首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

3.
代谢工程改善野生酵母利用木糖产乙醇的性能   总被引:1,自引:0,他引:1  
从256个自然样品中筛选得到1株可高效转化D-木糖的酵母。通过生理生化和分子生物学方法鉴定, 证实该菌株是属于Candida tropicalis。以该酵母为研究对象, 增加木糖醇脱氢酶表达量, 通过改变代谢流以达到提高酒精产率的目的。以pXY212-XYL2质粒为基础载体, 构建了含有潮霉素抗性的pYX212-XYL2-Hygro, 电击转化进入野生型C. tropicalis, 潮霉素抗性筛选, 得到含高拷贝木糖醇脱氢酶基因的重组菌株C. tropicalis XYL2-7。重组菌的比酶活达到0.5 u/mg protein, 比原始菌株提高了3倍。实验表明, 重组菌木糖醇得率比原始菌株降低了3倍, 酒精得率提高了5倍。首次通过实验验证了热带假丝酵母利用木糖产乙醇的可行性, 这对研究酵母利用秸秆、麦糠、谷壳等纤维质农业废弃物生产燃料乙醇具有重要启示。  相似文献   

4.
AIMS: To investigate the production of xylitol by the yeast Candida guilliermondii FTI 20037, in a bioreactor, from rice straw hemicellulosic hydrolysate with a high xylose concentration. METHODS AND RESULTS: Batch fermentation was carried out with rice straw hemicellulosic hydrolysate containing about 85 g xylose l(-1), in a stirred-tank bioreactor at 30 degrees C, under aeration of 1.3 vvm (volume of air per volume of medium per min) and different stirring rates (200, 300 and 500 rev min(-1)). The bioconversion of xylose into xylitol by the yeast depended on the stirring rate, the maximum xylitol yield (YP/S = 0.84 g g(-1)) being achieved at 300 rev min-1, with no need to pretreat the hydrolysate for purification. CONCLUSIONS: To determine the most adequate oxygen transfer rate is fundamental to improving the xylose-to-xylitol bioconversion by C. guilliermondii. SIGNIFICANCE AND IMPACT OF THE STUDY: For the microbial production of xylitol to be economically viable, the initial concentration of xylose in the lignocellulosic hydrolysate should be as high as possible, as with high substrate concentrations it is possible to increase the final product concentration. Nevertheless, there are few reports on the use of high xylose concentrations. Considering a process in bioreactor, from rice straw hemicellulosic hydrolysate, this is an innovator work.  相似文献   

5.
Xylitol, a functional sweetener, was produced from xylose by biological conversion using Candida tropicalis ATCC 13803. Based on a two-substrate fermentation using glucose for cell growth and xylose for xylitol production, fed-batch fermentations were undertaken to increase the final xylitol concentration. The effects of xylose and xylitol on xylitol production rate were studied to determine the optimum concentrations for fed-batch fermentation. Xylose concentration in the medium (100 g l−1) and less than 200 g l−1 total xylose plus xylitol concentration were determined as optimum for maximum xylitol production rate and xylitol yield. Increasing the concentrations of xylose and xylitol decreased the rate and yield of xylitol production and the specific cell growth rate, probably because of an increase in osmotic stress that would interfere with xylose transport, xylitol flux to secretion to cell metabolism. The feeding rate of xylose solution during the fed-batch mode of operation was determined by using the mass balance equations and kinetic parameters involved in the equations in order to increase final xylitol concentration without affecting xylitol and productivity. The optimized fed-batch fermentation resulted in 187 g l−1 xylitol concentration, 0.75 g xylitol g xylose−1 xylitol yield and 3.9 g xylitol l−1 h−1 volumetric productivity. Journal of Industrial Microbiology & Biotechnology (2002) 29, 16–19 doi:10.1038/sj.jim.7000257 Received 15 October 2001/ Accepted in revised form 30 March 2002  相似文献   

6.
Cotton stalk is a widely distributed and abundant lignocellulosic waste found in Turkey. Because of its rich xylose content, it can be a promising source for the production of xylitol. Xylitol can be produced by chemical or biotechnological methods. Because the biotechnological method is a simple process with great substrate specificity and low energy requirements, it is more of an economic alternative for the xylitol production. This study aimed to use cotton stalk for the production of xylitol with Candida tropicalis Kuen 1022. For this purpose, the combined effects of different oxygen concentration, inoculum level and substrate concentration were investigated to obtain high xylitol yield and volumetric xylitol production rate. Candida tropicalis Kuen 1022 afforded different concentrations of xylitol depending on xylose concentration, inoculum level, and oxygen concentration. The optimum xylose, yeast concentration, and airflow rate for cotton stalk hydrolysate were found as 10.41 g L?1, 0.99 g L?1, and 1.02 vvm, respectively, and under these conditions, xylitol yield and volumetric xylitol production rate were obtained as 36% and 0.06 g L?1 hr?1, respectively. The results of this study show that cotton stalk can serve as a potential renewable source for the production of xylitol.  相似文献   

7.
Xylitol, a functional sweetener, was produced from xylose using Candida tropicalisATCC 13803. A two-substrate fermentation was designed in order to increase xylitol yield and volumetric productivity. Glucose was used initially for cell growth followed by conversion of xylose to xylitol without cell growth and by-product formation after complete depletion of glucose. High glucose concentrations increased volumetric productivity by reducing conversion time due to high cell mass, but also led to production of ethanol, which, in turn, inhibited cell growth and xylitol production. Computer simulation was undertaken to optimize an initial glucose concentration using kinetic equations describing rates of cell growth and xylose bioconversion as a function of ethanol concentration. Kinetic constants involved in the equations were estimated from the experimental results. Glucose at 32 g L−1 was estimated to be an optimum initial glucose concentration with a final xylose concentration of 86 g L−1 and a volumetric productivity of 5.15 g-xylitol L−1 h−1. The two-substrate fermentation was performed under optimum conditions to verify the computer simulation results. The experimental results were in good agreement with the predicted values of simulation with a xylitol yield of 0.81 g-xylitol g-xylose−1 and a volumetric productivity of 5.06 g-xylitol L−1 h−1. Received 16 June 1998/ Accepted in revised form 28 February 1999  相似文献   

8.
Human fibroblast interferon (Hu IFN beta) was directly introduced with glass micropipets into the cytoplasm of Hela cells. Such an injection of more than 10(4) molecules per cell failed to induce any antiviral state when challenged with vesicular stomatitis virus (VSV). These findings are discussed in relation to the possible role of internalization in the mechanism of antiviral action of interferon.  相似文献   

9.
A downstream process was developed for the production of yeast extract from brewer's yeast cells. Various downstream processing conditions including clarification, debittering, and the Maillard reaction were considered in the development of the process. This simple and economic clarification process used flocculating agents, specifically calcium chloride (1%). After the clarification step, a Maillard reaction is initiated as a flavor-enhancing step. By investigating the effects of several operation parameters, including the type of sugar added, sugar dosage, glycine addition, and temperature, on the degree of browning (DB), glucose addition and reaction temperature were found to have significant effects on DB. A synthetic adsorption resin (HP20) was used for the debittering process, which induced a compositional change of the hydrophobic amino acids in the yeast hydrolysate, thereby reducing the bitter taste. The overall dry matter yield and protein yield for the entire process, including the downstream process proposed for the production of brewer's yeast extract were 50 and 50%, respectively.  相似文献   

10.
2-methyellipticinium (NSC 226137) does not exhibit any spectral interaction with cytochrome p-450; however, it is transformed in vitro by microsomes from livers of phenobarbital induced rats. This transformation is NADPH dependant. According to presently available analytical criteria (HPLC and chromatographic behavior, UV and mass spectra), its product is very likely 2-methyl-9-hydroxyellipticinium (NSC 264137) which is an active antitumor drug in man. Two minor metabolites are also present. The same major product is found in the bile of non-induced rats after intravenous administration of 2-methylellipticinium.  相似文献   

11.
Changes in polyol production and the intracellular amino acid pool were followed during the growth cycle of Debaryomyces hansenii in 4 mM and 2.7 M NaCl media. The intracellular levels of polyols were markedly enhanced by high salinity, the dominant solutes being glycerol in log phase cells and arabinitol in stationary phase cells. At low salinity arabinitol was the most prominent intracellular solute throughout the growth cycle. There were no major changes in the composition of the total amino acid pool with changes in cultural salinity. The amount of total free amino acids related to cell dry weight was 15–50% lower in cells cultured in 2.7 M NaCl as compared to 4 mM NaCl media.After subtraction of contributions from intracellular polyols the calculated cellular C/N ratio was found to be unaffected by cultural age and salinity during the late log and early stationary phase. On prolonged incubation of stationary phase cells, this ratio decreased, particularly at high salinity. The sensitivity of cells towards exposure to high salinity was measured in terms of the length of the lag phase after transference to 2.7 M NaCl media. This lag phase decreased with increasing intracellular polyol concentrations. At a given polyol content, stationary phase cells were considerably less sensitive than were log phase cells.When cultured at high salinity the mutant strain, 26-2b, grew more slowly and retained less of the total polyol produced during the early growth stages than did the wildtype. Exogenously supplied mannitol, arabinitol, and glycerol stimulated the growth of the mutant in saline media. Erythritol was without effect.Abbreviations GLC gas-liquid chromatography - TCA trichloroacetic acid  相似文献   

12.
(13)C-Cholesterol was produced with high efficiency by a genetically engineered yeast strain. The method produces ~ 1 mg of cholesterol per gram of glucose using 100 ml of culture medium. Uniform 94% enrichment where the most abundant product is the fully enriched isotopomer (u-(13)C(27)) is obtained using (u-(13)C(6), 99%) glucose medium. High enrichment is very important for relaxation experiments, but for NMR applications where carbon-carbon couplings are measured, this is problematic. A good compromise between sensitivity and cost consists in diluting (u-(13)C(6), 25%) with natural-abundance glucose. With a 2:3 ratio, the maximal amount of singlets can be obtained in 1 dimensional (D) carbon and 2D heteronuclear single-quantum correlation (HSQC) spectra with 6× intensity increase relative to natural-abundance samples. The use of (1-(13)C(1)-glucose, 99%) or (2-(13)C(1)-glucose, 99%) as isotope sources allows the labeling of the cholesterol in multiple mostly nonvicinal positions and reach 45× intensity increase. As an alternative, the dilution of (u-(13)C(6), 99%) glucose can be used to simultaneously enrich eleven pairs of (13)C up to ~ 1,000× natural-abundance probability, which should be very beneficial to double-quantum NMR experiments including the INADEQUATE and related pulse sequences. The flexibility of the method and the potential to adapt the culture protocol to specific needs should find many applications in chemistry and biology and in different fields of NMR and MS.  相似文献   

13.
14.
In a study of the halotolerant yeast Debarymyces hansenii cultured in 4 mM and 2.7 M NaCl the intracellular ATP pool, the heat production, the oxygen uptake, and, in the high culture salinity also, the intracellular glycerol concentration were found to be correlated. The intracellular ATP in the 2.7 M NaCl culture had a constant concentration of 3.5 mM ATP during the second half of the lag phase, while in 4 mM NaCl it rose to a maximum of 3.1 mM during the late log phase. The intracellular glycerol concentration in 2.7 M NaCl was about 1.3M during the entire exponential growth phase. Sine the glycerol concentration of the medium was not more than 0.23 mM, glycerol must contribute to the osmotic balance of the cells in high salinity. The corresponding maximum values for the 4 mM NaCl culture were 0.16 M and 0.08 mM. The experimental enthalpy changes were approximately the same for the two salinities, viz. about-1200 kJ per mole consumed glucose. The Y m-values for the 4 mM and 2.7 M NaCl cultures were 91 and 59, respectively, the difference being a consequence of the decreased efficiency of growth in high salinity.Abbreviations CFU colony-forming units - PCA perchloric acid - TCA trichloroacetic acid  相似文献   

15.
Xylitol is a highly valuable commodity chemical used extensively in the food and pharmaceutical industries. The production of xylitol from d ‐xylose involves a costly and polluting catalytic hydrogenation process. Biotechnological production from lignocellulosic biomass by micro‐organisms like yeasts is a promising option. In this study, xylitol is produced from lignocellulosic biomass by a recombinant strain of Saccharomyces cerevisiae (S. cerevisiae) (YPH499‐SsXR‐AaBGL) expressing cytosolic xylose reductase (Scheffersomyces stipitis xylose reductase [SsXR]), along with a β‐d ‐glucosidase (Aspergillus aculeatus β‐glucosidase 1 [AaBGL]) displayed on the cell surface. The simultaneous cofermentation of cellobiose/xylose by this strain leads to an ≈2.5‐fold increase in Yxylitol/xylose (=0.54) compared to the use of a glucose/xylose mixture as a substrate. Further improvement in the xylose uptake by the cell is achieved by a broad evaluation of several homologous and heterologous transporters. Homologous maltose transporter (ScMAL11) shows the best performance in xylose transport and is used to generate the strain YPH499‐XR‐ScMAL11‐BGL with a significantly improved xylitol production capacity from cellobiose/xylose coutilization. This report constitutes a promising proof of concept to further scale up the biorefinery industrial production of xylitol from lignocellulose by combining cell surface and metabolic engineering in S. cerevisiae.  相似文献   

16.
17.
The endogenous lipid of yeast cytochrome oxidase has been replaced by dimyristoyl phosphatidylcholine. Thin layer chromatography of the total lipid extract from the substituted enzyme revealed phosphatidylcholine only and no cardiolipin. Gas-liquid chromatography showed that >99% of the lipid chains derived from the substituted lipid, and that cardiolipin must be <0.03 mole/mole enzyme. The activity of the lipid-substituted enzyme was 10% of the original activity and increased to 47% by addition of dimyristoyl phosphatidylcholine. Thus there is no absolute requirement of cardiolipin for oxidative activity.  相似文献   

18.
Conversion of lignocellulose to lactic acid requires strains capable of fermenting sugar mixtures of glucose and xylose. Recombinant Escherichia coli strains were engineered to selectively produce L-lactic acid and then used to ferment sugar mixtures. Three of these strains were catabolite repression mutants (ptsG ) that have the ability to simultaneously ferment glucose and xylose. The best results were obtained for ptsG strain FBR19. FBR19 cultures had a yield of 0.77 (g lactic acid/g added sugar) when used to ferment a 100 g/l total equal mixture of glucose and xylose. The strain also consumed 75% of the xylose. In comparison, the ptsG + strains had yields of 0.47–0.48 g/g and consumed 18–22% of the xylose. FBR19 was subsequently used to ferment a variety of glucose (0–40 g/l) and xylose (40 g/l) mixtures. The lactic acid yields ranged from 0.74 to 1.00 g/g. Further experiments were conducted to discover the mechanism leading to the poor yields for ptsG + strains. Xylose isomerase (XI) activity, a marker for induction of xylose metabolism, was monitored for FBR19 and a ptsG + control during fermentations of a sugar mixture. Crude protein extracts prepared from FBR19 had 10–12 times the specific XI activity of comparable samples from ptsG + strains. Therefore, higher expression of xylose metabolic genes in the ptsG strain may be responsible for superior conversion of xylose to product compared to the ptsG + fermentations. Received 14 December 2000/ Accepted in revised form 28 June 2002  相似文献   

19.
The phosphorylation system of AMP by sorbitol-treated cells of a methanolutilizing yeast, Candida boidinii (Kloeckera sp.) No. 2201, was investigated for the production of ATP. Firstly, reaction conditions for the ATP production were optimized. Under the optimal conditions, 20–30 g 1?1 of ATP were produced in the conversion rate of 60–70% from AMP. Activities of reactions involved in the ATP-producing system were compared with cells from different cultures to prepare the cells having the higher activity and to know the essential reaction limiting the rate of the system. The energy efficiency of this system was also discussed.  相似文献   

20.
The possibility of culturing an osmotolerant yeast using waste brine from a kimchi factory as a substrate for the production of single cell protein was investigated. Pichia guilliermondii A9 was selected from 70 isolates of yeast demonstrating substantial growth in the waste brine. The growth of P. guilliermondii A9 in waste brine was not inhibited by NaCl concentrations of up to 10% (w/v). However, it was reduced drastically at concentrations greater than 12% (w/v). Approximately 90% of BOD was removed from the waste brine by culturing of P. guilliermondii A9 for 24 h. The maximum cell yield was 0.69 g of dry cells per liter, containing 40% of protein. When the waste brine was enriched with cabbage juice from waste cabbage, the final cell mass increased proportionally with the amount of added organic material. Salt stressed cells of P. guilliermondii A9 grown in waste brine are shown in scanning electron micrographs. In conclusion, the large amounts of waste brine generated from kimchi production could be used directly for the culture of the osmotolerant yeast P. guilliermondii A9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号