首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective effects of lincomysin and cycloheximide in detached shoots of Pisum sativum on the synthesis of photosystem I and II proteins, and a chloroplast membrane protein of molecular weight 32000, confirm results obtained from studies of protein synthesis by isolated chloroplasts. A model is proposed in which one role of chloroplast ribosomes is to synthesize membrane proteins required for the immobilization of chloroplast components, such as photosystem I protein, which are synthesized by cytoplasmic ribosomes. 2-(4-Methyl-2,6-dinitroanilino)-N-methylpropionamide rapidly inhibits the synthesis of both the large and small subunits of Fraction I protein in greening detached pea shoots. This observation can be reconciled with the site of synthesis of the large subunit being in the chloroplast by a model which proposes that the small subunit is a positive initiation factor for the synthesis or translation of the messenger RNA for the large subunit.  相似文献   

2.
The synthesis, transport and localization of a nuclear coded 22-kd heat-shock protein (HSP) in the chloroplast membranes was studied in pea plants and Chlamydomonas reinhardi. HSPs were detected in both systems by in vivo labeling and in vitro translation of poly(A)+RNA, using the wheat-germ and reticulocyte lysate systems. Heat-shock treatment of pea plants for 2 h at 42-45°C induces the expression of ˜10 nuclear coded proteins, among which several (18 kd, 19 kd, 22 kd) are predominant. A 22-kd protein is synthesized as a 26-kd precursor protein and is localized in a chloroplast membrane fraction in vivo. Following post-translational transport into intact chloroplasts in vitro of the 26-kd precursor, the protein is processed but the resulting 22-kd mature protein is localized in the chloroplast stroma. If, however, the in vitro transport is carried out with chloroplasts from heat-shocked plants, the 22-kd protein is preferentially transported to the chloroplast membrane fraction. In C. reinhardi the synthesis of poly(A)+RNAs coding for several HSPs is progressively and sequentially induced when raising the temperature for 1.5 h from 36°C to 42°C, while that of several preexisting RNAs is reduced. Various pre-existing poly(A)+RNAs endure in the cells at 42°C up to 5 h but are no longer translated in vivo, whereas some poly(A)RNAs persist and are translated. As in pea, a poly(A)+RNA coded 22-kd HSP is localized in the chloroplast membranes in vivo, although it is translated as a 22-kd protein in vitro. The in vitro translated protein is not transported in isolated pea chloroplast which, however, processes and transports other nuclear coded chloroplast proteins of Chlamydomonas. The poly(A)+RNA coding for the 22-kd HSP appears after 1 h at 36°C. Its synthesis increases with the temperature of incubation up to 42°C, although it decreases after ˜2 h of heat treatment and the already synthesized RNA is rapidly degraded. The degradation is faster upon return of the cells to 26°C. None of the heat-induced proteins is identical to the light-inducible proteins of the chloroplast membranes.  相似文献   

3.
4.
Time- and concentration-course studies were conducted to determine the effect of bentazon [3-isopropyl-1H-2,l,3,-benzothiadiazin-4(3H)-one 2,2-dioxide] on photosynthesis, RNA synthesis, protein synthesis, and lipid synthesis using enzymatically isolated leaf cells of red kidney bean (Phaseolus vulgaris L.). Photosynthesis and RNA synthesis were inhibited about 75% at 1 μM bentazon at the 30 min treatment period. This was the lowest concentration and shortest time that significantly inhibited any of these four processes. The degree of inhibition of photosynthesis was greater than the degree of inhibition of RNA synthesis at higher concentrations and/or longer time periods. At 10 μM bentazon, protein synthesis and lipid synthesis were also inhibited. Lipid synthesis was stimulated at 0.1 and 1 μM at 120 min.  相似文献   

5.
Ethylene-forming Systems in Etiolated Pea Seedling and Apple Tissue   总被引:3,自引:3,他引:0       下载免费PDF全文
Auxin-induced ethylene formation in etiolated pea (Pisum sativum L. var. Alaska) stem segments was inhibited by inhibitors of RNA and protein synthesis. Kinetics of the inhibitions is described for actinomycin D, cordycepin, α-amanitin, and cycloheximide. α-Amanitin was the most potent and fast-acting inhibitor, when added before induction or 6 hours after induction of the ethylene-forming system. The ethylene-forming system of postclimacteric apple (Malus sylvestris L.) tissue, which is already massively induced, was not further stimulated by auxin. Ethylene production in apples was inhibited least by α-amanitin and most by actinomycin D. The relative responses of the ethylene system in apples to RNA inhibitors were different from the ethylene system of pea stems. However, the protein synthesis inhibitor, cycloheximide, appeared to act equally in both tissue systems. The effect of cycloheximide on ethylene production in postclimacteric apple tissue, already producing large quantities of ethylene, suggests a dynamic regulating system for the synthesis and degradation of the ethylene-forming system.  相似文献   

6.
Oligomycin inhibited the membrane-bound, Ca2+-dependent ATPase of pea (Pisum sativum var. Progress No. 9) chloroplasts up to 50%, but only after treating the membranes with trypsin, whether or not the trypsin step was needed for full activity. The energy-linked Mg2+-dependent (light- and dithiothreitol (DTT)-activated) ATPase of pea thylakoids could be inhibited up to 100% under specified conditions. The data indicate that oligomycin does not interfere with activation processes, and it failed to inhibit the ATPase of solubilized chloroplast coupling factor 1 under any circumstances. Photophosphorylation, previously thought insensitive to oligomycin, was inhibited 30% in the case of pea chloroplasts, and this increased to 50% inhibition after pretreating the chloroplasts with either trypsin or DTT. The nature of inhibition of phosphorylation was complex, with apparent small components of electron transport inhibition and uncoupling, as well as energy transfer inhibition.  相似文献   

7.
Changes in the activities of adenyl cyclase, cyclic AMP phosphodiesterase, protein phosphokinase, RNase, protease, DNA, RNA and protein synthesis during the initial imbibition phase of the germination cycle of Cicer arietinum (chick pea, Bengal gram) are reported. Activation of adenyl cyclase and phosphorylation of cellular proteins appears to precede RNA and protein synthesis in the imbibed seeds.  相似文献   

8.
Inhibition of protein synthesis by products of lipid peroxidation   总被引:1,自引:0,他引:1  
Effects of lipid peroxidation products on in vivo and in vitro protein synthesis have been studied. Malondialdehyde (MDA), a product, and a routinely used index of lipid peroxidation, inhibits in vivo protein synthesis in the two mosses, Tortula ruralis and Cratoneuron filicinum, and in pea (Pisum sativum) leaf discs. When wheat germ supernatant or poly(A)-rich mRNA of T. ruralis was incubated with MDA its subsequent activity in a cell-free protein-synthesizing system was reduced. When MDA was added directly to the in vitro protein-synthesizing mixture containing moss polyribosomes, the inhibition of amino acid incorporation was small. However, when simultaneous lipid peroxidation was allowed to occur along with in vitro protein synthesis there was a strong inhibition of amino acid incorporation and MDA accumulated in the reaction mixture indicating that products of lipid peroxidation other than, and apparently more toxic than, MDA were involved. It was concluded that lipid peroxidation inhibits protein synthesis probably by releasing toxic products which may react with and inactivate some components of the protein-synthesizing complex.  相似文献   

9.
The interaction of tentoxin [cyclo(-l-leucyl-N-methyl-(Z)-dehydrophenyl-analyl-glycyl-N-methyl-l-alanyl-)] with solubilized lettuce chloroplast coupling factor 1 was characterized by direct binding studies, measurement of the time course of ATPase inhibition, and steady-state enzyme kinetics. Neither substrates, products or Ca2+ competed with the tentoxin binding site, nor did they induce any large change in tentoxin affinity. The inhibition of lettuce chloroplast coupling factor 1 ATPase was found to be the time dependent, and at equilibrium the affinities estimated by equilibrium ultrafiltration and enzyme inhibition were similar (1.8 · 108M?1). The steady-state kinetics best fit an uncompetitive pattern suggesting that the inhibited steps follow an irreversible step occurring after ATP binding.  相似文献   

10.
The chloroplast protein synthesizing factor responsible for the binding of aminoacyl-tRNA to ribosomes (EF-Tuchl) has been identified in extracts of Euglena gracilis. This factor is present in low levels when Euglena is grown in the dark and can be induced more than 10-fold when the organism is exposed to light. The induction of the chloroplast EF-Tu by light is inhibited by streptomycin, an inhibitor of protein synthesis on chloroplast ribosomes, indicating that protein synthesis within the chloroplast itself is required for the induction of this factor. The induction of the chloroplast EF-Tu by light is also inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. The effect of cycloheximide probably results from the inhibition of chloroplast ribosome synthesis which requires the synthesis of many proteins by the cytoplasmic translational system. Chloroplast EF-Tu cannot be induced by light in an aplastidic mutant (strain W3BUL) of Euglena which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-Tu resides in the chloroplast genome and that this protein is synthesized within the organelle itself.  相似文献   

11.
Sun G  Markwell J 《Plant physiology》1992,100(2):620-624
Protein phosphatase activity in crude leaf extracts and in purified intact chloroplasts of wheat (Triticum aestivum) and pea (Pisum sativum) was analyzed using exogenously supplied phosphoproteins or endogenous thylakoid proteins. Leaf extracts contain readily detectable amounts of protein phosphatase activity measured with either phosphohistone or phosphorylase a, substrates of mammalian protein phosphatases. No significant chloroplast protein phosphatase activity was detected using these exogenous phosphoproteins. The dephosphorylation of endogenous thylakoid light-harvesting chlorophyll a/b binding proteins in situ was inhibited by fluoride, but not by microcystin-LR or okadaic acid, diagnostic inhibitors of mammalian types 1 and 2A protein phosphatases. Additionally, no evidence for a pea chloroplast alkaline phosphatase activity was found using β-glycerolphosphate or 4-methylum-belliferyl phosphate as substrates. From these results, we conclude that phosphohistone and phosphorylase a are not useful substrates for chloroplast thylakoid protein phosphatase activity and that the chloroplast enzymes may not fit into one of the canonical classifications currently used for protein phosphatases.  相似文献   

12.
13.
The activity of pea chloroplast elongation factor G (EF-G), a nuclear-coded protein required for the elongation cycle of chloroplast protein synthesis, is regulated in response to light. In pea seedlings germinated and grown under continuous white or red light, EF-G specific activity reaches a maximum between days 10 to 15, and then decreases. EF-G activity is almost undetectable in extracts from dark-grown seedlings. When 13-day dark-grown pea seedlings are transferred to light, EF-G specific activity reaches a higher value after 2 to 3 days than observed in seedlings grown under continuous light. The small and large subunits of ribulose bisphosphate carboxylase continue to accumulate after EF-G specific activity has reached maximum levels. Cytoplasmically synthesized components of the chloroplast protein synthetic apparatus, such as EF-G, may help coordinate cytoplasmic and nuclear events with chloroplast gene expression during light-induced chloroplast differentiation.  相似文献   

14.
Tentoxin, a cyclic tetrapeptide produced by Alternaria alternata (Fries) Keissler, induces chlorosis in certain seedling plants. It can be extracted from culture filtrates of the fungus. Tentoxin production is stimulated and increased by using a mixture of aged culture filtrates and modified Richards solution. Aged culture filtrates can be obtained from 3-week-old or older cultures of A. alternata in modified Richards solution or Pratts solution. A mixture of aged culture filtrate and fresh medium in the ratio 2:3 gives the maximal enhancement of tentoxin production. This growth system provided us with a model for studying the effects of protein synthesis inhibitors on tentoxin production. Two antibiotics which inhibit protein synthesis at the ribosomal level were tested on growth, protein synthesis, and tentoxin production in A. alternata cultures. Cycloheximide at concentrations of 500 μg/ml or emetine at concentrations of 250 μg/ml did not inhibit tentoxin synthesis, although they stopped mycelial growth and protein synthesis of the fungus at the logarithmic growth stage in the enhancement medium. These results led us to conclude that tentoxin, like certain other bioactive cyclic peptides, is synthesized by a nonribosomal peptide synthesis mechanism.  相似文献   

15.
Isolated pea chloroplast thylakoids ordinarily have ribosomes attached which survive sequential washes. Extensive in vivo loss of these thylakoidbound ribosomes occurred if the pea plants were placed in the dark without O2 for 2 or more hours. This loss was indicated from measurements of both the total thylakoid-bound RNA levels, and the capacity for amino acid incorporation into proteins on the addition of soluble enzymes for protein synthesis. Stroma ribosome profiles lost any indication of polysome structure due to the same anoxic treatment in vivo. The return of ribosomes to the thylakoids when plants were placed in the light in air occurred over an 8-hour time course. This return was prevented by lincomycin, spectinomycin, and chloramphenicol, indicating a requirement for protein synthesis steps in the stroma at some point in the reassociation process.  相似文献   

16.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

17.
18.
Summary Multiplication of TMV-strains vulgare (light-green/dark-green mosaic symptoms) and flavum (severe yellow/green mosaic) had different effects on the ribosomal RNA of tobacco leaf chloroplasts. Vulgare inhibited chloroplast ribosomal RNA synthesis while having no effect on cytoplasmic ribosomal RNA synthesis (Fig. 2). Flavum inhibited chloroplast ribosomal RNA synthesis more severely than vulgare, and caused an earlier degradation of chloroplast ribosomal RNA than in control or vulgare-infected leaves (Fig. 1). Flavum also inhibited cytoplasmic ribosomal RNA synthesis. A connection between these differing effects on chloroplast ribosomal RNA metabolism and severity of visible symptoms is suggested, and discussed in relation to a possible influence on symptoms of denatured virus coat protein.Abbreviations TMV Tobacco Mosaic Virus - RNA Ribonucleic acid - DNA Deoxyribonucleic acid - m millions (in molecular weight values)  相似文献   

19.
Two-dimensional gel electrophoresis resolves total cellular protein from Euglena gracilis klebs var bacillaris Cori into 640 polypeptides, 79 of which are induced by light exposure. The inhibition of chloroplast translation by streptomycin, the direct inhibition of photosynthesis as well as the indirect inhibition of chlorophyll synthesis by 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and the specific inhibition of photosynthesis but not chlorophyll synthesis by DCMU in the presence of 17 millimolar ethanol failed to inhibit the accumulation of 40 polypeptides. These polypeptides appear to be synthesized on cytoplasmic ribosomes and their accumulation is independent of the developmental status of the chloroplast. Streptomycin but not DCMU completely inhibited the accumulation of six polypeptides which are undetectable in mutants lacking chloroplast DNA suggesting that these polypeptides are translated on chloroplast ribosomes. The accumulation of seven polypeptides which are detectable in mutants lacking chloroplast DNA was also inhibited by streptomycin but not by DCMU suggesting that the accumulation of these polypeptides is dependent upon stabilization by a chloroplast translation product. The accumulation of 12 polypeptides was inhibited by streptomycin and by DCMU under conditions in which chlorophyll synthesis was inhibited, but not under conditions in which chlorophyll synthesis was unaffected by DCMU. The inhibition by DCMU of the accumulation of these polypeptides appears to be due to the inhibition of chlorophyll synthesis suggesting that they are components of pigment protein complexes. The accumulation of six polypeptides was inhibited under all conditions in which photosynthesis was inhibited suggesting that the accumulation of these polypeptides is dependent upon a product of photosynthesis.  相似文献   

20.
The interaction of tentoxin [cyclo-(-L-leucyl-N-methyl-(Z)-dehydrophenylalanyl-glycyl-N-methyl-L-alanyl-)] with solubilized lettuce chloroplast coupling factor 1 was characterized by direct binding studies, measurement of the time course of ATPase inhibition, and steady-state enzyme kinetics. Neither substrates, products or Ca2+ competed with the tentoxin binding site, nor did they induce any large change in tentoxin affinity. The inhibition of lettuce chloroplast coupling factor 1 ATPase was found to be the time dependent, and at equilibrium the affinities estimated by equilibrium ultrafiltration and enzyme inhibition were similar (1.8 . 10(8) M-1). The steady-state kinetics best fit an uncompetitive pattern suggesting that the inhibited steps follow an irreversible step occurring after ATP binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号