AO). The human molybdenum cofactor sulfurase (HMCS) gene, the human ma-l homologue, is therefore a candidate gene responsible for classical xanthinuria type II, which involves both XDH and AO deficiencies. However, HMCS has not been identified as yet. In this study, we cloned the HMCS gene from a cDNA library prepared from liver. In two independent patients with classical xanthinuria type II, we identified a C to T base substitution at nucleotide 1255 in the HMCS gene that should cause a CGA (Arg) to TGA (Ter) nonsense substitution at codon 419. A classical xanthinuria type I patient and healthy volunteers lacked this mutation. These results indicate that a functional defect of the HMCS gene is responsible for classical xanthinuria type II, and that HMCS protein functions to provide a sulfur atom for the molybdenum cofactor of XDH and AO.  相似文献   

13.
In patients originally genotyped as homoallelic for the Gaucher disease (GD) L444P (1448C) mutation, we sought to confirm previously reported phenotypic differences between Caucasians and Japanese, to determine the prevalence and phenotypic impact of recombinant alleles, and to explore the phenotypic influence of genetic background. We therefore analyzed data from longer-term clinical follow-up, more comprehensive genotyping and polymorphism and mitochondrial DNA (mtDNA) testing in all known Japanese L444P homozygotes (n=15). Our studies demonstrated that, of 12 patients in our series originally diagnosed with non-neuronopathic GD, 9 developed neurological signs/symptoms during follow-up (at a mean of 14 years 11 months±11 years 4 months). Of three patients originally diagnosed with acute neuronopathic (type 2) GD, all three were compound heterozygotes for L444P and the complex allele RecNci I. In the entire series, Pvu II and liver erythrocyte pyruvate kinase (PKLR) polymorphism and prevalence of the 9 bp mtDNA deletion were heterogeneous, and these background genetic factors could not predict phenotypic expression. Our data suggest that, in Japanese as in Caucasian patients, the L444P/L444P genotype is highly associated with subacute neuronopathic (type 3) GD, and the presence of a complex allele together with an L444P allele leads to type 2 disease. Our findings also underline the importance of comprehensive genotyping (particularly testing for recombinant alleles), long-term follow-up and careful neurological examination in patients with early-onset GD. Such measures ultimately may improve genotype/phenotype correlations and, with them, genetic counseling and therapeutic decision making. Electronic Publication  相似文献   

14.
Crigler-Najjar syndrome type I (CN I) is a rare autosomal recessive disorder due to hepatic dysfunction of uridine diphospho-glucuronosyltransferase (UGT) activity toward bilirubin. Complete inactivation of this enzyme causing CN I lead to accumulation of unconjugated bilirubin in serum and bile. Here we report the results of the molecular characterization of the uridine diphospho-glucuronosyltransferase 1A1 (UGT1A1) gene in a consanguineous family of Slovak Roms and an unrelated non-Romany family with CN I. Sequence analysis of UGT1A1 gene in all four Romany patients showed mutation in exon 4, a deletion of an A at codon 407 (1220delA), not yet described in homozygous status. All analysed patients were homozygous for 1220delA mutation and their 3 healthy sibs were heterozygous. The non-Romany patient was a compound heterozygote for two different deletions, 1220delA and 717-718delAG at codon 239. In the family of his cousin a son was born affected with CN I, who was homozygote for 717-718delAG mutation. His other niece affected with CN II was heterozygote for mutation 717-718delAG but homozygote for TA insertion and enhancer substitution T-3279G. Haplotype analysis suggests that the 1220delA mutation is identical by descent in both families, though they originate from two ethnically different populations (Slovaks vs. Roms).  相似文献   

15.
Cytokines in Gaucher's disease.   总被引:4,自引:0,他引:4  
Gaucher's disease (GD) is characterized by hepatosplenomegaly, bone marrow infiltration, osteonecrosis, which may all be associated with the presence of pathological macrophages that contain undegraded glycosphingolipids. Levels of serum cytokines, which are soluble products of mononuclear phagocytes (MNP), were evaluated in 24 GD patients. Levels of interleukin-1beta (IL-1beta), interleukin-1 receptor antagonist (IL-1Ra), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha), and soluble interleukin-2 receptor (sIL-2R) in GD patients were significantly higher than in normal controls. We attempted to correlate cytokine levels with disease severity. Type I GD patients with more severe clinical manifestations had significantly higher levels of IL-1beta, IL-1Ra and IL-6, relative to type I patients with milder disease. Three patients homozygous for the 1448C mutation with neuropathic type III disease, had significantly higher levels of sIL-2R than type I patients or controls. We speculate that cytokine over-expression may relate to the pathophysiology of some of the clinical manifestations of GD. Thus, the elevated IL-1beta, TNF-alpha and IL-6 levels may induce the bone manifestations, the neutrophil chemotaxis and the increased incidence of hyper-gammaglobulinemia present in GD patients.  相似文献   

16.
High titers of anti-GA1 antibodies have been associated with neurological syndromes. In most cases, these antibodies cross-react with the structurally related glycolipids GM1 and GD1b, although specific anti-GA1 antibodies have also been reported. The role of specific anti-GA1 antibodies is uncertain since the presence of GA1 in the human nervous system has not been clarified. A rabbit was immunized with GD1a and its sera were screened for antibody reactivity by standard immunoassay methods (HPTLC-immunostaining and ELISA). Anti-GD1a antibodies were not detected but, unexpectedly, anti-GA1 IgG-antibodies were found. Antibody binding to GA1 was inhibited by soluble GA1 but also by GD1a. These results indicate that the rabbit produced antibodies that recognize epitopes present on the glycolipids, that are absent or not exposed on solid phase adsorbed GD1a. We investigated the presence of these unusual anti-ganglioside antibodies in normal and neurological patient sera. Approximately, 10% of normal human sera contained low titer of specific anti-GA1 IgG-antibodies but none of them recognized soluble GD1a. High titers of IgG-antibodies reacting only with GA1 were detected in 12 patient sera out of 325 analyzed. Of these, 6 sera showed binding that was inhibited by soluble GD1a and four of them also by GM1. This new type of anti-ganglioside antibodies should be considered important elements for understanding of the pathogenesis of these diseases as well as their diagnosis.  相似文献   

17.
Multiple endocrine neoplasia (MEN) type 2B mutations have been reported at methionine 918 or alanine 883 in the tyrosine kinase domain of the RET proto-oncogene. Recently, a new combination of two germline missense mutations at valine 804 and tyrosine 806 was identified in a patient with MEN 2B-like clinical phenotypes including medullary thyroid carcinoma, mucosal neuroma, and marfanoid habitus. In this case, valine 804 and tyrosine 806 were replaced with methionine and cysteine, respectively. In the present study, biological activities of RET with these new mutations were compared with those with known MEN 2A or MEN 2B mutations. The transforming activity of RET with the V804M/Y806C mutation was about 8- to 13-fold higher than that of RET with a single V804M or Y806C mutation. Like RET with the M918T or A883F MEN 2B mutation, the transforming activity of RET with the V804M/Y806C mutation was not affected by substitution of phenylalanine for tyrosine 905 that abolished the activity of RET with the MEN 2A mutation. On the other hand, substitution of phenylalanine for tyrosines 864 and 952 drastically diminished the activity of RET with the V804M/Y806C, M918T or A883F mutation, suggesting that these three mutant proteins have similar biological properties.  相似文献   

18.
Skeletal muscle mtDNA of three patients with mitochondrial encephalomyopathy, characterized clinically by myoclonic epilepsy and ragged-red fiber (MERRF) syndrome, has been sequenced to determine the underlying molecular defect(s). An A-to-G substitution of nt 8344 in the tRNA(Lys) gene, a substitution suggested to be associated with MERRF encephalomyopathy, was detected in these patients. Abnormal patterns of mitochondrial translation products were observed in the skeletal muscle of patients, consistent with the expected consequential defect in protein synthesis. The genealogical studies of the three patients, as well as mtDNA from one published MERRF patient and from nine other normal and disease controls, revealed that the tRNA(Lys) mutations in the MERRF patients have arisen independently. These observations provided evidence that the base substitution is a causal mutation for MERRF.  相似文献   

19.
Mutations in the diastrophic dysplasia sulfate transporter gene DTDST have been associated with a family of chondrodysplasias that comprises, in order of increasing severity, diastrophic dysplasia (DTD), atelosteogenesis type 2 (AO2), and achondrogenesis type 1B (ACG1B). To learn more about the molecular basis of DTDST chondrodysplasias and about genotype-phenotype correlations, we studied fibroblast cultures of three new patients: one with AO-2, one with DTD, and one with an intermediate phenotype (AO2/DTD). Reduced incorporation of inorganic sulfate into macromolecules was found in all three. Each of the three patients was found to be heterozygous for a c862t transition predicting a R279W substitution in the third extracellular loop of DTDST. In two patients (DTD and AO2/DTD), no other structural mutation was found, but polymerase chain reaction amplification and single-strand conformation polymorphism analysis of fibroblast cDNA showed reduced mRNA levels of the wild-type DTDST allele: these two patients may be compound heterozygotes for the “Finnish” mutation (as yet uncharacterized at the DNA level), which causes reduced expression of DTDST. The third patient (with AO2) had the R279W mutation compounded with a novel mutation, the deletion of cytosine 418 (Δc418), predicting a frameshift with premature termination. Also the Δc418 allele was underrepresented in the cDNA, in accordance with previous observations that premature stop codons reduce mRNA levels. The presence of the DTDST R279W mutation in a total of 11 patients with AO2 or DTD emphasizes the overlap between these conditions. This mutation has not been found so far in 8 analyzed ACG1B patients, suggesting that it allows some residual activity of the sulfate transporter. Received: 14 June 1996 / Revised: 8 August 1996  相似文献   

20.
The spike (S) protein of severe acute respiratory syndrome coronavirus (SARS-CoV) is considered as a protective Ag for vaccine design. We previously demonstrated that the receptor-binding domain (RBD) of S protein contains multiple conformational epitopes (Conf I-VI) that confer the major target of neutralizing Abs. Here we show that the recombinant RBDs derived from the S protein sequences of Tor2, GD03, and SZ3, the representative strains of human 2002-2003 and 2003-2004 SARS-CoV and palm civet SARS-CoV, respectively, induce in the immunized mice and rabbits high titers of cross-neutralizing Abs against pseudoviruses expressing S proteins of Tor2, GD03, and SZ3. We also demonstrate that the Tor2-RBD induced-Conf I-VI mAbs can potently neutralize both human SARS-CoV strains, Tor2 and GD03. However, only the Conf IV-VI, but not Conf I-III mAbs, neutralize civet SARS-CoV strain SZ3. All these mAbs reacted significantly with each of the three RBD variants (Tor2-RBD, GD03-RBD, and SZ3-RBD) that differ at several amino acids. Regardless, the Conf I-IV and VI epitopes were completely disrupted by single-point mutation of the conserved residues in the RBD (e.g., D429A, R441A, or D454A) and the Conf III epitope was significantly affected by E452A or D463A substitution. Interestingly, the Conf V epitope, which may overlap the receptor-binding motif and induce most potent neutralizing Abs, was conserved in these mutants. These data suggest that the major neutralizing epitopes of SARS-CoV have been apparently maintained during cross-species transmission, and that RBD-based vaccines may induce broad protection against both human and animal SARS-CoV variants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号