首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lower plant Physcomitrella patens synthesizes several long-chain polyunsaturated fatty acids (LC-PUFAs) by a series of desaturation and elongation reactions. In the present study, the full-length cDNAs for two novel fatty acid elongases designated PpELO1 and PpELO2 were isolated from P. patens using a PCR-based cloning strategy. These cDNAs encoding proteins of 335 and 280 amino acids with predicted molecular masses of 38.7 and 32.9 kDa, respectively, are predicted to contain seven transmembrane domains with a possible localization in the subcellular endoplasmic reticulum. Sequence comparisons and phylogenetic analysis revealed that they are closely related to other LC-PUFA elongases of the lower eukaryotes such as the Δ5- and Δ6-elongases of Marchantia polymorpha as well as the Δ6-elongase of P. patens. Heterologous expression of the PpELO1 in Saccharomyces cerevisiae led to the elongation of Δ9-, Δ6-C18, and Δ5-C20 LC-PUFAs, whereas only Δ9- and Δ6-C18 LC-PUFA substrates were used by PpELO2. Chimeric proteins were constructed to identify the amino acid regions most likely to be involved in the determination of the fatty acid substrate specificity. The expression of eight chimeric proteins in yeast revealed that substitution of the C-terminal 50 amino acids from PpELO1 into PpELO2 resulted in a high specificity for C20 fatty acid substrates. As a result, we suggest that the C-terminal region of PpELO1 is sufficient for C20 substrate elongation. Overall, these results provide important insights into the structural basis for substrate specificity of PUFA-generating ELO enzymes.  相似文献   

2.
The hexane extract of Wyethia mollis contains the n-alkanes C15-C18, C20-C25, C27 and C29. Linoleic acid was the only detectable acidic component. A mass spectral analysis of the wax ester fraction indicated that it was a mixture of homologues, the saturated even-carbon acids n-C16-C30 esterfield with the saturated even-carbon alcohols n-C18-C26. The chloroform extract yielded the known isoflavones santal and 3′-O-methylorobol along with a new lanostane-type triterpene, 22,25-epoxy-lanosta-7:9(11)-dien-3-one. The wide distribution of n-alkanes and the decreased odd-even carbon ratio are consistent with the proposed primitive nature of this plant.  相似文献   

3.
1. The C14O2 production by Arbacia eggs and embryos from glucose-1-C14, glucose-2-C14, and glucose-6-C14 has been measured without and with dinitrocresol in the incubation medium. In the absence of the dinitrocresol, the C14O2 production from glucose-1-C14 is more rapid than from glucose-2-C14 and much more rapid than from glucose-6-C14; this, together with previous findings, indicates that glucose is utilized in Arbacia eggs predominantly via the TPN shunt rather than via the aldolase step of the glycolytic pathway. In the presence of the dinitrocresol, C14O2 from glucose-6-C14 approaches that from glucose-1-C14, indicating that, in the presence of this reagent, glucose utilization is diverted from the shunt to the glycolytic pathway. 2. Incorporation of C14 from glucose labelled in the 1-, 2-, or 6- positions into other metabolic products of the eggs and embryos is also inhibited by dinitrocresol, particularly incorporation into the acid-insoluble fraction containing nucleoproteins.  相似文献   

4.
In isolated tobacco leaves l-valine-U-14C gave rise to labeled even-numbered isobranched fatty acids containing 16 to 26 carbon atoms and iso C29, iso C31, and iso C33 paraffins. l-Isoleucine-U-14C on the other hand produced labeled odd-numbered anteiso C17 to C27 fatty acids and anteiso C30 and C32 paraffins. Trichloroacetic acid inhibited the incorporation of isobutyrate into C20 and higher fatty acids and paraffins without affecting the synthesis of the C16 and C18 fatty acids. Thus the very long branched fatty acids are biosynthetically related to the paraffins. In Senecio odoris leaves acetate-1-14C was incorporated into the paraffins (mainly n-C31) only in the epidermis although acetate was readily incorporated into fatty acids in the mesophyll tissue. Similarly only the epidermal tissue incorporated acetate into fatty acids longer than C18 suggesting that the epidermis is the site of synthesis of both paraffins and the very long fatty acids. In broccoli leaves n-C12 acid labeled with 14C in the carboxyl carbon and 3H in the methylene carbons was incorporated into C29 paraffin without the loss of 14C relative to 3H. Since n-C18 acid is known to be incorporated into the paraffin without loss of carboxyl carbon these results suggest that the condensation of C12 acid with C18 acid is not responsible for n-C29 paraffin synthesis in this tissue. Thus all the experimental evidence thus far obtained strongly suggests that elongation of fatty acids followed by decarboxylation is the most likely pathway for paraffin biosynthesis in leaves.  相似文献   

5.
The dinuclear arene ruthenium complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}]2 (1) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}]2 (2) have been obtained by dehydrogenation of the corresponding cyclohexadiene derivative with ruthenium chloride hydrate. The single-crystal X-ray structure analysis of 2 shows the arene ligands to be involved in slipped-parallel π-π stacking interactions with neighbouring molecules, thus forming infinite chains along the b-axis. The dinuclear complexes 1 and 2 react with two equivalents of triphenylphosphine (PPh3) to give in excellent yield the corresponding mononuclear phosphine complexes [RuCl2{C6H5(CH2)3OCO-p-C6H4-OC8H17}(PPh3)] (3) and [RuCl2{p-C6H4(CH2COOCH2CH3)2}(PPh3)] (4), respectively. The single-crystal X-ray structure analysis of 4 reveals the formation of a dimer through two C-H?Cl interactions in the solid state.  相似文献   

6.
This study was undertaken to examine the degree of Kranz anatomy development in the species intermediate to C3 and C4 types (C3-C4) in Panicum, Neurachne, Flaveria, and Moricandia. In each genus, C3 and/or C4 species were used for comparison. Leaf transections from each species were examined by light and transmission electron microscopy. The percentages of leaf photosynthetic cell profiles partitioned to bundle sheaths were higher in C4 than in C3 species, while C3-C4 species tended to be in between. However, percentages for C3-C4 species in Moricandia and some C3-C4Flaveria species were not greater than C3. When expressed on a cell profile area basis, C3-C4 species partitioned more photosynthetic tissue to bundle sheaths than C3 species in Moricandia, but not in Flaveria. Neurachne minor S. T. Blake (C3-C4) partitioned a very small portion of cell profile area to the inner bundle sheaths (5%) compared to Neurachne munroi F. Muell (C4) (21%). The percentage of organelles partitioned to bundle sheaths was much greater in C3-C4 than in C3 species. The average C3 percentages for mitochondria plus peroxisomes were 19, 8, and 19.5% for Neurachne, Flaveria, and Moricandia, respectively, compared to 41, 29, and 46.5% for the C3-C4 species. The CO2 compensation concentration was negatively related to the partitioning of tissue to bundle sheaths and to the percentage of organelles in bundle sheaths. It is concluded that all of the C3-C4 species examined have developed some degree of Kranz anatomy and that this altered anatomy is involved in their reduced apparent photorespiration.  相似文献   

7.
Klaus Haas 《Phytochemistry》1982,21(3):657-659
The mosses Andreaea rupestris, Pogonatum aloides and P. urnigerum contain surface waxes in amounts of 0.05–0.12% dry wt. The waxes consisted of esters (C38-C54), primary alcohols (C20-C32), free fatty acids (C16-C30), and alkanes (C21-C31). Additionally, aldehydes (C22-C30) were major constituents in the wax of P. urnigerum. The classes and their chain length distributions in the surface waxes of these mosses are comparable to those of epicuticular waxes of higher plants.  相似文献   

8.
3-Keto derivatives were prepared in good yield by the oxidative procedure with 2,3-dichloro-5,6-dicyanobenzoquinone from N-acetyl sphingosine, N-palmitoyl sphingosine, N-lignoceroyl sphingosine, and N-lignoceroyl psychosine. None of these 3-keto derivatives, except the one from N-acetyl sphingosine, have been previously reported. Ceramides were isolated from a calf brain and reacted with 2,3-dichloro-5, 6-dicyanobenzoquinone. Ceramides containing sphingosine (4-sphingenine) were converted to 3-keto derivative, while those containing dihydrosphingosine (sphinganine) remained intact under these conditions. The 3-keto ceramides were then separated from the ceramides containing dihydrosphingosine by preparative thin layer chromatography. Similarly cerebrosides from the same calf brain were oxidized and fractionated to 3-ketocerebrosides (from cerebrosides containing sphingosine) and unreacted cerebrosides (cerebrosides containing dihydrosphingosine). The fatty acid composition of these four sphingolipids were determined. Both the ceramides and the cerebrosides containing sphingosine had more unsaturated fatty acids than the corresponding dihydrosphingosine-containing compounds. The ratio of C16-C20 fatty acids to C22-C26 acids was higher in the ceramides containing sphingosine than in ceramides containing dihydrosphingosine, while the ratio was reversed in cerebrosides. The possible precursor-product relationship among these lipids is discussed.  相似文献   

9.
The dimeric Mycobacterium tuberculosis FabH (mtFabH) catalyses a Claisen-type condensation between an acyl-CoA and malonyl-acyl carrier protein (ACP) to initiate the Type II fatty acid synthase cycle. To analyze the initial covalent acylation of mtFabH with acyl-CoA, we challenged it with mixture of C6-C20 acyl-CoAs and the ESI-MS analysis showed reaction at both subunits and a strict specificity for C12 acyl CoA. Crystallographic and ESI-MS studies of mtFabH with a decyl-CoA disulfide inhibitor revealed a decyl chain bound in acyl-binding channels of both subunits through disulfide linkage to the active site cysteine. These data provide the first unequivocal evidence that both subunits of mtFabH can react with substrates or inhibitor. The discrepancy between the observed C12 acyl-CoA substrate specificity in the initial acylation step and the higher catalytic efficiency of mtFabH for C18-C20 acyl-CoA substrates in the overall mtFabH catalyzed reaction suggests a role for M. tuberculosis ACP as a specificity determinant in this reaction.  相似文献   

10.
A number of organometallic derivatives involving 6-amino penicillinic acid (I), of the types η5-R)2M- (Cl)L?Et3NH+ (II), (η5-R)2M(Cl)L (III) and R′HgL [R = cyclopentadienyl (C5H5), indenyl (C9H7), R′ = phenyl (C6H5), p-acetoxyphenyl (p-CH3COOC6H4), o-hydroxyphenyl (o-HOC6H4), p-hydroxyphenyl (p-HOC6H4); M = Ti(IV), Zr(IV); LH = 6-amino penicillinic acid] have been synthesized and characterized. Conductance measurements indicate that while the (η5-R)2M(Cl)L?Et3NH+ complexes are 1:1 electrolytes, the remaining compounds are non-electrolytes. From IR and UV spectral studies it is concluded that the penicillin moiety is bidentate. PMR and CMR studies support the stoichiometry of the complexes. Fluorescence studies have been carried out for o- and p-HOC6H4HgL complexes and relevant photochemical parameters have been elucidated. X-ray diffraction studies have been made for the o-HOC6H4HgL complex. For the C6H5HgL, p-CH3COOC6H4HgL and p-HOC6H4HgL complexes, thermal studies (TG and DTA) have been carried out and kinetic parameters for thermal degradation have been enumerated. In addition, the fragmentation pattern of these complexes has been analysed on the basis of mass spectra. The C6H5HgL and p-CH3COOC6H4HgL complexes show positive bactericidal activities.  相似文献   

11.
Reactions of H[AuCl4] with N-substituted 2-pyridine thiocarboxamide ligands 2-(C5H4N)C(S)NHR (R = p-C6H4Me, CH2Ph, Me, p-C6H4OMe) gave cycloaurated derivatives {(C5H4N)C(S)NR}AuCl2, with the ligand bonded as the thiol tautomer through the deprotonated SH group and the pyridine N atom to give a five-membered metallacyclic ring. The X-ray structure determination of the R = CH2Ph derivative shows a square-planar gold(III) complex that dimerises in the solid state by weak Au···S intermolecular interactions. In contrast, in the reaction of H[AuCl4] with 2-(C5H4N)C(S)NHR where R = 2-pyridyl, the ligand was oxidised to give a 1,2,4-thiadiazolo[2,3-a]pyridinium heterocyclic ring that was crystallographically characterised.  相似文献   

12.
The mononuclear cations of the general formula [(η6-arene)RuCl(pdpt)]+ (pdpt = 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-triazine; arene = C6H6 (1); C6H5Me (2); p-PriC6H4Me (3); C6Me6 (4)) have been synthesised from 5,6-diphenyl-3-(pyridine-2-yl)-1,2,4-triazine (pdpt) and the corresponding chloro complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-C6H5Me)Ru(μ-Cl)Cl]2, [(η6p-PriC6H4Me)Ru(μ-Cl)Cl]2 and [(η6-C6Me6)Ru(μ-Cl)Cl]2, respectively. The X-ray crystal structure analyses of [1][PF6] · (C6H6)2.5 and [2][PF6] · (CH3CN)2 reveal a typical piano-stool geometry around the metal centre and in the crystal packing a complexed networks of intermolecular interactions.  相似文献   

13.
Flaveria cronquistii (C3), F. chloraefolia (C3-C4), F. floridana (C3-C4), F. pubescens (C3-C4), F. anomala (C3-C4), F. linearis (C3-C4), F. brownii (C4), F. palmeri (C4), F. trinervia (C4) and F. australasica (C4), comprising 10 out of the 21 known species of the genus Flaveria (Asteraceae), were included in a comparative study of the kinetic and regulatory properties of green leaf phosphoenolpyruvate (PEP) carboxylase. At least three kinetically distinct enzyme-forms were identified on the basis of their affinities for PEP and the degree of allosterism with respect to this substrate. The kinetic properties of PEP carboxylase of most of the species seemingly were modified in vivo depending on the growth conditions of the plants. Km(PEPfree)-values of the enzyme from the five C3-C4 intermediate species ranged from 6 micromolar (F. chloraefolia, low light-grown) to 38 micromolar (F. pubescens, high light-grown). In contrast, the Km for PEP of PEP carboxylase from the C3 species F. cronquistii (13 micromolar) apparently was not influenced by growth conditions. The response of the enzyme from the C3 and C3-C4 species was hyperbolic in all cases. A second isoform with a lower affinity for PEP (88-100 micromolar), but also hyperbolic kinetics was found in the C4 species F. brownii, whereas in the three other C4 species examined a PEP carboxylase with a still lower affinity for PEP (187-221 micromolar) and sigmoidal kinetics was present. These isozyme-related kinetic data were supported by analyses of the elution behavior of the enzyme during anion-exchange chromatography on DEAE-Trisacryl M. The results are discussed with respect to the evolution of C4 photosynthesis in the Flaveria genus.  相似文献   

14.
Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable 13C6-isotope of pABA (p- amino[aromatic-13C6]benzoic acid ([13C6]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[13C6]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [13C6]pABA or [13C6]4HB generate both 13C6-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product 13C6-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ6. This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ6 quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates.  相似文献   

15.
Dinuclear dichloro complexes [Ru(C6H6)Cl2]2, [Ru(p-MeC6H4 iPr)Cl2]2, [Ru(1,2,4,5-C6H2Me4)Cl2]2, and [Ru(C6Me6)Cl2]2 react in ethanol with p-bromothiophenol to give the corresponding cationic complexes [Ru2(C6H6)2(p-S-C6H4-Br)3]+ (1), [Ru2(p-MeC6H4 iPr)2(p-S-C6H4-Br)3]+ (2), [Ru2(1,2,4,5-C6H2Me4)2(p-S-C6H4-Br)3]+ (3), and [Ru2(C6Me6)2(p-S-C6H4-Br)3]+ (4), which can be isolated in quantitative yield as their chloride salts. X-ray structure analysis of these complexes shows that the nature of the arene ligand influences the folding of the p-S-C6H4-Br units. In 1, where the less hindered arene ligand is present, the three phenyl rings of the thiolato units are not constrained to a coplanar arrangement, whereas in 4 the C6Me6 forces the three phenyl rings to be in perfect planarity. Complexes 2 and 3 show an intermediary arrangement.  相似文献   

16.
Linolenic acid-[1-14C] was converted to 12-oxo-trans-10-dodecenoic acid, via 12-oxo-cis-9-dodecenoic acid by incubation with chloroplasts of Thea sinensis leaves. Thus, it was confirmed that linolenic acid is split into a C12-oxo-acid, 12-oxo-trans-10-dodecenoic acid, and a C6-aldehyde, trans-2-hexenal, leaf aldehyde, by an enzyme system in chloroplasts of tea leaves.  相似文献   

17.
18.
Ultrastructural studies of leaves of seven Panicum species in or closely related to the Laxa group and classified as C3, C4 or C3-C4 intermediate were undertaken to examine features associated with C3 and C4 photosynthesis. The C3 species Panicum rivulare Trin. had few organelles in bundle sheath cell profiles (2 chloroplasts, 1.1 mitochondria, and 0.3 peroxisomes per cell section) compared to an average of 10.6 chloroplasts, 17.7 mitochondria, and 3.2 peroxisomes per bundle sheath cell profile for three C3-C4 species, Panicum milioides Nees ex Trin., Panicum decipiens Nees ex Trin. and Panicum schenckii Hack. However, two other C3 species, Panicum laxum Sw. and Panicum hylaeicum Mez, contained about 0.7, 0.5, and 0.3 as many chloroplasts, mitochondria, and peroxisomes, respectively, as in bundle sheath cell profiles of the C3-C4 species. Chloroplasts and mitochondria in bundle sheath cells were larger than those in mesophyll cells for the C4 species Panicum prionitis Griseb. and the C3-C4 species, but in C3 species the organelles were similar in size or were smaller in the bundle sheath cells. The C3-C4 species and P. laxum and P. hylaeicum exhibited an unusually close association of organelles in bundle sheath cells with mitochondria frequently surrounded in profile by chloroplasts. The high concentrations in bundle sheath cells of somewhat larger organelles than in mesophyll cells correlates with the reduced photorespiration of the C3-C4 species.  相似文献   

19.
Complexes [Ag(NH2R)2]X, (X = NO3, R = -C6H4-CnH2n+1-p, -C6H4-O-CnH2n+1-p, -CH2-C6H4-O-CnH2n+1-p, n = 6, 8, 10, 12, 14; X = BF4, R = -CH2-C6H4-O-CnH2n+1-p, n = 6, 8, 10, 12, 14; X = OAc, R = -CH2-C6H4-O-C10H21-p; X = CF3SO3, R = -CH2-C6H4-O-C10H21-p) have been prepared. They all show SA mesophases corresponding to two kinds of structures, already present in the solid state. The alkylaniline and alkoxyaniline derivatives adopt a bilayered structure where the cation has an extended centrosymmetric conformation. The benzylamine derivatives contain U-shaped cations giving rise to a bilayered structure which allows microsegregation of the organic part of the molecule from the inorganic Ag?(anion) part. Some degree of interdigitation of the terminal chains is observed for all the complexes with aryl containing ligands.  相似文献   

20.
Photosynthetic and photorespiratory characteristics of flaveria species   总被引:2,自引:2,他引:0  
Ku MS  Wu J  Dai Z  Scott RA  Chu C  Edwards GE 《Plant physiology》1991,96(2):518-528
The genus Flaveria shows evidence of evolution in the mechanism of photosynthesis as its 21 species include C3, C3-C4, C4-like, and C4 plants. In this study, several physiological and biochemical parameters of photosynthesis and photorespiration were measured in 18 Flaveria species representing all the photosynthetic types. The 10 species classified as C3-C4 intermediates showed an inverse continuum in level of photorespiration and development of the C4 syndrome. This ranges from F. sonorensis with relatively high apparent photorespiration and lacking C4 photosynthesis to F. Among the intermediates, the photosynthetic CO2 compensation points at 30°C and 1150 micromoles quanta per square meter per second varied from 9 to 29 microbars. The values for the three C4-like species varied from 3 to 6 microbars, similar to those measured for the C4 species. The activities of the photorespiratory enzymes glycolate oxidase, hydroxypyruvate reductase, and serine hydroxymethyltransferase decreased progressively from C3 to C3-C4 to C4-like and C4 species. On the other hand, most intermediates had higher levels of phosphenolpyruvate carboxylase and NADP-malic enzyme than C3 species, but generally lower activities compared to C4-like and C4 species. The levels of these C4 enzymes are correlated with the degree of C4 photosynthesis, based on the initial products of photosynthesis. Another indication of development of the C4 syndrome in C3-C4 Flaveria species was their intermediate chlorophyll a/b ratios. The chlorophyll a/b ratios of the various Flaveria species are highly correlated with the degree of C4 photosynthesis suggesting that the photochemical machinery is progressively altered during evolution in order to meet the specific energy requirements for operating the C4 pathway. In the progression from C3 to C4 species in Flaveria, the CO2 compensation point decreased more rapidly than did the decrease in O2 inhibition of photosynthesis or the increase in the degree of C4 photosynthesis. These results suggest that the reduction in photorespiration during evolution occurred initially by refixation of photorespired CO2 and prior to substantive reduction in O2 inhibition and development of the C4 syndrome. However, further reduction in O2 inhibition in some intermediates and C4-like species is considered primarily due to the development of the C4 syndrome. Thus, the evolution of C3-C4 intermediate photosynthesis likely occurred in response to environmental conditions which limit the intercellular CO2 concentration first via refixation of photorespired CO2, followed by development of the C4 syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号