首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Computer simulations have been used to probe the gating mechanism in the Salmonella serovar typhimurium chloride channel (st-ClC). Specifically, the recently developed metadynamics methodology has been exploited to construct free energy surfaces as a function of the positions of either one or two chloride ions inside the pore, the position and protonation state of the key E148 residue, and the number of water molecules coordinating the translocating ions. The present calculations confirm the multi-ion mechanism in which an ion-push-ion effect lowers the main barriers to chloride ion translocation. When a second anion is taken into account, the barrier for chloride passage through the E148 narrow region is computed to be 6 kcal/mol in the wild-type channel, irrespective of the protonation state of the E148 residue, which is shown to only affect the entrance barrier. In the E148A mutant, this barrier is much lower, amounting to 3 kcal/mol. The metadynamics calculations reported herein also demonstrate that before reaching the periplasmic solution, chloride ions have to overcome an additional barrier arising from two different effects, namely the rearrangement of their solvation shell and a flip in the backbone angles of the residues E148 and G149, which reside at the end of the alphaF helix.  相似文献   

2.
The proton-gated ion channel from Gloeobacter violaceus (GLIC) is a prokaryotic homolog of the eukaryotic nicotinic acetylcholine receptor that responds to the binding of neurotransmitter acetylcholine and mediates fast signal transmission. Recent emergence of a high-resolution crystal structure of GLIC captured in a potentially open state allowed detailed, atomic-level insight into ion conduction and selectivity mechanisms in these channels. Herein, we have examined the barriers to ion conduction and origins of ion selectivity in the GLIC channel by the construction of potential-of-mean-force profiles for sodium and chloride ions inside the transmembrane region. Our calculations reveal that the GLIC channel is open for a sodium ion to transport, but presents a ∼11 kcal/mol free energy barrier for a chloride ion. Our collective findings identify three distinct contributions to the observed preference for the permeant ions. First, there is a substantial contribution due to a ring of negatively charged glutamate residues (E-2′) at the narrow intracellular end of the channel. The negative electrostatics of this region and the ability of the glutamate side chains to directly bind cations would strongly favor the passage of sodium ions while hindering translocation of chloride ions. Second, our results imply a significant hydrophobic contribution to selectivity linked to differences in the desolvation penalty for the sodium versus chloride ions in the central hydrophobic region of the pore. This hydrophobic contribution is evidenced by the large free energy barriers experienced by Cl in the middle of the pore for both GLIC and the E-2′A mutant. Finally, there is a distinct contribution arising from the overall negative electrostatics of the channel.  相似文献   

3.
Molecular dynamics study of the KcsA potassium channel   总被引:5,自引:3,他引:2       下载免费PDF全文
TW Allen  S Kuyucak    SH Chung 《Biophysical journal》1999,77(5):2502-2516
The structural, dynamical, and thermodynamic properties of a model potassium channel are studied using molecular dynamics simulations. We use the recently unveiled protein structure for the KcsA potassium channel from Streptomyces lividans. Total and free energy profiles of potassium and sodium ions reveal a considerable preference for the larger potassium ions. The selectivity of the channel arises from its ability to completely solvate the potassium ions, but not the smaller sodium ions. Self-diffusion of water within the narrow selectivity filter is found to be reduced by an order of magnitude from bulk levels, whereas the wider hydrophobic section of the pore maintains near-bulk self-diffusion. Simulations examining multiple ion configurations suggest a two-ion channel. Ion diffusion is found to be reduced to approximately (1)/(3) of bulk diffusion within the selectivity filter. The reduced ion mobility does not hinder the passage of ions, as permeation appears to be driven by Coulomb repulsion within this multiple ion channel.  相似文献   

4.
5.
The selectivity filter (SF) of bacterial voltage-gated sodium channels consists of four glutamate residues arranged in a C4 symmetry. The protonation state population of this tetrad is unclear. To address this question, we simulate the pore domain of bacterial voltage-gated sodium channel of Magnetococcus sp. (NavMs) through constant pH methodology in explicit solvent and free energy perturbation calculations. We find that at physiological pH the fully deprotonated as well as singly and doubly protonated states of the SF appear feasible, and that the calculated pKa decreases with each additional bound ion, suggesting that a decrease in the number of ions in the pore can lead to protonation of the SF. Previous molecular dynamics simulations have suggested that protonation can lead to a decrease in the conductance, but no pKa calculations were performed. We confirm a decreased ionic population of the pore with protonation, and also observe structural symmetry breaking triggered by protonation; the SF of the deprotonated channel is closest to the C4 symmetry observed in crystal structures of the open state, while the SF of protonated states display greater levels of asymmetry which could lead to transition to the inactivated state which possesses a C2 symmetry in the crystal structure. We speculate that the decrease in the number of ions near the mouth of the channel, due to either random fluctuations or ion depletion due to conduction, could be a self-regulatory mechanism resulting in a nonconducting state that functionally resembles inactivated states.  相似文献   

6.
7.
A hierarchical computational strategy combining molecular modeling, electrostatics calculations, molecular dynamics, and Brownian dynamics simulations is developed and implemented to compute electrophysiologically measurable properties of the KcsA potassium channel. Models for a series of channels with different pore sizes are developed from the known x-ray structure, using insights into the gating conformational changes as suggested by a variety of published experiments. Information on the pH dependence of the channel gating is incorporated into the calculation of potential profiles for K(+) ions inside the channel, which are then combined with K(+) ion mobilities inside the channel, as computed by molecular dynamics simulations, to provide inputs into Brownian dynamics simulations for computing ion fluxes. The open model structure has a conductance of approximately 110 pS under symmetric 250 mM K(+) conditions, in reasonable agreement with experiments for the largest conducting substate. The dimensions of this channel are consistent with electrophysiologically determined size dependence of quaternary ammonium ion blocking from the intracellular end of this channel as well as with direct structural evidence that tetrabutylammonium ions can enter into the interior cavity of the channel. Realistic values of Ussing flux ratio exponents, distribution of ions within the channel, and shapes of the current-voltage and current-concentration curves are obtained. The Brownian dynamics calculations suggest passage of ions through the selectivity filter proceeds by a "knock-off" mechanism involving three ions, as has been previously inferred from functional and structural studies of barium ion blocking. These results suggest that the present calculations capture the essential nature of K(+) ion permeation in the KcsA channel and provide a proof-of-concept for the integrated microscopic/mesoscopic multitiered approach for predicting ion channel function from structure, which can be applied to other channel structures.  相似文献   

8.
To study the pore-mediated transport of ionic species across a lipid membrane, a series of molecular dynamics simulations have been performed of a dipalmitoyl-phosphatidyl-choline bilayer containing a preformed water pore in the presence of sodium and chloride ions. It is found that the stability of the transient water pores is greatly reduced in the presence of the ions. Specifically, the binding of sodium cations at the lipid/water interface increases the pore line tension, resulting in a destabilization of the pore. However, the application of mechanical stress opposes this effect. The flux of ions through these mechanically stabilized pores has been analyzed. Simulations indicate that the transport of the ions through the pores depends strongly on the size of the water channel. In the presence of small pores (radius <1.5 nm) permeation is slow, with both sodium and chloride permeating at similar rates. In the case in which the pores are larger (radius >1.5 nm), a crossover is observed to a regime where the anion flux is greatly enhanced. Based on these observations, a mechanism for the basal membrane permeability of ions is discussed.  相似文献   

9.
Motivated by experiments in which an applied electric field translocates polynucleotides through an α-hemolysin protein channel causing ionic current transient blockade, a hybrid simulation model is proposed to predict the conductance properties of the open channel. Time scales corresponding to ion permeation processes are reached using the Poisson–Nernst–Planck (PNP) electro-diffusion model in which both solvent and local ion concentrations are represented as a continuum. The diffusion coefficients of the ions (K+ and Cl?) input in the PNP model are, however, calculated from all-atom molecular dynamics (MD). In the MD simulations, a reduced representation of the channel is used. The channel is solvated in a 1?M KCl solution, and an external electric field is applied. The pore specific diffusion coefficients for both ionic species are reduced 5–7 times in comparison to bulk values. Significant statistical variations (17–45%) of the pore-ions diffusivities are observed. Within the statistics, the ionic diffusivities remain invariable for a range of external applied voltages between 30 and 240?mV. In the 2D-PNP calculations, the pore stem is approximated by a smooth cylinder of radius ~9?Å with two constriction blocks where the radius is reduced to ~6?Å. The electrostatic potential includes the contribution from the atomistic charges. The MD-PNP model shows that the atomic charges are responsible for the rectifying behaviour and for the slight anion selectivity of the α-hemolysin pore. Independent of the hierarchy between the anion and cation diffusivities, the anionic contribution to the total ionic current will dominate. The predictions of the MD-PNP model are in good agreement with experimental data and give confidence in the present approach of bridging time scales by combining a microscopic and macroscopic model.  相似文献   

10.
Ion coordination in the amphotericin B channel.   总被引:1,自引:0,他引:1       下载免费PDF全文
The antifungal polyene antibiotic amphotericin B forms channels in lipid membranes that are permeable to ions, water, and nonelectrolytes. Anion, cation, and ion pair coordination in the water-filled pore of the "barrel" unit of the channels was studied by molecular dynamics simulations. Unlike the case of the gramicidin A channel, the water molecules do not create a single-file configuration in the pore, and some cross sections of the channel contain three or four water molecules. Both the anion and cation are strongly bound to ligand groups and water molecules located in the channel. The coordination number of the ions is about six. The chloride has two binding sites in the pore. The binding with water is dominant; more than four water molecules are localized in the anion coordination sphere. Three motifs of the ion coordination were monitored. The dominant motif occurs when the anion is bound to one ligand group. The ion is bound to two or three ligand groups in the less favorable configurations. The strong affinity of cations to the channel is determined by the negatively charged ligand oxygens, whose electrostatic field dominates over the field of the hydrogens. The ligand contribution to the coordination number of the sodium ion is noticeably higher than in the case of the anion. As in the case of the anion, there are three motifs of the cation coordination. The favorable one occurs when the cation is bound to two ligand oxygens. In the less favorable cases, the cation is bound to three or four oxygens. In the contact ion pair, the cation and anion are bound to two ligand oxygens and one ligand hydrogen, respectively. There exist intermediate solvent-shared states of the ion pair. The average distances between ions in these states are twice as large as that of the contact ion pair. The stability of the solvent-shared state is defined by the water molecule oriented along the electrostatic field of both ions.  相似文献   

11.
Mutations at many sites within the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel pore region result in changes in chloride conductance. Although chloride binding in the pore – as well as interactions between concurrently bound chloride ions – are thought to be important facets of the chloride permeation mechanism, little is known about the relationship between anion binding and chloride conductance. The present work presents a comprehensive investigation of a number of anion binding properties in different pore mutants with differential effects on chloride conductance. When multiple pore mutants are compared, conductance appears best correlated with the ability of anions to bind to the pore when it is already occupied by chloride ions. In contrast, conductance was not correlated with biophysical measures of anion:anion interactions inside the pore. Although these findings suggest anion binding is required for high conductance, mutations that strengthened anion binding had very little effect on conductance, especially at high chloride concentrations, suggesting that the wild-type CFTR pore is already close to saturated with chloride ions. These results are used to support a revised model of chloride permeation in CFTR in which the overall chloride occupancy of multiple loosely-defined chloride binding sites results in high chloride conductance through the pore.  相似文献   

12.
The mechanisms underlying ion transport and selectivity in calcium channels are examined using electrostatic calculations and Brownian dynamics simulations. We model the channel as a rigid structure with fixed charges in the walls, representing glutamate residues thought to be responsible for ion selectivity. Potential energy profiles obtained from multi-ion electrostatic calculations provide insights into ion permeation and many other observed features of L-type calcium channels. These qualitative explanations are confirmed by the results of Brownian dynamics simulations, which closely reproduce several experimental observations. These include the current-voltage curves, current-concentration relationship, block of monovalent currents by divalent ions, the anomalous mole fraction effect between sodium and calcium ions, attenuation of calcium current by external sodium ions, and the effects of mutating glutamate residues in the amino acid sequence.  相似文献   

13.
A Monte Carlo simulation of water in a channel with charges suggests the existence of water in immobile, high density, essentially glasslike form near the charges. The channel model has a conical section with an opening through which water molecules can pass, at the narrow end of the cone, and a cylindrical section at the other end. When the charges are placed near the narrow section of the model, the "glass" effectively blocks the channel; with the charges removed, the channel opens. The effect can be determined from the rate of passage of the water molecules through the pore, from the average orientation of the water molecule, and from distortion of the distribution of molecules. In the simulations carried out to date, no external ions have been considered. In addition to the energy, the Helmholtz free energy has been calculated.  相似文献   

14.
Ko YJ  Huh J  Jo WH 《Proteins》2008,70(4):1442-1450
Although the mechanism of proton exclusion in aquaporin is investigated by many researchers, the detailed molecular mechanism for ion exclusion in aquaporin is still not completely understood. In the present work, a detailed mechanism for ion exclusion in aquaporin-1 (AQP1) at an atomistic level is investigated by calculating the free energy for transport of ions in AQP1 using an atomistic molecular dynamics simulation. For this purpose, sodium and chloride ions are chosen as representatives for nonprotonic ions. The simulation shows that the free energy barrier showing its maximum is located at the NPA region for sodium ion while it is located at both the front and the rear for chloride ion and that the barrier height is 18 and 9 kcal/mol, respectively, indicating that the ions are not able to pass through aquaporin. Analysis of the pair interaction energy between the permeating ion and its environment reveals that sodium ion is excluded by the positive charge generated by two alpha-helical macro-dipoles, while chloride ion is expelled by carbonyl oxygen atoms protruding from pore-making residues before it reaches the NPA motif. It is also found that the number of water molecules hydrating the ions is reduced as the ions enter the pore, implying that the energetic cost for detaching water molecules from a permeating ion also contributes to the free energy barriers of ion transport in AQP1.  相似文献   

15.
The voltage-dependent anion channel (VDAC) forms the major pore in the outer mitochondrial membrane. Its high conducting open state features a moderate anion selectivity. There is some evidence indicating that the electrophysiological properties of VDAC vary with the salt concentration. Using a theoretical approach the molecular basis for this concentration dependence was investigated. Molecular dynamics simulations and continuum electrostatic calculations performed on the mouse VDAC1 isoform clearly demonstrate that the distribution of fixed charges in the channel creates an electric field, which determines the anion preference of VDAC at low salt concentration. Increasing the salt concentration in the bulk results in a higher concentration of ions in the VDAC wide pore. This event induces a large electrostatic screening of the charged residues promoting a less anion selective channel. Residues that are responsible for the electrostatic pattern of the channel were identified using the molecular dynamics trajectories. Some of these residues are found to be conserved suggesting that ion permeation between different VDAC species occurs through a common mechanism. This inference is buttressed by electrophysiological experiments performed on bean VDAC32 protein akin to mouse VDAC.  相似文献   

16.
The pentameric glycine receptor (GlyR), a member of the nicotinicoid superfamily of ligand-gated ion channels, is an inhibitory Cl(-) channel that is gated by glycine. Using recently published NMR data of the second transmembrane segment (M2) of the human alpha1 GlyR, structural models of pentameric assemblies embedded in a lipid bilayer were constructed using a combination of experimentally determined constraints coupled with all-atom energy minimization. Based on this structure of the pentameric M2 "pore", Brownian dynamics simulations of ion permeation through this putative conducting open state of the channel were carried out. Simulated I-V curves were in good agreement with published experimental current-voltage curves and the anion/cation permeability ratio, suggesting that our open-state model may be representative of the conducting channel of the full-length receptor. These studies also predicted regions of chloride occupancy and suggested residues critical to anion permeation. Calculations of the conductance of the cation-selective mutant A251E channel are also consistent with experimental data. In addition, both rotation and untilting of the pore helices of our model were found to be broadly consistent with closing of the channel, albeit at distinct regions that may reflect alternate gates of the receptor.  相似文献   

17.
We have performed simulations of both a single potassium ion and a single sodium ion within the pore of the bacterial potassium channel KcsA. For both ions there is a dehydration energy barrier at the cytoplasmic mouth suggesting that the crystal structure is a closed conformation of the channel. There is a potential energy barrier for a sodium ion in the selectivity filter that is not seen for potassium. Radial distribution functions for both ions with the carbonyl oxygens of the selectivity filter indicate that sodium may interact more tightly with the filter than does potassium. This suggests that the key to the ion selectivity of KcsA is the greater dehydration energy of Na+ ions, and helps to explain the block of KcsA by internal Na+ ions.  相似文献   

18.
We use molecular dynamics simulations to investigate the position-dependent free energy of a potassium ion in a model of an ion channel formed by the synthetic amphipathic leucine-serine peptide, LS3. The channel model is a parallel bundle of six LS3 helices around which are packed 146 methane-like spheres in order to mimic a membrane. At either end of and within the channel are 1051 water molecules, plus four ions (two potassium and two chloride). The free energy of a potassium ion in the channel was estimated using the weighted histogram analysis (WHAM) method. This is the first time to our knowledge that such a calculation has been carried out as a function of the position of an ion in three dimensions within a channel. The results indicate that for this channel, which is lined by hydrophilic serine sidechains, there is a relatively weak dependence of the free energy on the axial/off-axial position of the ion. There are some off-axis local minima, especially in the C-terminal half of the channel. Using the free energy results, a single channel current-voltage curve was estimated using a one-dimensional Nernst-Planck equation. Although reasonable agreement with experiment is achieved for K(+) ions flowing from the N-terminal to the C-terminal mouth, in the opposite direction the current is underestimated. This underestimation may be a consequence of under-sampling of the conformational dynamics of the channel. We suggest that our simulations may have captured, for example, a sub-conductance level (i.e. an incompletely open state) of the LS3 channel.  相似文献   

19.
Wang X  Xu X  Ma M  Zhou W  Wang Y  Yang L 《Biochimica et biophysica acta》2012,1818(5):1148-1157
Connexin (Cx) hemichannels controlling an exchange of ions and metabolites between the cytoplasm and extracellular milieu can be modulated by the variation of intracellular pH during physiological and pathological conditions. To address the mechanism by which the pH exerts its effect on hemichannels, we have performed two 100-ns molecular dynamics simulations of the Cx26 channel in both acidic and neutral states. The results show that: 1) transmembrane domains undergo clockwise motions around the pore axis under both acidic and neutral conditions, while extracellular segments keep stable. 2) Under neutral condition, Cx26 has a tightly closed configuration that occurs through the assembly of N-terminal helix (NTH) region. This shows a constriction formed by the interhelical interactions of Asp2 and Met1 from neighboring NTH, which shapes the narrowest segment (pore radius<2?) of the pore, preventing the passage of ions from the extracellular side. This indicates that Asp2 may act as a channel gate. 3) Under the acidic condition, the constriction is relieved by the protonation of Asp2 causing interruption of interhelical interactions, Cx26 has a flexibly opening pore (pore radius>4.5?) around NTH region, allowing the passage of chloride ions unimpeded by the side-chain Asp2. While in the extracellular part two chloride ions interact with the side-chain Lys41 from three subunits. Finally, we provide a plausible mechanism of pH-dependent gating of hemichannel that involves protonation of the aspartic residues, suggesting that the pH sensitivity of hemichannel permeability is a sophisticated mechanism for cell regulating ion permeation.  相似文献   

20.
Ion channels lower the energetic barrier for ion passage across cell membranes and enable the generation of bioelectricity. Electrostatic interactions between permeant ions and channel pore helix dipoles have been proposed as a general mechanism for facilitating ion passage. Here, using genetic selections to probe interactions of an exemplar potassium channel blocker, barium, with the inward rectifier Kir2.1, we identify mutants bearing positively charged residues in the potassium channel signature sequence at the pore helix C terminus. We show that these channels are functional, selective, resistant to barium block, and have minimally altered conductance properties. Both the experimental data and model calculations indicate that barium resistance originates from electrostatics. We demonstrate that potassium channel function is remarkably unperturbed when positive charges occur near the permeant ions at a location that should counteract pore helix electrostatic effects. Thus, contrary to accepted models, the pore helix dipole seems to be a minor factor in potassium channel permeation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号