首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 99 毫秒
1.
Cultures of chromaffin cells isolated from the bovine adrenal medulla have been extremely useful for investigating secretory mechanisms, but such cultures used up to the present time represent mixed populations of adrenergic and noradrenergic cells. This report describes how, with slight modifications to standard procedures, two separate chromaffin cell populations may be separated from bovine adrenal medullae. These two cell fractions have been characterized by biochemical, immunocytochemical, and morphological techniques as enriched populations of adrenergic or noradrenergic cells, respectively. The adrenergic cell-enriched fraction consists of greater than 90% adrenergic cells, whereas the noradrenergic cell-enriched fraction contains greater than 60% noradrenergic cells. We also demonstrate that these cells may be cultured with their secretory machinery intact: analysis of secreted catecholamines from nicotine- or high K+ concentration-stimulated cells cultured from each fraction confirms that adrenaline is the major catecholamine secreted by one fraction, whereas noradrenaline is mainly secreted by the other.  相似文献   

2.
Chromogranin A (CgA), the major catecholamine storage vesicle (CSV) soluble protein, may index exocytotic sympathoadrenal secretion. To explore CgA in adrenergic tissues, we developed a radioimmunoassay for bovine CgA. Within adrenal medulla CSV, several minor chromogranins had similar amino acid compositions and peptide maps to that of CgA and also showed parallel, partial cross-reactivity in the CgA radioimmunoassay. CgA immunoreactivity represented 7 +/- 1% of total adrenal medulla cell protein and was localized to adrenal CSV, representing 46 +/- 2% of CSV soluble protein. In brain, there was 1000-fold less CgA than in adrenal medulla, with a widespread regional distribution (maximal in neocortex) and an unusual subcellular distribution (maximal in cytosol), both of which differ from reported catecholamine distribution. Brain chromogranin immunoreactivity also had a lower Stokes radius than adrenal CgA. Sympathetic nerve and serum had 6,000-fold and 30,000-fold less CgA than that in adrenal medulla. The results suggest a "family" of adrenal medulla chromogranins, similar structurally and immunoligically. Adrenal medulla and brain chromogranin differ in concentration, subcellular localization, and molecular size. Finally, CgA in serum may provide a useful tool for sympathoadrenal studies in intact organisms.  相似文献   

3.
Biologically active peptides have been identified in the adrenal glands of several adult mammalian species. Some of these peptides appear to modulate the nicotine-induced catecholamine release from the adrenal medulla. The present study was carried out to investigate the presence and ontogeny of the peptides substance P, met-enkephalin and leu-enkephalin in the ovine fetal adrenal gland from 70 to 140 days gestation (term = 145-150 days). Concurrently, the growth of the fetal adrenal as well as the gestational changes in catecholamine content were determined. The maternal adrenal glands were also studied for comparison. The ovine fetal adrenal gland increased in weight with advancing gestation at a single exponential rate. Total adrenal substance P content correlated with gestational age, while met-enkephalin, leu-enkephalin and total catecholamine contents correlated with adrenal weight. The adrenal content (normalized as per unit protein) of substance P was highest in the young fetuses at 70 days gestation, decreased progressively towards term and, in the adult levels were significantly lower than those measured in the fetuses. The contents of met-enkephalin and leu-enkephalin were low in the young fetuses at 70 days gestation, but reached high levels at 130 to 140 days gestation. Maternal adrenal contents of the two enkephalins were significantly lower than those measured in the near-term fetal adrenal. Total catecholamine content in the fetal adrenal medulla increased as the fetus matured. Norpinephrine was the primary catecholamine present in the medulla of fetuses at 70 and 80 days gestation, while epinephrine was the major one in the adult.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
We observed the presence of the novel pituitary protein "7B2" and its release in the bovine adrenal medulla. The 7B2 concentration (mean +/- SEM) in extracts of the bovine adrenal medulla was 952 +/- 155 pg/mg tissue (n = 6). 7B2 was distributed in the chromaffin granule fraction prepared from the bovine adrenal medulla and was released by high K+ and/or nicotine from cultured cells of the bovine adrenal medulla. Co-release of 7B2 with catecholamine induced by nicotine from the cultured bovine chromaffin cells was also observed. In an analysis of the bovine adrenal medulla chromaffin granule fraction on gel permeation chromatography, there was a major peak with an apparent molecular weight of 45,000, whereas a major peak with an apparent molecular weight of 20,000 was found in that on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. On reverse-phase HPLC, a major peak with a retention time of 35 min was observed in the bovine chromaffin granule fraction and in the bovine anterior pituitary extract. These findings indicate that 7B2 is a secretory protein in the bovine adrenal medulla. The possibility that 7B2 might be released with catecholamine, possibly in response to stress, warrants investigation.  相似文献   

5.
The sympathetic innervation of the cardiac ventricles and dynamics of catecholamine contents in the adrenal medulla have been investigated in inbred white rats (1-3-week-old, immature, mature and old animals). During 1-3 weeks of age, development of adrenergic innervation of the heart is observed, in 1.5-month-old rats in approaches that in mature animals. In the old rats the arrangement density and fluorescent intensity of the adrenergic terminals of the cardiac ventricles in comparison to those in the mature animals decreases considerably. Catecholamine contents in the adrenal medulla in 3-week-old rats practically reaches those specific for mature animals. In the old animals the amount of catecholamines in the adrenal medulla decreases by 20%, comparing to those in the mature animals. Thus, maturation of the mediator link of the sympatho-adrenomedullary system is performed in it later than the hormonal one, while processes of old age involution are more intensive.  相似文献   

6.
We recently reported that capsaicin, a pungent principle of hot red pepper, evokes catecholamine secretion from the rat adrenal medulla. In this study, the effects of some pungent principles of spices on adrenal catecholamine secretion were investigated as compared with that of capsaicin. An increase in catecholamine, especially epinephrine, secretion was observed not only on capsaicin infusion but also on piperine (a pungent principle of pepper) and zingerone (ginger) infusion. Even on infusion of the same amount (650 nmol/kg, i.v.), the order of potency as to catecholamine secretion was capsaicin much greater than piperine greater than or equal to zingerone. While, sulfur-containing and volatile pungent principles, allylisothiocyanate (mustard, etc.) and diallyldisulfide (garlic, etc.), did not even cause slight catecholamine secretion. Furthermore, these adrenergic secretagogues were readily transported via the gut into the body. These results indicate that some pungent principles of dietary spices can induce a warming action via adrenal catecholamine secretion.  相似文献   

7.
Complications during pregnancy and birth asphyxia lead to brain injury, with devastating consequences for the neonate. In this paper we present evidence that the steroid environment during pregnancy and at birth aids in protecting the fetus and neonate from asphyxia-induced injury. Earlier studies show that the placental progesterone production has a role in the synthesis and release of neuroactive steroids or their precursors into the fetal circulation. Placental precursor support leads to remarkably high concentrations of allopregnanolone in the fetal brain and to a dramatic decline with the loss of the placenta at birth. These elevated concentrations influence the distinct behavioral states displayed by the late gestation fetus and exert a suppressive effect that maintains sleep-like behavioral states that are present for much of fetal life. This suppression reduces CNS excitability and suppresses excitotoxicity. With the availability of adequate precursors, mechanisms within the fetal brain ultimately control neurosteroid levels. These mechanisms respond to episodes of acute hypoxia by increasing expression of 5alpha-reductase and P450scc enzymes and allopregnanolone synthesis in the brain. This allopregnanolone response, and potentially that of other neurosteroids including 5alpha-tetrahydrodeoxycorticosterone (TH-DOC), reduces hippocampal cell death following acute asphyxia and suggests that stimulation of neurosteroid production may protect the fetal brain. Importantly, inhibition of neurosteroid synthesis in the fetal brain increases the basal cell death suggesting a role in controlling developmental processes late in gestation. Synthesis of neurosteroid precursors in the fetal adrenal such as deoxycorticosterone (DOC), and their conversion to active neurosteroids in the fetal brain may also have a role in neuroprotection. This suggests that the adrenal glands provide precursor DOC for neurosteroid synthesis after birth and this may lead to a switch from allopregnanolone alone to neuroprotection mediated by allopregnanolone and TH-DOC.  相似文献   

8.
Abstract: Differential adrenaline (Ad) and noradrenaline (NA) secretions evoked by secretagogues were investigated using digitonin-permeabilized adrenal chromaffin cells, cultured adrenal chromaffin cells, and perfused adrenal glands of the ox. In digitonin-permeabilized cells, Ca2+ (0.8-160 μM) caused a concentration-dependent increase in catecholamine secretion, which was characterized by a predominance of NA over Ad secretion. Acetylcholine (10-1,000 μM), high K+ (14-56 μM), and bradykinin (0.1-1,000 μM) all were confirmed to induce the release of more NA than Ad at all concentrations used. There was no apparent difference in the ratios of NA/Ad between Ca2+-induced catecholamine secretion from digitonin-permeabilized cells and those induced by secretagogues from cultured cells. Qualitatively the same result was obtained in the secretory responses to acetylcholine and high K+ in perfused adrenal glands. These results indicate that the effectiveness of Ca2+ for catecholamine secretion is higher in the secretory apparatus of NA cells than in that of Ad cells of the bovine adrenal medulla. This may be one of the reasons why the secretagogues cause a predominance of NA secretion over Ad secretion in the bovine adrenal medulla.  相似文献   

9.
Glucose homeostasis is maintained by complex neuroendocrine control mechanisms, involving three peripheral organs: the liver, pancreas, and adrenal gland, all of which are under control of the autonomic nervous system. During the past decade, abundant results from various studies on neuroendocrine control of glucose have been accumulated. The principal objective of this review is to provide overviews of basic adrenergic mechanisms closely related to glucose control in the three peripheral organs, and then to discuss the integrated glucoregulatory mechanisms in hemorrhage-induced hypotension and insulin-induced hypoglycemia with special reference to sympathoadrenal control mechanisms. The liver is richly innervated by sympathetic and parasympathetic nerves. The functional implication in glucoregulation of sympathetic nerves has been well-documented, while that of parasympathetic nerves remains less understood. More recently, hepatic glucoreceptors have been postulated to be coupled with capsaicin-sensitive afferent nerves, conveying sensory signals of blood glucose concentration to the central nervous system. The pancreas is also richly supplied by the autonomic nervous system. Besides the well documented adrenergic and cholinergic mechanisms, the potential implication of peptidergic neurotransmission by neuropeptide Y and neuromodulation by galanin has recently been postulated in the endocrine secretory function. Presynaptic interactions of these putative peptidergic neurotransmitters with the classic transmitters, noradrenaline and acetylcholine, in the pancreas remain to be clarified. It may be of particular interest that it was vagus nerve stimulation that caused a dominant release of neuropeptide Y over that caused by sympathetic nerve stimulation in the pig pancreas. The adrenal medulla receives its main nerve supply from the greater and lesser splanchnic nerves. Adrenal medullary catecholamine secretion appears to be regulated by three distinct local mechanisms: adrenoceptor-mediated, dihydropyridine-sensitive Ca2+ channel-mediated, and capsaicin-sensitive sensory nerve-mediated mechanisms. In response to hemorrhagic hypotension and insulin-induced hypoglycemia, the sympathoadrenal system is activated resulting in increases of adrenal catecholamine and pancreatic glucagon secretions, both of which are significantly implicated in glucoregulatory mechanisms. An increase in sympathetic nerve activity occurs in the liver during hemorrhagic hypotension and is also likely to occur in the pancreas in response to insulin-induced hypoglycemia. The functional implication of hepatic and central glucoreceptors has been suggested in the increased secretion of glucose counterregulatory hormones, particularly catecholamines and glucagon.  相似文献   

10.
Quantitative luminescent microscopy was used to examine the sympathetic system of cardiac ventricles (SSCV) and the adrenal medulla (AM) of adult Wistar male rats high-resistant (HRH) and low-resistant (LRH) to acute hypoxia and exposed norepinephrine (NE) stress. The relative area of fluorescence adrenergic terminals (RAFAT) of the ventricles and AM catecholamine levels (CL) were shown to be equal in control HRH and LRH rats. The LRH rats displayed a two-phase SSCV response in the first 6 hours of NE stress. Their RAFAT rose an hour later and their RAFAT in the basal zone of the left ventricle insignificantly exceeded that of HRH rats, RAFAT in the latter being unchanged by that time. At hour 6, the heart RAFAT decreased as compared to 1-hour and control levels in LRH and HRH rats and became equal in the two groups. The AM CL in LRH and HRH rats remained unaltered within the whole period of the examination. Despite the profound differences in the resistance of HRH and LRH rats to hypoxia, the responsiveness of their sympathoadrenal system (SAS) to stress is rather homogeneous. With stress, the sympathetic link of SAS is more labile than the adrenal one.  相似文献   

11.
Expression of tyrosine receptor kinase B (TrkB), a receptor for brain‐derived neurotrophic factor (BDNF), is markedly elevated in the adrenal medulla during immobilization stress. Catecholamine release was confirmed in vitro by stimulating chromaffin cells with recombinant BDNF. We investigated the role of TrkB and the localization of BDNF in the adrenal gland during immobilization stress for 60 min. Blood catecholamine levels increased after stimulation with TrkB expressed in the adrenal medulla during 60‐min stress; however, blood catecholamine levels did not increase in adrenalectomized rats. Furthermore, expression of BDNF mRNA and protein was detected in the adrenal medulla during 60‐min stress. Similarly, in rats undergoing sympathetic nerve block with propranolol, BDNF mRNA and protein were detected in the adrenal medulla during 60‐min stress. These results suggest that signal transduction of TrkB in the adrenal medulla evokes catecholamine release. In addition, catecholamine release was evoked by both the hypothalamic–pituitary–adrenal axis and autocrine signaling by BDNF in the adrenal gland. BDNF–TrkB interaction may play a role in a positive feedback loop in the adrenal medulla during immobilization stress.  相似文献   

12.
The ultrastructure of the pituitary, the adrenal, and the lung was examined in the newborn wallaby, Macropus rufogriseus. Tissue from six wallaby neonates (less than 8 hr of age), two near-term fetuses (26 days after removal of suckling pouch young [RPY]), and a two-day-old pouch young was examined; and tissue levels of cortisol in the adrenal glands of five neonates and a near-term fetus (26 days) were measured by radioimmunoassay. At birth the adenohypophysis comprised the bulk of the pituitary gland. The pars distalis was well vascularized and many cells contained electron-dense, membrane-bound granules. The adrenal glands lacked specific zones but comprised two distinct populations of cells. The cytoplasm of one cell type contained electron-dense, membrane-bound granules, similar to those observed inside catecholamine-secreting cells of the adrenal medulla; the other cell type possessed large amounts of smooth endoplasmic reticulum and mitochondria with tubulo-vesicular cristae. These features are characteristic of cells which are actively synthesizing steroid hormones. The concentration of cortisol was 0.58 ng/adrenal in the wallaby at birth. The fetal lungs near term were at the glandular stage of development, and epithelial differentiation of type I and type II pneumocytes was imminent although attenuation was not evident. The canalicular neonatal lung did not contain true alveoli, but type II pneumocytes contained osmiophilic lamellar inclusions of surfactant. The fetal pituitary and adrenal are functional at birth and are thus capable of initiating parturition and of influencing lung maturation in the fetus.  相似文献   

13.
The functional integrity of adrenal chromaffin storage vesicles was studied in the perfused rat adrenal gland subjected to intense exocytosis. Continuous perfusion with 55 mM K+-Krebs solution produced a large and uninterrupted secretion of catecholamines. Total amounts secreted within 45 min were 4.66 micrograms and represented almost 30% of the total tissue catecholamine content. If perfusion with excess K+ was extended to 90 min, the secretion increased further to 5.76 micrograms. Despite such a large secretory response, the catecholamine content of the K+-stimulated adrenal medulla was comparable to that of unstimulated control, suggesting an enhanced resynthesis to maintain the normal levels. Pretreatment of rats with alpha-methyl-p-tyrosine, and including this agent in the perfusion medium during stimulation with K+, caused a marked reduction in catecholamine content. The degree of depletion depended on the extent of stimulation with K+ (45% in 45 min and 60% in 90 min). Although depleted catecholamine stores did not show spontaneous recovery in 2 h, inclusion of tyrosine, L-3,4-dihydroxyphenylalanine or dopamine (but not epinephrine or norepinephrine) completely restored the catecholamine content of previously depleted adrenal medulla. Repletion achieved by tyrosine was time dependent (evident in 30 min and maximum in 2 h) and blocked by alpha-methyl-p-tyrosine but not by calcium deprivation. The ratio of epinephrine to norepinephrine remained constant during various stages of the experiment, suggesting both types of vesicles were equally affected by different treatments. The secretory response (10 Hz for 30 s) was unaffected even though tissue catecholamine stores were significantly depleted (50%). In summary, we have demonstrated that catecholamine content of the isolated perfused adrenal gland can be reduced by stimulation of exocytotic secretion in the presence of tyrosine hydroxylase inhibitor. Since the depleted stores can be fully refilled by synthesis of catecholamines from its precursors, it is suggested that chromaffin vesicles may be reutilized for the purpose of synthesis, storage, and secretion of adrenal medullary hormones.  相似文献   

14.
In the ovine fetus, the adrenal medulla activity secretes catecholamines into the circulation under normal and stress conditions. Little is known regarding the endocrine regulation of adrenal medullary catecholamine secretion in the fetus. The present study was undertaken to investigate the direct effects of the hormones prolactin, angiotensin II and cortisol on catecholamine release from fetal adrenal medulla, and to determine whether the effect of the hormones change during development into adulthood. Adrenal medulla from fetal, newborn and adult pregnant sheep was collected, dispersed into single cells and plated. Following preincubation, the cells were treated with ovine prolactin or angiotensin II at 8, 40 and 200 micrograms/ml; or cortisol at 10(-8), 10(-7) and 10(-6)M for 24 h. Catecholamine release into the medium were measured at 3, 6, 12 and 24 h. Ovine prolactin at 8 to 200 micrograms/ml significantly stimulated the release of total catecholamines after 12 h of incubation. The effect of prolactin was dose-dependent such that the magnitude of the response increased and the response time shortened with increasing concentrations of prolactin. In addition, the release of all three catecholamines--dopamine, norepinephrine and epinephrine--was significantly elevated. In newborn cells, only the highest concentration of 200 micrograms/ml ovine prolactin stimulated total catecholamine release at 6 h and 12 h, with significant increases of the three catecholamines at 12 h. In maternal cells, stimulation of catecholamine release was observed also with the highest concentration of prolactin tested (200 micrograms/ml) and after 12 h of incubation, when only the release of epinephrine was significantly enhanced by 324%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
In the adrenergic system, release of the neurotransmitter norepinephrine from sympathetic nerves is regulated by presynaptic inhibitory alpha2-adrenoceptors, but it is unknown whether release of epinephrine from the adrenal gland is controlled by a similar short feedback loop. Using gene-targeted mice we demonstrate that two distinct subtypes of alpha2-adrenoceptors control release of catecholamines from sympathetic nerves (alpha 2A) and from the adrenal medulla (alpha 2C). In isolated mouse chromaffin cells, alpha2-receptor activation inhibited the electrically stimulated increase in cell capacitance (a correlate of exocytosis), voltage-activated Ca2+ current, as well as secretion of epinephrine and norepinephrine. The inhibitory effects of alpha2-agonists on cell capacitance, voltage-activated Ca2+ currents, and on catecholamine secretion were completely abolished in chromaffin cells isolated from alpha 2C-receptor-deficient mice. In vivo, deletion of sympathetic or adrenal feedback control led to increased plasma and urine norepinephrine (alpha 2A-knockout) and epinephrine levels (alpha 2C-knockout), respectively. Loss of feedback inhibition was compensated by increased tyrosine hydroxylase activity, as detected by elevated tissue dihydroxyphenylalanine levels. Thus, receptor subtype diversity in the adrenergic system has emerged to selectively control sympathetic and adrenal catecholamine secretion via distinct alpha2-adrenoceptor subtypes. Short-loop feedback inhibition of epinephrine release from the adrenal gland may represent a novel therapeutic target for diseases that arise from enhanced adrenergic stimulation.  相似文献   

16.
Recent work from our laboratory suggests that a complex interaction exists between ovarian and adrenal steroids in the regulation of preovulatory gonadotropin secretion. Ovarian estradiol serves to set the neutral trigger for the preovulatory gonadotropin surge, while progesterone from both the adrenal and the ovary serves to (1) initiate, (2) synchronize, (3) potentiate and (4) limit the preovulatory LH surge to a single day. Administration of RU486 or the progesterone synthesis inhibitor, trilostane, on proestrous morning attenuated the preovulatory LH surge. Adrenal progesterone appears to play a role in potentiating the LH surge since RU486 still effectively decreased the LH surge even in animals ovariectomized at 0800 h on proestrus. The administration of ACTH to estrogen-primed ovariectomized (ovx) immature rats caused a LH and FSH surge 6 h later, demonstrating that upon proper stimulation, the adrenal can induce gonadotropin surges. The effect was specific for ACTH, required estrogen priming, and was blocked by adrenalectomy or RU486, but not by ovariectomy. Certain corticosteroids, most notably deoxycorticosterone and triamcinolone acetonide, were found to possess "progestin-like" activity in the induction of LH and FSH surges in estrogen-primed ovx rats. In contrast, corticosterone and dexamethasone caused a preferential release of FSH, but not LH. Progesterone-induced surges of LH and FSH appear to require an intact N-methyl-D-aspartate (NMDA) neurotransmission line, since administration of the NMDA receptor antagonist, MK801, blocked the ability of progesterone to induce LH and FSH surges. Similarly, NMDA neurotransmission appears to be a critical component in the expression of the preovulatory gonadotropin surge since administration of MK801 during the critical period significantly diminished the LH and PRL surge in the cycling adult rat. FSH levels were lowered by MK801 treatment, but the effect was not statistically significant. The progesterone-induced gonadotropin surge appears to also involve mediation through NPY and catecholamine systems. Immediately preceding the onset of the LH and FSH surge in progesterone-treated estrogen-primed ovx. rats, there was a significant elevation of MBH and POA GnRH and NPY levels, which was followed by a significant fall at the onset of the LH surge. The effect of progesterone on inducing LH and FSH surges also appears to involve alpha 1 and alpha 2 adrenergic neuron activation since prazosin and yohimbine (alpha 1 and 2 blockers, respectively) but not propranolol (a beta-blocker) abolished the ability of progesterone to induce LH and FSH surges. Progesterone also caused a dose-dependent decrease in occupied nuclear estradiol receptors in the pituitary.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
18.
Glucose is the primary metabolic fuel in mammalian fetuses, yet mammals are incapable of endogenous glucose production until several hours after birth. Thus, when the maternal supply of glucose ceases at birth there is a transient hypoglycemia that elicits a counterregulatory surge in circulating catecholamines. Because the innervation of adrenomedullary chromaffin cells (AMCs) is immature at birth, we hypothesized that neonatal AMCs act as direct glucosensors, a property that could complement their previously established roles as hypoxia and acid hypercapnia sensors. During perforated-patch, whole cell recordings, low glucose depolarized and/or excited a subpopulation of neonatal AMCs; in addition, aglycemia (0 mM glucose) caused inhibition of outward K(+) current, blunted by the simultaneous activation of glibenclamide-sensitive K(ATP) channels. Some cells were excited by each of the three metabolic stimuli, i.e., aglycemia, hypoxia (Po(2) ~30 mmHg), and isohydric hypercapnia (10% CO(2); pH = 7.4). Using carbon fiber amperometry, aglycemia and hypoglycemia (3 mM glucose) induced robust catecholamine secretion that was sensitive to nickel (50 μM and 2 mM) and the L-type Ca(2+) channel blocker nifedipine (10 μM), suggesting involvement of both T-type and L-type voltage-gated Ca(2+) channels. Fura-2 measurements of intracellular Ca(2+) ([Ca(2+)] (i)) revealed that ~42% of neonatal AMCs responded to aglycemia with a significant rise in [Ca(2+)] (i). Approximately 40% of these cells responded to hypoxia, whereas ~25% cells responded to both aglycemia and hypoxia. These data suggest that together with hypoxia and acid hypercapnia, low glucose is another important metabolic stimulus that contributes to the vital asphyxia-induced catecholamine surge from AMCs at birth.  相似文献   

19.
Cells of the adrenal medulla release not only catecholamines but also high concentrations of neuropeptides and nucleotides. Chromaffin cells, like many neuronal cells, have a diversity of receptors: adrenergic receptors, peptide receptors, histamine receptors, and dopamine receptors. We recently reported that these cells have nucleotide receptors that can mediate inhibition of the secretory response. The present studies show that adenosine, in the presence of enabling concentrations of forskolin, can potently enhance response to nicotinic stimulation. Neither adenosine nor forskolin alone produces a significant effect. A marked rise in intracellular cyclic AMP (cAMP) concentration is associated with the enhancement of secretion caused by forskolin plus adenosine. A phosphodiesterase inhibitor, Ro 20-1724, used together with forskolin produces significant increases in both cellular cAMP content and catecholamine secretion. However, the adenosine agonist 5'-N-ethylcarboxyadenosine elevates cellular cAMP content in the presence of forskolin without having any positive effect on secretion. This finding suggests that the rise in cAMP level may not be the sole cause of the increase in secretion by adenosine.  相似文献   

20.
Adenosine was shown to inhibit norepinephrine (NE) release from sympathetic nerve endings. The purpose of this study was to examine whether endogenous adenosine restrains NE and epinephrine release from the adrenal medulla. The effects of an adenosine receptor antagonist, 1,3-dipropyl-8-(p-sulfophenyl) xanthine (DPSPX), on epinephrine and NE release induced by intravenous administration of insulin in conscious rats were examined. Plasma catecholamines were measured by HPLC with an electrochemical detector. DPSPX significantly increased plasma catecholamine in both control rats and rats treated with insulin. The effect of DPSPX on plasma catecholamine was significantly greater in rats treated with insulin. Additional experiments were performed in adrenalectomized rats to investigate the contribution of the adrenal medulla to the effect of DPSPX on plasma catecholamine. The effect of DPSPX and insulin on epinephrine in adrenalectomized rats was significantly reduced compared with that of the controls. Finally, we tested whether endogenous adenosine restrains catecholamine secretion partially through inhibiting the renin-angiotensin system. The effect of DPSPX on plasma catecholamine in rats pretreated with captopril (an angiotensin-converting enzyme inhibitor) was reduced. These results demonstrate that under basal physiological conditions, endogenous adenosine tonically inhibits catecholamine secretion from the adrenal medulla, and this effect is augmented when the sympathetic system is stimulated. The effect of endogenous adenosine on catecholamine secretion from the adrenal medulla is achieved partially through the inhibitory effect of adenosine on the renin-angiotensin system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号