首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aim Invasive species frequently exhibit high temporal and spatial variation in abundance. Although ecological aspects undoubtedly affect this variation, genetic factors may also play a part. The invasive unicolonial yellow crazy ant Anoplolepis gracilipes exhibits considerable variation in abundance throughout its extensive distribution in Australia’s Northern Territory, where it was first detected in the 1980s. First, we aimed to determine whether A. gracilipes variation in abundance was associated with behavioural and genetic differentiation of the population and to determine whether one or more introductions occurred. Second, we investigated whether the A. gracilipes population was genetically and behaviourally heterogeneous to determine whether population divergence has occurred since introduction. Location Tropical monsoonal savanna in Arnhem Land, Northern Territory, Australia. Methods Ant abundances were assessed at 13 sites throughout the study region. We used mitochondrial DNA sequences and microsatellite molecular markers to determine population genetic structure, which we correlated with abundance. Behavioural differentiation was assayed using aggression trials and analysed together with genetic data to investigate population divergence. Results Although we found considerable variation in abundance, we found no association between population structure and differences in abundance. Our analyses suggest that A. gracilipes ants in Arnhem Land resulted from a single introduction. The population is not homogeneous, however, as aggression scores varied over both genetic and geographic distance. We also found a positive relationship between genetic and geographic distance. Main conclusions The variation in abundance in the Arnhem Land population of A. gracilipes is clearly not owing to invasion by ants from different sources. The genetic and behavioural differentiation we observed is suggestive of incipient genetic and behavioural divergence, which may be expected over time when an invasive species enters in a new environment.  相似文献   

2.
Aim Invasive ants can have substantial and detrimental effects on co‐occurring community members, especially other ants. However, the ecological factors that promote both their population growth and their negative influences remain elusive. Opportunistic associations between invasive ants and extrafloral nectary (EFN)‐bearing plants are common and may fuel population expansion and subsequent impacts of invasive ants on native communities. We examined three predictions of this hypothesis, compared ant assemblages between invaded and uninvaded sites and assessed the extent of this species in Samoa. Location The Samoan Archipelago (six islands and 35 sites). Methods We surveyed abundances of the invasive ant Anoplolepis gracilipes, other ant species and EFN‐bearing plants. Results Anoplolepis gracilipes was significantly more widely distributed in 2006 than in 1962, suggesting that the invasion of A. gracilipes in Samoa has progressed. Furthermore, (non‐A. gracilipes) ant assemblages differed significantly between invaded and uninvaded sites. Anoplolepis gracilipes workers were found more frequently at nectaries than other plant parts, suggesting that nectar resources were important to this species. There was a strong, positive relationship between the dominance of EFN‐bearing plants in the community and A. gracilipes abundance on plants, a relationship that co‐occurring ants did not display. High abundances of A. gracilipes at sites dominated by EFN‐bearing plants were associated with low species richness of native plant‐visiting ant species. Anoplolepis gracilipes did not display any significant relationships with the diversity of other non‐native ants. Main conclusions Together, these data suggest that EFN‐bearing plants may promote negative impacts of A. gracilipes on co‐occurring ants across broad spatial scales. This study underscores the potential importance of positive interactions in the dynamics of species invasions. Furthermore, they suggest that conservation managers may benefit from explicit considerations of potential positive interactions in predicting the identities of problematic invaders or the outcomes of species invasions.  相似文献   

3.
Asexual reproduction and hybridisation are often found among highly invasive plants and marine invertebrates. Recently, it has been suggested that clonality may enhance the success of invasive ants. In contrast, obligate hybridisation (dependent lineage genetic caste determination or DL GCD in ants) may decrease the chances of population persistence if one lineage is less prevalent than the other (asymmetry in lineage ratio). Genetic data available for the invasive yellow crazy ant (Anoplolepis gracilipes) suggest that it has an unconventional mode of reproduction that may involve asexual reproduction by workers or queens, or a form of genetic caste determination. Here, we investigated whether A. gracilipes reproduction involved DL GCD. The potential for worker reproduction was also assessed. We used microsatellite markers to assess the population structure of A. gracilipes workers, males, queens and sperm in queen spermathecae, from field collections in Arnhem Land. We found that a single queen lineage is present in Arnhem Land. The presence of a single lineage of queens discounts the possibility of DL GCD. Population structure separated queens and workers into different lineages, suggesting that these castes are determined genetically in A. gracilipes, or the mode of reproduction differs between workers and queens. Evidence for worker reproduction was weak. We conclude that the reproductive mode of A. gracilipes does not involve DL GCD. The resolution of the reproductive mode of A. gracilipes is complicated by a high prevalence of diploid males. The determination of the A. gracilipes reproductive mode remains a fascinating research question, and its resolution will improve our understanding of the contribution of the reproductive system to invasion success.  相似文献   

4.
Populations of invasive species are often studied when their effects are perceived as a problem. Yet observing the dynamics of populations over longer time periods can highlight changes in effects on invaded communities, and assist with management decisions. In this study we revisit an invasion of the yellow crazy ant (Anoplolepis gracilipes) in the Tokelau archipelago to determine if the distribution and abundance of the ant has changed ~7 years after surveys completed in 2004. We were particularly interested in whether populations of a previously identified invasive haplotype (D) had increased in distribution and abundance, as this haplotype was implicated in negative effects on resident ant communities. Indeed, haplotype D populations have become more widespread since the initial survey, more likely owing to new introductions or movement by humans, rather than intrinsic characteristics of the haplotype. We also found that despite no significant change in the abundance of A. gracilipes overall, haplotype D populations have declined in abundance. Residents of the Tokelau atolls no longer consider the ant to be a pest as they did 7 years ago, when populations of this ant interfered with their food production and many other aspects of daily life. We observed no significant differences between A. gracilipes invaded and uninvaded communities, which suggests that the ant is at a level of abundance below which significant negative ecological effects may occur. Population declines of invasive species are not infrequent, and understanding these population dynamics, particularly the underlying mechanisms promoting population declines or stabilisation, should be a high priority for invasion ecology.  相似文献   

5.
Invasions by introduced ant species can be ecologically destructive and affect a wide range of taxa, particularly native ants. Invasive ant species often numerically dominate ant communities and outperform native ant species in effective resource acquisition. Here, we describe interactions between the invasive ant Anoplolepis gracilipes (Smith) and resident ant species in disturbed habitats in NE Borneo. We measured interference competition abilities of A. gracilipes by performing arena bioassays between two A. gracilipes colonies and seven local ant species, and measured its effective resource competition at baits within supercolonies and at supercolony boundaries. Furthermore, we compared ant species diversity and composition at baits among (A) core areas of A. gracilipes supercolonies, (B) supercolony boundaries and (C) outside supercolonies. Anoplolepis gracilipes was behaviorally dominant over most ant species except Oecophylla smaragdina. Within supercolonies, A. gracilipes discovered all food baits first, and monopolized the vast majority throughout the course of the experiment. At supercolony boundaries, A. gracilipes discovered baits later than resident ant species, but subsequently monopolized half of the baits. Furthermore, the activity and diversity of the ant community within A. gracilipes supercolonies was lower than at its boundaries and outside supercolonies, and the ant communities differed significantly between infested and noninfested areas. Our study supports the hypothesis that successful establishment of A. gracilipes in anthropogenically disturbed habitats may negatively affect resident ant communities through high levels of direct interspecific aggression and almost complete monopolization of resources within high‐density supercolonies.  相似文献   

6.
Populations of invasive species often exhibit a high degree of spatial and temporal variability in abundance and hence their effects on resident communities. Here, we examine behavioural, genetic and environmental factors that influence variation in populations of the yellow crazy ant, Anoplolepis gracilipes, on the remote Nukunonu Atoll of Tokelau, Pacific Ocean. Behavioural assays revealed high levels of aggression between two groups of yellow crazy ants from different islands, and genetic analysis confirmed the presence of two distinct populations with unique mitochondrial (mt)DNA haplotypes, designated A and D. The two populations likely resulted from two separate invasion events. The populations exhibited significant differences in abundance of A. gracilipes, with a mean sevenfold difference in relative abundance between the two main haplotypes. The higher density haplotype D population coexisted with 50% fewer other ant species and altered ant community composition. Vegetation composition was also significantly different on islands harbouring the two populations. The results suggest genetic differences could play a role in the spatial and temporal variation in the effect of the yellow crazy ant on a small oceanic atoll. We could not differentiate between genetic effects and effects of vegetation. However, our results indicate that spatial variability in behaviour and impacts within populations of invasive species could be in part due to genetic differences, and play a substantial role in influencing the outcome of biological invasions.  相似文献   

7.
Ant invasions exert a range of effects on recipient communities, from displacement of particular species to more complex community disruption. While species loss has been recorded for a number of invasion events, a little examined aspect of these invasions is the mechanisms for coexistence with resident ant species.The yellow crazy ant, Anoplolepis gracilipes (Smith), is considered one of the world’s worst ant invaders and has recently undergone rapid population growth in Tokelau. We surveyed the ground-dwelling ant fauna in two plots on each of five invaded and three uninvaded islands across two atolls in Tokelau to examine community characteristics of the ant fauna in areas with and without yellow crazy ants. We also used three types of food bait (tuna, jam and peanut butter) to experimentally test if species are able to coexist by consuming different food resources. Anoplolepis gracilipes was found to coexist with two to six other ant species at any one site, and coexisted with a total of 11 ant species. Four species never co-occurred with A. gracilipes. Non-metric multidimensional scaling showed significant differences in community composition and the relative abundance of species between areas that had, and had not, been invaded by A. gracilipes. The number of other ant species was significantly lower in communities invaded by the yellow crazy ant, but did not decline with increasing A. gracilipes abundance, indicating that impacts were independent of population density. The yellow crazy ant dominated all tuna and jam baits, but had a low attendance on peanut butter, allowing four other ant species to access this resource. Our results demonstrate community level impacts of an ant invader on a tropical oceanic atoll and suggest that differing use of food resources can facilitate coexistence in ant communities. Received 11 September 2006; revised 15 January 2007; accepted 22 February 2007.  相似文献   

8.
The impact of invasion on diversity varies widely and remains elusive. Despite the considerable attempts to understand mechanisms of biological invasion, it is largely unknown whether some communities’ characteristics promote biological invasion, or whether some inherent characteristics of invaders enable them to invade other communities. Our aims were to assess the impact of one of the massive plant invaders of Scandinavia on vascular plant species diversity, disentangle attributes of invasible and noninvasible communities, and evaluate the relationship between invasibility and genetic diversity of a dominant invader. We studied 56 pairs of Heracleum persicum Desf. ex Fisch.‐invaded and noninvaded plots from 12 locations in northern Norway. There was lower native cover, evenness, taxonomic diversity, native biomass, and species richness in the invaded plots than in the noninvaded plots. The invaded plots had nearly two native species fewer than the noninvaded plots on average. Within the invaded plots, cover of H. persicum had a strong negative effect on the native cover, evenness, and native biomass, and a positive association with the height of the native plants. Plant communities containing only native species appeared more invasible than those that included exotic species, particularly H. persicum. Genetic diversity of H. persicum was positively correlated with invasibility but not with community diversity. The invasion of a plant community by H. persicum exerts consistent negative pressure on vascular plant diversity. The lack of positive correlation between impacts and genetic diversity of H. persicum indicates that even a small founder population may cause high impact. We highlight community stability or saturation as an important determinant of invasibility. While the invasion by H. persicum may decrease susceptibility of a plant community to further invasion, it severely reduces the abundance of native species and makes them more vulnerable to competitive exclusion.  相似文献   

9.
Invasive species can dramatically alter trophic interactions. Predation is the predominant trophic interaction generally considered to be responsible for ecological change after invasion. In contrast, how frequently competition from invasive species contributes to the decline of native species remains controversial. Here, we demonstrate how the trophic ecology of the remote atoll nation of Tokelau is changing due to competition between invasive ants (Anoplolepis gracilipes) and native terrestrial hermit crabs (Coenobita spp.) for carrion. A significant negative correlation was observed between A. gracilipes and hermit crab abundance. On islands with A. gracilipes, crabs were generally restricted to the periphery of invaded islands. Very few hermit crabs were found in central areas of these islands where A. gracilipes abundances were highest. Ant exclusion experiments demonstrated that changes in the abundance and distribution of hermit crabs on Tokelau are a result of competition. The ants did not kill the hermit crabs. Rather, when highly abundant, A. gracilipes attacked crabs by spraying acid and drove crabs away from carrion resources. Analysis of naturally occurring N and C isotopes suggests that the ants are effectively lowering the trophic level of crabs. According to δ15 N values, hermit crabs have a relatively high trophic level on islands where A. gracilipes have not invaded. In contrast, where these ants have invaded we observed a significant decrease in δ15 N for all crab species. This result concurs with our experiment in suggesting long-term exclusion from carrion resources, driving co-occurring crabs towards a more herbivorous diet. Changes in hermit crab abundance or distribution may have major ramifications for the stability of plant communities. Because A. gracilipes have invaded many tropical islands where the predominant scavengers are hermit crabs, we consider that their competitive effects are likely to be more prominent in structuring communities than predation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Invasions by non‐native insects can have important ecological impacts, particularly on island ecosystems. However, the factors that promote the success of invaders relative to co‐occurring non‐invasive species remain unresolved. For invasive ants, access to carbohydrate resources via interactions with both extrafloral nectary‐bearing plants and honeydew‐excreting insects may accelerate the invasion process. A first step towards testing this hypothesis is to determine whether invasive ants respond to variation in the availability of carbohydrate resources, and whether this response differs from that of co‐occurring, non‐invasive ants. We investigated the effect of carbohydrate subsidies on the short‐term foraging and hemipteran‐tending behaviours of the invasive ant Anoplolepis gracilipes (Formicidae) and co‐occurring ant species on an extrafloral nectary‐bearing plant by experimentally manipulating carbohydrate levels and tracking ant recruitment. We conducted experiments in 2 years at two sites: one site was invaded by A. gracilipes prior to 2007 and the other became invaded during the course of our study, allowing pre‐ (2007) and post‐invasion (2009) comparisons. Short‐term increases in carbohydrate availability increased the density of A. gracilipes workers on plants by as much as 400% and reduced tending of honeydew‐excreting insects by this species by up to 89%, with similar responses across years. In contrast, ants at the uninvaded site in 2007 showed a weak and non‐significant forager recruitment response. Across all sites, A. gracilipes workers were the only ants that responded to carbohydrate manipulations in 2009. Furthermore, ant–carbohydrate dynamics at a site newly invaded by A. gracilipes quickly diverged from dynamics at uninvaded sites and converged on those of the site with an established invasion. These findings suggest that carbohydrate resources may be particularly important for A. gracilipes invasions, and underscore the importance of species interactions, particularly putative mutualisms, in facilitating exotic species invasions.  相似文献   

11.
Ants are highly successful invaders, especially on islands, yet undisturbed mainland environments often do not contain invasive ants, and this observation is largely attributed to biotic resistance. An exception is the incursion of Yellow crazy ant Anoplolepis gracilipes within northeast Arnhem Land. The existence of A. gracilipes within this landscape’s intact environments containing highly competitive ant communities indicates that biotic resistance is not a terminally inhibitory factor mediating this ant’s distribution at the regional scale. We test whether biotic resistance may still operate at a more local scale by assessing whether ecological impacts are proportional to habitat suitability for A. gracilipes, as well as to the competitiveness of the invaded ant community. The abundance and species richness of native ants were consistently greater in uninfested than infested plots but the magnitude of the impacts did not differ between habitats. The abundance and ordinal richness of other macro-invertebrates were consistently lower in infested plots in all habitats. A significant negative relationship was found for native ant abundance and A. gracilipes abundance. No relationships were found between A. gracilipes abundance and any measure of other macro-invertebrates. The relative contribution of small ants (<2.5 mm) to total abundance and relative species richness was always greater in infested sites coinciding with a reduction of the contribution of the larger size classes. Differences in the relative abundance of ant functional groups between infested and uninfested sites reflected impacts according to ant size classes and ecology. The widespread scale of these incursions and non-differential level of impacts among the habitats, irrespective of native ant community competitiveness and abiotic suitability to A. gracilipes, does not support the biotic resistance hypothesis.  相似文献   

12.
Genetic bottlenecks can limit the success of populations colonizing new ranges. However, successful colonizations can occur despite bottlenecks, a phenomenon known as the genetic paradox of invasion. Eusocial Hymenoptera such as bumblebees (Bombus spp.) should be particularly vulnerable to genetic bottlenecks, since homozygosity at the sex-determining locus leads to costly diploid male production (DMP). The Tree Bumblebee (Bombus hypnorum) has rapidly colonized the UK since 2001 and has been highlighted as exemplifying the genetic paradox of invasion. Using microsatellite genotyping, combined with the first genetic estimates of DMP in UK B. hypnorum, we tested two alternative genetic hypotheses (‘bottleneck’ and ‘gene flow’ hypotheses) for B. hypnorum''s colonization of the UK. We found that the UK population has not undergone a recent severe genetic bottleneck and exhibits levels of genetic diversity falling between those of widespread and range-restricted Bombus species. Diploid males occurred in 15.4% of reared colonies, leading to an estimate of 21.5 alleles at the sex-determining locus. Overall, the findings show that this population is not bottlenecked, instead suggesting that it is experiencing continued gene flow from the continental European source population with only moderate loss of genetic diversity, and does not exemplify the genetic paradox of invasion.  相似文献   

13.
Successful colonization and/or invasion depend on characteristics of the invaded community and of the colonizer itself. Although many studies have documented a negative relationship between invasibility and biodiversity, the importance of community evenness is rarely examined and thus poorly understood. However, colonizer characteristics, including population genetic diversity, can also be important determinants of colonization success. We conducted a greenhouse experiment to assess the relative importance of community evenness and colonizer population genetic diversity using the weed Arabidopsis thaliana. We added seeds of A. thaliana (varying genetic diversity while keeping propagule pressure constant) to four types of constructed plant communities: those dominated by legumes, grasses or forbs, or with equal abundances of all three functional groups. We selected community members from a large pool of species to avoid the confounding effects of species identity. We also assessed the success of multiple seedbank colonizers to assess generality in the effects of our evenness treatments. Equal-abundance communities were no better at suppressing colonization than communities dominated by a single functional group. Forb-dominated communities suppressed A. thaliana colonization better than grass-dominated communities and suppressed seedbank colonizers better than legume-dominated communities. Equal-abundance communities were similar to forb-dominated ones in their eventual composition and in their invasibility, suggesting that forbs drove colonizer suppression in that treatment rather than high evenness itself. Most of our forbs grew quickly, yielding productive forb-dominated communities; this points to the importance of growth and colonization phenology in our system. A. thaliana genetic diversity did not affect colonization success, perhaps because strong interspecific competition substantially limited A. thaliana seedling emergence.  相似文献   

14.
Chang CC  Smith MD 《Oecologia》2012,168(4):1091-1102
To improve the understanding of how native plant diversity influences invasion, we examined how population and community diversity may directly and indirectly be related to invasion in a natural field setting. Due to the large impact of the dominant C4 grass species (Andropogon gerardii) on invasion resistance of tallgrass prairie, we hypothesized that genetic diversity and associated traits within a population of this species would be more strongly related to invasion than diversity or traits of the rest of the community. We added seeds of the exotic invasive C4 grass, A. bladhii, to 1-m2 plots in intact tallgrass prairie that varied in genetic diversity of A. gerardii and plant community diversity, but not species richness. We assessed relationships among genetic diversity and traits of A. gerardii, community diversity, community aggregated traits, resource availability, and early season establishment and late-season persistence of the invader using structural equation modeling (SEM). SEM models suggested that community diversity likely enhanced invasion indirectly through increasing community aggregated specific leaf area as a consequence of more favorable microclimatic conditions for seedling establishment. In contrast, neither population nor community diversity was directly or indirectly related to late season survival of invasive seedlings. Our research suggests that while much of diversity–invasion research has separately focused on the direct effects of genetic and species diversity, when taken together, we find that the role of both levels of diversity on invasion resistance may be more complex, whereby effects of diversity may be primarily indirect via traits and vary depending on the stage of invasion.  相似文献   

15.
Several freshwater mussel species represent some of the most problematic invasive species and have considerably altered ecosystems worldwide. Their invasion potential has been partially attributed to their free-living larvae, which have a high dispersal capability. We investigated the invasion potential of Anodonta (Sinanodonta) woodiana, a species of East Asian unionid mussel established worldwide despite having an obligatory parasitic stage (glochidium), which must encyst on host fish. The invasion success of A. woodiana has been attributed to the success of worldwide introductions of its sympatric fish hosts. We experimentally found, however, that A. woodiana is a broad host generalist, which can complete its development on all eight fish species tested, both coinvasive and native. Subsequently, we used a data on the occurrence and relative abundance of potential hosts in river habitats in the Czech Republic to project scenarios of the effect of host availability on A. woodiana invasion. We found that host availability does not constitute a major limit for A. woodiana to colonise most aquatic habitats in Central Europe. In addition, we investigated seasonal dynamics of A. woodiana reproduction and did not detect any limitations of its reproduction by ambient water temperatures typical of a Central European lowland river. Consequently, we predict that A. woodiana may further increase the speed and range of its invasion and we discuss possible consequences to native habitats and communities, especially to the endangered species of unionid mussels.  相似文献   

16.
There is growing support for the general notion that the drivers of invasion success often shift from biotic to abiotic factors with increasing spatial scale. Most of this research, however, has been conducted on a single trophic level; i.e. it has primarily looked at how the diversity of native competitors may influence invasion success. Less attention has been paid to understanding how native prey diversity may influence the invasion success of exotic predators and whether such biotic factors are scale-dependent. We used a hierarchical spatial survey of 17 stream communities to test whether native prey diversity, along with native prey biomass, algal resource abundance and annual stream discharge, influenced the abundance of an exotic crayfish predator, and whether the importance of these factors were scale-dependent. We used a hierarchical generalized linear model to evaluate the influence of these community and stream characteristics on exotic crayfish abundance at both the transect scale (1 m2) and the stream scale (400 m2). Our results indicated that at the stream scale, high stream discharge significantly limited invader abundance. However, at the smaller transect scale, native prey biomass was a significant driver of invasion success and positively correlated with invader abundance. We suggest that our results add to the emerging pattern that abiotic processes are stronger determinants of invasion success at large spatial scales, whereas biotic processes become more important with decreasing spatial scale. However, for predator invasions, prey biomass, not prey diversity may be a more important for driver of invasion success at small spatial scales.  相似文献   

17.
18.
European calcareous grasslands have decreased dramatically in area and number during the last two centuries. As a result, many populations of calcareous grassland species are confined to small and isolated fragments, where their long-term survival is to some extent uncertain. Recently, several restoration projects have been initiated to enlarge the current grassland area in order to maintain the exceptionally high species richness. However, from a genetic point of view, the success of these restoration measures is not necessarily guaranteed, as strong historical decreases in population size and limited gene flow may have led to low genetic diversity through genetic bottlenecks and drift. In this study, we investigated genetic diversity and structure of 16 populations of the calcareous grassland specialist Cirsium acaule in a severely fragmented landscape in south-western Belgium. The overall distribution of this species in the study area was significantly and positively related to patch area, suggesting that small patches do not allow survival of this species. Both allelic richness and genetic diversity were significantly and positively related to population size. Estimation of observed and expected gene diversity provided evidence for population bottlenecks in the history of not less than 31% of all sampled populations. Reconstruction of the historical land use showed that patch area decline in populations that went through a recent bottleneck was significantly larger than that in populations that showed no evidence of a bottleneck. Assignment analyses showed low migration rates, suggesting that replenishment of lost alleles through gene flow is highly unlikely. Overall, our results indicate that in the absence of gene flow strong decreases in calcareous grassland area may have long-lasting effects on genetic diversity of plant populations and may hamper the success of restoration projects that simply aim at restoring initial habitat conditions or enlarging population fragments, as indicated by the fact that none of the recently restored areas has been occupied by C. acaule.  相似文献   

19.
Lack of biological knowledge of invasive species is recognised as a major factor contributing to eradication failure. Management needs to be informed by a site-specific understanding of the invasion system. Here, we describe targeted research designed to inform the potential eradication of the invasive yellow crazy ant Anoplolepis gracilipes on Nu’utele island, Samoa. First, we assessed the ant’s impacts on invertebrate biodiversity by comparing invertebrate communities between infested and uninfested sites. Second, we investigated the timing of production of sexuals and seasonal variation of worker abundance and nest density. Third, we investigated whether an association existed between A. gracilipes and carbohydrate sources. Within the infested area there were few other ants larger than A. gracilipes, as well as fewer spiders and crabs, indicating that A. gracilipes is indeed a significant conservation concern. The timing of male reproduction appears to be consistent with places elsewhere in the world, but queen reproduction was outside of the known reproductive period for this species in the region, indicating that the timing of treatment regimes used elsewhere are not appropriate for Samoa. Worker abundance and nest density were among the highest recorded in the world, being greater in May than in October. These abundance and nest density data form baselines for quantifying treatment efficacy and set sampling densities for post-treatment assessments. The number of plants and insects capable of providing a carbohydrate supply to ants were greatest where A. gracilipes was present, but it is not clear if this association is causal. Regardless, indirectly controlling ant abundance by controlling carbohydrate supply appears to be promising avenue for research. The type of targeted, site-specific research such as that described here should be an integral part of any eradication program for invasive species to design knowledge-based treatment protocols and determine assessment benchmarks to achieve eradication.  相似文献   

20.
Historical population bottlenecks and natural selection have important effects on the current genetic diversity and structure of long‐lived trees. Dracaena cambodiana is an endangered, long‐lived tree endemic to Hainan Island, China. Our field investigations showed that only 10 populations remain on Hainan Island and that almost all have been seriously isolated and grow in distinct habitats. A considerable amount of genetic variation at the species level, but little variation at the population level, and a high level of genetic differentiation among the populations with limited gene flow in D. cambodiana were detected using inter‐simple sequence repeat (ISSR) and random amplified polymorphic DNA (RAPD) analyses. No significant correlation was found between genetic diversity and actual population size, as the genetic diversities were similar regardless of population size. The Mantel test revealed that there was no correlation between genetic and geographic distances among the 10 populations. The UPGMA, PCoA and Bayesian analyses showed that local adaptive divergence has occurred among the D. cambodiana populations, which was further supported by habitat‐private fragments. We suggest that the current genetic diversity and population differentiation of D. cambodiana resulted from historical population bottlenecks and natural selection followed by historical isolation. However, the lack of natural regeneration of D. cambodiana indicates that former local adaptations with low genetic diversity may have been genetically weak and are unable to adapt to the current ecological environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号