共查询到20条相似文献,搜索用时 0 毫秒
1.
Cardiomyogenic differentiation of human sternal bone marrow mesenchymal stem cells using a combination of basic fibroblast growth factor and hydrocortisone 下载免费PDF全文
Pezhman Hafez Shinsmon Jose Shiplu R. Chowdhury Min Hwei Ng B. H. I. Ruszymah Ramzisham Abdul Rahman Mohd 《Cell biology international》2016,40(1):55-64
2.
Shear stress is an important biomechanical parameter in regulating human mesenchymal stem cell (hMSC) construct development. In this study, the biomechanical characteristics of hMSCs within highly porous 3-D poly (ethylene terephthalate) (PET) matrices in a perfusion bioreactor system were analyzed for two flow rates of 0.1 and 1.5 mL/min, respectively over a 20-day culture period. A 1.4 times higher proliferation rate, higher CFU-F formation, and more fibronectin and HSP-47 secretion at day 20 were observed at the flow rate of 0.1 mL/min compared to those at the flow rate of 1.5 mL/min. The higher flow rate of 1.5 mL/min upregulated osteogenic differentiation potential at day 20 as measured by the expression of alkaline phosphatase activity and calcium deposition in the matrix after 14 days osteogenic induction, consistent with those reported in literatures. Mathematical modeling indicated that shear stress existed in the range of 1 x 10(-5) to 1 x 10(-4) Pa in the constructs up to a depth of 70 microm due to flow penetration in the porous constructs. Analysis of oxygen transport in the constructs for the two flow rates yielded oxygen levels significantly higher than those at which cell growth and metabolism are affected (Jiang et al., 1996). This indicates that differences in convective transport have no significant influence on cell growth and metabolism for the range of flow rates studied. These results demonstrate that shear stress is an important microenvironment parameter that regulates hMSC construct development at a range significantly lower than those reported previously in the perfusion system. 相似文献
3.
Yoshiko Myoken Yoshinari Myoken Tetsuji Okamoto Mikio Kan J. Denry Sato Kazuaki Takada 《In vitro cellular & developmental biology. Animal》1994,30(11):790-795
Summary A squamous cell carcinoma cell line Nakata proliferated in serum-free culture and was not responsive to exogenous fibroblast
growth factor-1 (FGF-1). Immunostaining revealed that Nakata cells expressed FGF-1 in their cytoplasms and nuclei. Two molecular
mass species of FGF-1 (16 and 18 kDa) were identified in cell extracts by Western blot. These cells also expressed high-affinity
FGF-1 binding sites (Kd=360 pM, 28 000 sites/cell). The results of cross-linking with [125I]FGF-1 demonstrated the presence of two bands with molecular masses of 160 and 140 kDa. The addition of FGF-1 specific antisense
oligonucleotides at 25 μM to Nakata cells resulted in an 82% inhibition in cell growth and suppressed FGF-1 expression. This effect was dose-dependent
and specific, because sense oligonucleotides were ineffective in inhibiting cell growth. In addition, Nakata cell growth was
suppressed by an anti-FGF-1 neutralizing antibody, which resulted in a 52% inhibition at 8 μg/ml. These results demonstrate
that Nakata cells produce FGF-1, and indicate that this growth factor acts in an autocrine manner by interacting with FGF-1
binding sites on Nakata cells. 相似文献
4.
Pubin Qiu Wencong Song Zhiwei Niu Yaofu Bai Wei Li Shaohui Pan Sha Peng Jinlian Hua 《Cell biochemistry and function》2013,31(2):159-165
This study was designed to investigate the effect of platelet‐derived growth factor (PDGF) on the proliferation of human umbilical cord mesenchymal stem cells (UC‐MSCs) and further explore the mechanism of PDGF in promoting the proliferation of UC‐MSCs. The human UC‐MSCs were treated with different concentrations of PDGF, and the effects were evaluated by counting the cell number, the cell viability, the expression of PDGF receptors analyzed by RT‐PCR, and the detection of the gene expression of cell proliferation, cell cycle and pluripotency, and Brdu assay by immunofluorescent staining and Quantitative real‐time (QRT‐PCR). The results showed that PDGF could promote the proliferation of UC‐MSCs in vitro in a dose‐dependent way, and 10 to 50 ng/ml PDGF had a significant proliferation effect on UC‐MSCs; the most obvious concentration was 50 ng/ml. Significant inhibition on the proliferation of UC‐MSCs was observed when the concentration of PDGF was higher than 100 ng/ml, and all cells died when the concentration reached 200 ng/ml PDGF. The PDGF‐treated cells had stronger proliferation and antiapoptotic capacity than the control group by Brdu staining. The expression of the proliferation‐related genes C‐MYC, PCNA and TERT and cell cycle–related genes cyclin A, cyclin 1 and CDK2 were up‐regulated in PDGF medium compared with control. However, pluripotent gene OCT4 was not significantly different between cells cultured in PDGF and cells analyzed by immunofluorescence and QRT‐PCR. The PDGF could promote the proliferation of human UC‐MSCs in vitro. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
5.
Xinghui Song Yanwei Li Xiao Chen Guoli Yin Qiong Huang Yingying Chen Guowei Xu Linlin Wang 《Genetics and molecular biology》2014,37(1):127-134
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering. 相似文献
6.
Summary A serum-free culture system supplemented with neural tissue extract for normal and tumor human esophagi was applied to the
culture of mouse esophageal epithelium. Similar to mouse mesenchyme and skin epithelium, esophageal epithelial lines (MEE)
emerged after serial culture. The cells had an apparent unlimited life span but retained morphology and other characteristics
of normal epithelial cells. The cells formed a small cyst consisting of keratined squamous epithelium in syngenic hosts. A
screen for growth factors that stimulated growth of the nonmalignant MEE cells in the absence of neural extract revealed that
epidermal growth factor (EGF) and heparin-binding (fibroblast) growth factors (HBGF) were most effective. An HBGF-like activity
was apparent in extracts of rapidly proliferating but not quiescent MEE cells at low or confluent densities. A cloned cell
line (MEE/C8) was selected from MEE cell cultures in the absence of neural extract. MEE/C8 cells proliferated independent
of either EGF or HBGF at rates equal to MEE cells, cell extracts exhibited HBGF-like activity at all stages of proliferation,
and the cells formed large invasive tumors in syngenic hosts. The HBGF-like activity present in extracts of tumorigenic MEE/C8
and proliferating nonmalignant MEE cells had properties similar to HBGF-1 (acidic fibroblast growth factor). These results
constitute a cultured mouse esophageal epithelial cell model for study of conversion of immortalized premalignant cells to
malignant cells, and suggest that conversion from a state of cell cycle-dependent autocrine expression of one or more members
of the HBGF family to a state of constitutive expression correlates with and may contribute to malignancy.
The work was supported in part by grants CA37589 and DK35310 to Dr. McKeehan, from the National Cancer Institute, Bethesda,
MD. 相似文献
7.
8.
9.
10.
11.
Peter A. McCue Tiziana DeAngelis Renato Baserga Ami Fujii Hallgeir Rui Michael J. Mastrangelo Takami Sato 《Pigment cell & melanoma research》2014,27(2):297-308
We investigated the importance of the insulin‐like growth factor‐1 receptor (IGF‐1R) in hepatic metastases of uveal melanoma. The expression pattern of IGF‐1R in archival tissue samples of hepatic metastasis from 24 patients was analyzed by immunohistochemistry. All the samples of hepatic metastases stained positive for IGF‐1R. To investigate the biological role of IGF‐1R on the growth of metastatic uveal melanoma, a long‐term cell line obtained from a hepatic metastasis (TJU‐UM001) was evaluated. TJU‐UM001 expressed cell surface IGF‐1R (>90%) and proliferated in response to exogenous and endogenous insulin‐like growth factor‐1 (IGF‐1). Correlatively, anti‐IGF‐1R antibody completely blocked IGF‐1‐induced growth of TJU‐UM001 cells. IGF‐1 preferentially induced phosphorylation of Akt (S473) in quiescent TJU‐UM001 cells, and this was blocked by anti‐IGF‐1R antibody. This study suggests that autocrine and paracrine mechanisms underlie IGF‐1‐induced growth of metastatic uveal melanoma and underscore the potential benefit of IGF‐1 or IGF‐1R antagonism in treatment for metastatic uveal melanoma. 相似文献
12.
Aibin Zhang Yan Wang Zhou Ye Haiyang Xie Lin Zhou Shusen Zheng 《Journal of cellular biochemistry》2010,111(2):469-475
Accumulating evidence suggests that mesenchymal stem cells (MSCs) may decrease destructive inflammation and reduce tissue loss. Tumor necrosis factor‐α (TNF‐α) plays a central role in induction of proinflammatory signaling and paradoxically activates intracellular anti‐inflammatory survival pathways. In this study, we investigated whether TNF‐α could induce a chemotactic effect on human MSCs and stimulate their production of anti‐inflammatory factors in vitro, as well as determined mechanisms that mediated this effect. Migration assays demonstrated that TNF‐α had a chemotactic effect on MSCs. TNF‐α increased both hepatocyte growth factor (HGF) mRNA expression in MSCs and HGF secretion in conditioned medium. These effects were dependent on the p38 MAPK and PI3K/Akt, but not JNK and ERK signaling pathways. Furthermore, these effects were inhibited by a specific neutralizing antibody to TNF receptor II, but not TNF receptor I. We conclude that TNF‐α can enhance human MSCs migration and stimulate their production of HGF. These effects are mediated via a specific TNF receptor and signaling pathways. J. Cell. Biochem. 111: 469–475, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
13.
14.
Perfusion bioreactor system for human mesenchymal stem cell tissue engineering: dynamic cell seeding and construct development 总被引:7,自引:0,他引:7
Human mesenchymal stem cells (hMSCs) have great potential for therapeutic applications. A bioreactor system that supports long-term hMSCs growth and three-dimensional (3-D) tissue formation is an important technology for hMSC tissue engineering. A 3-D perfusion bioreactor system was designed using non-woven poly (ethylene terepthalate) (PET) fibrous matrices as scaffolds. The main features of the perfusion bioreactor system are its modular design and integrated seeding operation. Modular design of the bioreactor system allows the growth of multiple engineered tissue constructs and provides flexibility in harvesting the constructs at different time points. In this study, four chambers with three matrices in each were utilized for hMSC construct development. The dynamic depth filtration seeding operation is incorporated in the system by perfusing cell suspensions perpendicularly through the PET matrices, achieving a maximum seeding efficiency of 68%, and the operation effectively reduced the complexity of operation and the risk of contamination. Statistical analyses suggest that the cells are uniformly distributed in the matrices. After seeding, long-term construct cultivation was conducted by perfusing the media around the constructs from both sides of the matrices. Compared to the static cultures, a significantly higher cell density of 4.22 x 10(7) cell/mL was reached over a 40-day culture period. Cellular constructs at different positions in the flow chamber have statistically identical cell densities over the culture period. After expansion, the cells in the construct maintained the potential to differentiate into osteoblastic and adipogenic lineages at high cell density. The perfusion bioreactor system is amenable to multiple tissue engineered construct production, uniform tissue development, and yet is simple to operate and can be scaled up for potential clinical use. The results also demonstrate that the multi-lineage differentiation potential of hMSCs are preserved even after extensive expansion, thus indicating the potential of hMSCs for functional tissue construct development. The system has important applications in stem cell tissue engineering. 相似文献
15.
为了研究hSCGF-α对人脐带间充质干细胞 (Human umbilical cord mesenchymal stem cells,hUCMSCs) 的作用,采用基因工程技术获得重组人干细胞生长因子-α (Recombinant human Stem Cell Growth Factor-α,rhSCGF-α)。针对SCGF基因的高GC含量,采用PCR两步法获得hSCGF-α基因,插入pET-28a(+) 载体质粒,构建重组质粒pET-28a-SCGF-α,转化大肠杆菌BL21(DE3) 获得表达菌株。低温20 ℃诱导24 h,目标重组蛋白人干细胞生长因子-α以可溶性表达为主。通过Ni2+-NTA柱纯化,获得目标重组蛋白,电泳谱带扫描分析蛋白纯度可达90%以上。以巨噬细胞/粒细胞(Granulocyte/macrophage,GM)集落形成实验鉴定重组蛋白的生物学活性,并协同重组人巨噬细胞/粒细胞集落刺激因子(Recombinant human GM-colony stimulating factor,rhGM-CSF) 研究其对人脐带间充质干细胞的影响。结果显示,纯化的重组蛋白rhSCGF-α具有生物学活性;hSCGF-α及rhGM-CSF对hUCMSCs均有刺激增殖活性,但协同作用效果最强。 相似文献
16.
17.
Neural differentiation of human adipose‐derived mesenchymal stem cells induced by glial cell conditioned media 下载免费PDF全文
Debora Lo Furno Giuliana Mannino Rosario Giuffrida Elisa Gili Carlo Vancheri Maria S. Tarico Rosario E. Perrotta Rosalia Pellitteri 《Journal of cellular physiology》2018,233(10):7091-7100
18.
Yang Mao Xiao Qiong Liu Yu Song Chun Gang Zhai Xing Li Xu Lei Zhang Yun Zhang 《Journal of cellular and molecular medicine》2020,24(1):1128-1140
Increased immature neovessels contribute to plaque growth and instability. Here, we investigated a method to establish functional and stable neovessel networks to increase plaque stability. Rabbits underwent aortic balloon injury and were divided into six groups: sham, vector and lentiviral transfection with vascular endothelial growth factor‐A (VEGF)‐A, fibroblast growth factor (FGF)‐2, platelet‐derived growth factor (PDGF)‐BB and FGF‐2 + PDGF‐BB. Lentivirus was percutaneously injected into the media‐adventitia of the abdominal aorta by intravascular ultrasound guidance, and plaque‐rupture rate, plaque‐vulnerability index and plaque neovessel density at the injection site were evaluated. Confocal microscopy, Prussian Blue assay, Evans Blue, immunofluorescence and transmission electron microscopy were used to assess neovessel function and pericyte coverage. To evaluate the effect of FGF‐2/PDGF‐BB on pericyte migration, we used the mesenchymal progenitor cell line 10T1/2 as an in vitro model. VEGF‐A‐ and FGF‐2‐overexpression increased the number of immature neovessels, which caused intraplaque haemorrhage and inflammatory cell infiltration, eventually resulting in the plaque vulnerability; however, FGF‐2/PDGF‐BB induced mature and functional neovessels, through increased neovessel pericyte coverage. Additionally, in vitro analysis of 10T1/2 cells revealed that FGF‐2/PDGF‐BB induced epsin‐2 expression and enhanced the VEGF receptor‐2 degradation, which negatively regulated pericyte function consistent with the in vivo data. These results showed that the combination of FGF‐2 and PDGF‐BB promoted the function and maturation of plaque neovessels, thereby representing a novel potential treatment strategy for vulnerable plaques. 相似文献
19.
Jei‐Wen Chang Hsin‐Lin Tsai Chang‐Wei Chen Hui‐Wen Yang An‐Hang Yang Ling‐Yu Yang Paulus S. Wang Yee‐Yung Ng Teng‐Lung Lin Oscar K. Lee 《Journal of cellular and molecular medicine》2012,16(12):2935-2949
Mesenchymal stem cells (MSCs) have been shown to improve the outcome of acute renal injury models; but whether MSCs can delay renal failure in chronic kidney disease (CKD) remains unclear. In the present study, the were cultured in media containing various concentrations of basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate to investigate whether hepatocyte growth factor (HGF) secretion could be increased by the stimulation of these growth factors. Then, TGF‐β1‐treated renal interstitial fibroblast (NRK‐49F), renal proximal tubular cells (NRK‐52E) and podocytes were co‐cultured with conditioned MSCs in the absence or presence of ascorbic acid 2‐phosphate to quantify the protective effects of conditioned MSCs on renal cells. Moreover, male Sprague‐Dawley rats were treated with 1 × 106 conditioned MSCs immediately after 5/6 nephrectomy and every other week through the tail vein for 14 weeks. It was found that basic fibroblast growth factor, epidermal growth factor and ascorbic acid 2‐phosphate promoted HGF secretion in MSCs. Besides, conditioned MSCs were found to be protective against TGF‐β1 induced epithelial‐to‐mesenchymal transition of NRK‐52E and activation of NRK‐49F cells. Furthermore, conditioned MSCs protected podocytes from TGF‐β1‐induced loss of synaptopodin, fibronectin induction, cell death and apoptosis. Rats transplanted with conditioned human MSCs had a significantly increase in creatinine clearance rate, decrease in glomerulosclerosis, interstitial fibrosis and increase in CD4+CD25+Foxp3+ regulatory T cells counts in splenocytes. Together, our studies indicated that conditioned MSCs preserve renal function by their anti‐fibrotic and anti‐inflammatory effects. Transplantation of conditioned MSCs may be useful in treating CKD. 相似文献
20.
The combination of hMSCs with 3D scaffolds has become an important approach to creating functional bone constructs. Bioreactors are important tools to mitigate mass transfer limitations and to provide controlled physiochemical and biomechanical environments for the 3D bone construct development. Media flow in the bioreactor systems is generally controlled either parallel or transverse with respect to the 3D construct, creating different cellular and biomechanical microenvironments in the 3D constructs. In this study, a custom designed modular perfusion bioreactor system was operated under either the parallel or transverse flow. The influence of the flow patterns on the characteristics of the hMSCs' cellular microenvironment and subsequent construct development was investigated. The parallel flow configuration retained ECM proteins and mitogenic growth factors within the scaffold, effectively preserving hMSC progenicity and proliferation potential (e.g., CFU-F, proliferation, and OCT-4), whereas the transverse flow induced hMSC osteogenic differentiation with higher ALP activity and calcium deposition and up-regulation of osteogenic bone markers (e.g., BMP-2, ALP, RUNX2, OSX, and OC). These results demonstrate the regulatory role of the macroscopic flow on the cellular microenvironment of the 3D hMSC construct, and suggest configuring media flow as a strategy for directing hMSC fate and 3D bone construct development in the perfusion bioreactor. 相似文献