首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cedrela balansae C.DC. is a native tree species in Argentina, severely exploited for its timber features. We performed a molecular analysis to understand the genetic diversity and its distribution in eight remaining populations, which are distributed within the species' range in the Argentine Yungas Rainforest. We used two molecular markers: (i) seven SSRs, selected from forty-five SSRs developed for phylogenetically close species belonging to the Meliaceae family and (ii) 382 polymorphic AFLPs. The He was 0.643 and 0.222 for SSRs and AFLPs, respectively. The moderate levels of genetic diversity were related to the limited size of the species' distribution area, the latitudinal position of populations, the impacts of logging and the species' spatial distribution pattern. Genetic differentiation among populations was low for both markers (4.9% and 4.1% for SSRs and AFLPs, respectively). Four genetic clusters homogeneously distributed were distinguished. These observations may relate to the considerable historical gene flow measured (3.71 and 4.47 for SSRs and AFLPs, respectively). To safeguard the currently existing genetic base in the species, we identify four priority populations for conservation. To date only one of these is located in a protected area. Therefore, it is urgent to apply additional conservation measures for the remaining populations.  相似文献   

2.
Dendrobium officinale (Orchidaceae) is used for traditional medicine and is critically endangered in China. To investigate the genetic structure of this species and to offer some advice on conservation strategies, 84 individuals from nine wild populations of D. officinale were analyzed using the method of sequence-related amplified polymorphism. A high level of genetic diversity was detected (PPB = 88.07%, H E = 0.2880) at the species level. However, the genetic diversity at the population level was lower (PPB = 51.68%, H E = 0.1878) in comparison with other species with similar life history characteristics. Based on analysis of molecular variation, there was moderate variation between pairs of populations with Φ ST values ranging from 0.1327 to 0.4151 and on average 27.05% of the genetic variation occurred among populations. Two main clusters were shown in UPGMA using TFPGA, which is consistent with the result of principal coordinate analysis using NTSYS. In situ conservation is the first advocated and and ex situ should be proposed at the same time to protect the endangered plant and to preserve germplasm resources.  相似文献   

3.
We investigated the influence of differing life history traits on the genetic structure of the related species Mimetes fimbriifolius and Mimetes hirtus (Proteaceae), which occur in the South African fynbos. Both species are bird‐pollinated and ant‐dispersed, but differ in rarity, longevity, ecological strategy and the fragmentation of their distribution area. We used AFLPs to study genetic variation within and between 21 populations of these two species across their distribution range. AFLP analysis revealed significantly higher genetic variation within populations of M. fimbriifolius than within M. hirtus. While M. fimbriifolius clearly lacked any significant genetic differentiation between populations, a distinct geographic pattern was observed for M. hirtus. Differentiation was, however, stronger at the regional (ΦPT = 0.57) than at the local scale (ΦPT = 0.08). Our results clearly indicate that even closely related species that share the same mode of pollination and seed dispersal can differ in their genetic structure, depending on the magnitude of fragmentation, longevity of individuals and ecological strategy.  相似文献   

4.
Currently, many Brazilian orchids are threatened with extinction resulting from habitat loss and intense harvesting pressure stemming from their value as ornamental plants. Therefore, the genetic diversity in remaining populations is fundamental to the survival of these species in natural environments. In order to inform conservation strategies, this study evaluated the genetic diversity and structure of Cattleya granulosa populations. The sample consisted of 151 individuals from 12 populations in the Atlantic Forest, northeastern Brazil, evaluated using 91 ISSR markers. Genetic variability was assessed through molecular variance, diversity indexes, clusters of genotypes through Bayesian analysis, and tests for genetic bottlenecks. From all polymorphic loci, genetic diversity (HE) varied between 0.210 and 0.321 and the Shannon index ranged from 0.323 and 0.472. Significant genetic differentiation between populations (ΦST = 0.391; P < 0.0001) resulted in the division of the populations into five groups based on the log-likelihood Bayesian analysis. We found significant positive correlation between geographical and genetic distances between populations (r = 0.794; P = 0.017), indicating isolation by distance. Patterns of allelic diversity within populations suggest the occurrence of bottlenecks in most C. granulosa populations (n = 8). Therefore, in order to maintain the genetic diversity of the species, the conservation of spatially distant groups is necessary.  相似文献   

5.
Endemic, obligate outcrossing plant species with narrow geographic distributions and disjunct populations are prone to loss of genetic diversity. Simultaneously, delineating clear species boundaries is important for targeted conservation efforts. The rare and endemic cactus, Sclerocactus brevihamatus subsp. tobuschii (SBT), has a parapatric relationship with Sclerocactus brevihamatus subsp. brevihamatus (SBB) but genetic distance between the two taxa is unknown. We: (1) developed taxon-specific polymorphic microsatellites, (2) assessed genetic diversity within and among nine populations of SBT, and within one population of SBB, and (3) estimated the genetic relationship between the two subspecies. Within-population genetic diversity of SBT was moderate to high (mean Ho?=?0.37; mean He?=?0.59). Indirect estimate of inbreeding corrected for null alleles (Fis-INEst) was low for SBT, ranging from 0.03 to 0.14 (mean Fis-INEst?=?0.07). Genetic differentiation among populations of SBT was low based on Fst (0.08) and AMOVA (ФPT?=?0.10). Lack of genetic and spatial correlation in SBT populations coupled with the presence of private alleles and bottleneck events in several populations suggests that reproductive isolation is occurring but that sufficient time may not have yet passed to manifest strong differentiation. Cluster analyses segregated the 10 populations into three distinct groups, and separated SBB genotypes clearly. Results suggest that while hybridization between the two subspecies may occur, SBT is clearly differentiated genetically from SBB to retain its current taxonomic status.  相似文献   

6.
In order to investigate the genetic diversity of dominant species under the background of climate change and grassland utilization in the Inner Mongolia Plateau of China, we sampled seven Stipa grandis populations along an increasing aridity gradient in the present study. The Nei’s gene diversity of populations (He) was estimated to be 0.15 and the percentage of polymorphic loci (PPL) was 49.28%. The genetic differentiation among populations (ΦST) was 0.2431. There was a significant relationship between genetic distance and geographic distance among the S. grandis populations by Mantel's test. The genetic diversity was significantly correlated with longitude and annual mean precipitation, which suggested that a combination of climatic factors affected the genetic diversity. The populations in the marginal habitat should be paid more attention because of their low genetic diversity and its significance for conservation of the whole species.  相似文献   

7.
Encholirium is a Brazilian genus of Bromeliaceae that occurs exclusively in rocky landscapes. This work aimed to generate basic information for the conservation of three Encholirium species that are endemic to the rocky mountains of Cadeia do Espinhaço, employing population genetic analyses. E. pedicellatum and E. biflorum have only one very small population each, both occurring in unprotected, private land sites, being critically endangered. E. subsecundum is more widespread, and some of its populations dwell in protected areas. Five Random Amplified Polymorphic DNA (RAPD) primers generated approximately 60 polymorphic bands for each species. This technique demonstrated the presence of a single RAPD profile for every individual sampled (except for one clone found in E. biflorum). High levels of genetic variability were not expected, due to the clonal habit of the plants and small size of the populations. Populations of E. biflorum and E. pedicellatum presented, respectively, 16.06% (Φ st  = 0.16, p<0.001) and 8.44% (Φ st  = 0.08, p<0.001) of the total genetic diversity attributable to genetic differences among groups within the populations. In E. subsecundum, 14.52% (Φ st  = 0.15, p<0.001) of the total genetic diversity was found among populations. Estimates of the Shannon’s Diversity Index provided similar results. These results are valuable for the development of conservation strategies.  相似文献   

8.
Understanding factors that influence the spread of wildlife diseases can assist in designing effective surveillance programs and appropriate management strategies. Chronic wasting disease (CWD), a fatal prion disease of cervids, was detected in south-central Wisconsin in 2002 and over time has been identified increasingly farther west in the state leading to concerns about CWD spreading to Iowa. Our objective was to characterize genetic connectivity between white-tailed deer (Odocoileus virginianus) populations in eastern Iowa and western Wisconsin to assess the risk of CWD-infected deer dispersing to Iowa. We hypothesized that the Mississippi River, which separates the states, may restrict the movement of deer and thus disease. We genotyped hunter-harvested female deer collected from both states at 12 nuclear microsatellite loci (n = 249) and sequenced a portion of the mitochondrial DNA (mtDNA) control region (n = 173). Microsatellite data indicated there was low genetic differentiation (ΦPT = 0.005) between states and weak spatial genetic structure across the study area as a whole. Verifying expectations that dispersal in deer is male-biased, maternally inherited mtDNA data showed stronger spatial structuring across the study area and greater genetic differentiation between the states (ΦPT = 0.052) such that clustering analysis grouped the majority of deer from Iowa and Wisconsin into separate clusters. The low level of genetic differentiation between deer in northeast Iowa and southwest Wisconsin, primarily the result of dispersing males who have greater CWD prevalence than females, indicates that the Mississippi River is unlikely to prohibit the westward spread of CWD, and underscores the importance of continued CWD surveillance in Iowa. © 2011 The Wildlife Society.  相似文献   

9.

Aim

Intraspecific genetic diversity is one of the pillars of biodiversity, supporting the resilience and evolutionary potential of populations. Yet, our knowledge regarding the patterns of genetic diversity at macroecological scales, so-called macrogenetic patterns, remains scarce, particularly in marine species. Marine habitat-forming (MHF) species are key species in some of the most diverse but also most impacted marine ecosystems, such as coral reefs and marine forests. We characterize the patterns and drivers of genetic diversity in MHF species and provide a macrogenetic baseline, which can be used for conservation planning and for future genetic monitoring programmes.

Location

Global.

Time period

Contemporary.

Major taxa studied

Bryozoans, hexacorals, hydrozoans, octocorals, seagrasses, seaweeds, sponges.

Methods

We analysed a database including genetic diversity estimates based on microsatellites in more than 9,000 georeferenced populations from 140 species, which belong to seven animal and plant taxa. Focusing on expected heterozygosity, we used generalized additive models to test the effect of latitude, taxon, and conservation status. We tested the correlation between the species richness and the genetic diversity.

Results

We reveal a significant but complex biogeographic pattern characterized by a bimodal latitudinal trend influenced by taxonomy. We also report a positive species genetic diversity correlation at the scale of the ecoregions. The difference in genetic diversity between protected and unprotected areas was not significant.

Main conclusions

The contrasting results between MHF animals and plants suggest that the latitudinal genetic diversity patterns observed in MHF species are idiosyncratic, as reported in terrestrial species. Our results support the existence of shared drivers between genetic and species diversities, which remain to be formally identified. Concerning, these macrogenetic patterns are not aligned from the existing network of marine protected areas. Providing the first macrogenetic baseline in MHF species, this study echoes the call regarding the need to consider genetic diversity in biodiversity assessments and management.  相似文献   

10.
Random amplified polymorphic DNA (RAPD) markers were used to characterize genetic heterogeneity within and among five populations of Stipa grandis in the Xilingol Plateau. Estimates of the percentage of polymorphic bands, Shannon's diversity information index and Nei's gene diversity index were comparatively high in the five populations, and the Population GSM was found to have the highest genetic diversity among all populations. An analysis of molecular variance indicated that the majority of variation existed within populations (74.12%), and that there was significant differentiation among populations (ΦST = 25.88%, P < 0.001). Genetic distance (ΦST) ranged from 0.198 to 0.310 and the differentiation between pair-wise populations was significant when individual pairs of populations were compared. Based on the ΦST values, gene flow (Nm) was estimated and was found to vary from 0.556 to 1.013 between pair-wise populations and 0.7412 among populations. The results of UPGMA cluster analysis and nonmetric multi-dimensional scaling analysis indicated that most variation occurred within populations and that genetic differentiation had happened between populations. These findings are important for a better understanding of the adaptive strategy of S. grandis in northern China and will be useful for conservation managers to work out an effective strategy to protect this important species.  相似文献   

11.
In order to determine genetic diversity ofOryza meyeriana (Zoll. et Mor. ex Steud.) Baill., 12 enzyme systems encoded by 17 loci were electrophoretically analyzed in 164 individuals of seven populations from Simao Prefecture, Yunnan Province, China. In comparison with those seed plants with the same life history and breeding systems, as well as the other species in the genusOryza, the species shows rather low levels of genetic diversity (A = 1.1,P = 8.0 %, Ho = 0.004 and He = 0.015) within populations and high genetic differentiation among populations. Fst was up to 0. 649, suggesting that 64. 9% of total genetic variability exists among populations. Considering high genetic differentiation among populations from a limited geographic region, most of the populations of the species are worth being protected, and therefore, great natural protection regions should theoretically be established in which a great deal of populations should be involved for developingin situ conservation management. Meanwhile, some priory localities forin situ conservation ofO. meyerzana in Yunnan Province, were proposed.  相似文献   

12.
Litsea szemaois (Lauraceae) is an endemic and endangered species from the tropical rain forests of Xishuangbanna, southern Yunnan, SW China, but habitat fragmentation, especially exacerbated by rubber planting, has caused a decline in population size of the species. AFLP and ISSR were used to investigate the genetic diversity and population structure of eight populations from across its known distribution. Three AFLP and ten ISSR primer combinations produced a total of 203 and 77 unambiguous and repeatable bands respectively, of which 164 (80.8%) and 67 (87.0%) were polymorphic for the two markers. These two markers showed that Litsea szemaois exhibits comparatively high genetic diversity at species level (heterozygosity (hs) = 0.2109) relative to some other Lauraceae. Most of the genetic variation was partitioned within populations, but genetic differentiation between populations was significant and relatively high (Φ st = 0.2420, θ= 0.1986) compared with other tropical plants. The genetic characteristics of L. szemaois may be related to its outbreeding system, insect pollination and fragmented distribution. Because L. szemaois is dioecious and slow to mature, ex situ conservation across its genetic diversity is unlikely to succeed, although seedlings grow well under cultivation. Thus, in situ conservation is very important for this endangered species, especially as only 133 adult individuals are known in the wild. In particular, the Nabanhe and Mandian populations should be given a high conservation priority due to their higher genetic diversity, larger population size and better field condition, but wider sampling is required across all populations to determine additional areas with significant genetic conservation value.  相似文献   

13.
In order to determine genetic diversity ofOryza meyeriana (Zoll. et Mor. ex Steud.) Baill., 12 enzyme systems encoded by 17 loci were electrophoretically analyzed in 164 individuals of seven populations from Simao Prefecture, Yunnan Province, China. In comparison with those seed plants with the same life history and breeding systems, as well as the other species in the genusOryza, the species shows rather low levels of genetic diversity (A = 1.1,P = 8.0 %, Ho = 0.004 and He = 0.015) within populations and high genetic differentiation among populations. Fst was up to 0. 649, suggesting that 64. 9% of total genetic variability exists among populations. Considering high genetic differentiation among populations from a limited geographic region, most of the populations of the species are worth being protected, and therefore, great natural protection regions should theoretically be established in which a great deal of populations should be involved for developingin situ conservation management. Meanwhile, some priory localities forin situ conservation ofO. meyerzana in Yunnan Province, were proposed. Project supported by the Grant of the President of the Chinese Academy of Sciences.  相似文献   

14.
Cochlearia pyrenaica is one of the most endangered plant species in Europe, listed in many European and regional conservation policy documents (e.g. Spain, France, Belgium, Switzerland). To study its genetic structure, define its conservation units and propose a management strategy for this species, amplified fragment length polymorphism markers were used to analyse the genetic diversity within and between five representative populations of the species distribution in Western Europe (Cantabrian Range, North of Spain; Pyrenees, France; Wallonia, Belgium). Low levels of genetic diversity were revealed by the population percentage of polymorphic bands (PPB?=?36.56%), average within-population diversity (H S?=?0.0990) and genetic diversity within populations (H pop?=?0.1541), although high levels were reported at species level (PPB?=?81.16%; total genetic diversity for the species, H T?=?0.0990; and genetic diversity within whole species, H sp?=?0.2515). The coefficient of genetic differentiation among populations (G ST) was 0.3869. The analysis of Shannon diversity index in population and for the total data set partitioned (38.72%) and AMOVA (53%) detected a high level of interpopulation diversity, in broad agreement with the result of genetic differentiation analysis. NeighborNet network and principal coordinate analyses clustered the populations in three major groups congruent with geographical regions. Bayesian clustering also confirmed these three distinct genetic clusters. The level of gene flow (Nm) was estimated as 0.3961 individuals per generation among populations, with the genetic identity (I) and genetic distance (D) among populations ranging from 0.8679 to 0.9651 and from 0.0355 to 0.1417, respectively. Therefore, the low levels of genetic variation and high divergence of regional gene pools indicate that there is a need to protect each disjunct region of Western Europe.  相似文献   

15.
Cordyceps sinensis is one of the most valuable medicinal caterpillar fungi native to China. However, its productivity is extremely limited and the species is becoming endangered. The genetic diversity of eighteen C. sinensis populations across its major distributing regions in China was evaluated by inter-simple sequence repeat (ISSR) markers. A total of 141 markers were produced in 180 individuals from the 18 populations, of which 99.3% were polymorphic. The low average of Shannon (0.104) and Nei index (0.07) of the 18 populations indicates that there are little genetic variations within populations. For all 18 populations, estimates of total gene diversity (HT), gene diversity within populations (HS), coefficient of genetic differentiation (GST), and gene flow (Nm) were 0.170, 0.071, 0.583, and 0.357, respectively. This pattern suggests that the genetic diversity of C. sinensis is low and most of the ISSR variations are found among populations with little gene exchange. The 18 populations are divided into five groups based on the genetic distance and the grouping pattern matches with the geographic distribution along the latitudinal gradient. The five groups show obvious difference in the GST and Nm values. Therefore, the genetic diversification of C. sinensis populations may be determined by geographic isolation and the combined effects of life history characters and the interaction with host insect species. The information illustrated by this study is useful for selecting in situ conservation sites of C. sinensis.  相似文献   

16.
The habitat loss and fragmentation due to agricultural land-conversion affected the steppe throughout its range. In Ukraine, 95% of steppe was destroyed in the last two centuries. Remaining populations are confined to few refuges, like nature reserves, loess ravines, and kurgans (small burial mounds), the latter being often subject to destruction by archeological excavations.Stipa capillata L. is a typical grass species of Eurasian steppes and extrazonal dry grasslands, that was previously used as a model species in studies on steppe ecology. The aim of our research was to assess genetic diversity of S. capillata populations within different types of steppe refuges (loess ravines, biosphere reserve, kurgan) and to evaluate the value of the latter group for the preservation of genetic diversity in the study species.We assessed genetic diversity of 266 individuals from 15 populations (nine from kurgans, three from loess ravines and three from Askania-Nova Biosphere Reserve) with eight Universal Rice Primers (URPs).Studied populations showed high intra-population variability (I: 0.262–0.419, PPB: 52.08–82.64%). Populations from kurgans showed higher genetic differentiation (ΦST = 0.247) than those from loess ravines (ΦST = 0.120) and the biosphere reserve (ΦST = 0.142). Although the diversity metrics were to a small extent lower for populations from kurgans than from larger refugia we conclude that all studied populations of the species still preserve high genetic variability and are valuable for protection. To what extent this pattern holds true under continuous fragmentation in the future must be carefully monitored.  相似文献   

17.
Inter-simple sequence repeats (ISSR) markers were used to assess the genetic diversity and population structure in five populations of Astragalus nitidiflorus, a critically endangered species endemic to southeast Spain. Eight primers amplified 78 bands with 40 (51.3%) being polymorphic. Statistical results indicated a low genetic diversity at the population and species level, with percentages of polymorphic bands (PPB) ranging from 28.2 to 37.2% (an average of 31.8%), and means of gene diversity (HE) of 0.129 and 0.171 respectively. The Shannon’s index (SI) ranged from 0.160 to 0.214 at the population level and was 0.260 at the species level. A low level of genetic differentiation among populations was detected, based on the Shannon’s information index (0.297), the coefficient of genetic differentiation between populations (GST = 0.2418) and AMOVA analysis (ΦST = 0.255). The estimated gene flow (Nm) was 0.789. The high genetic connectivity found among populations of A. nitidiflorus is an evidence of a recent habitat fragmentation. In addition, a bottleneck event in the past has been revealed, with a subsequent reduction of population size and a loss of genetic variation. Based on these results, the conservation strategy of A. nitidiflorus was proposed.  相似文献   

18.
王爱兰  李维卫 《生态学报》2017,37(21):7251-7257
唐古特大黄(Rheum tanguticum)是中国传统的中藏药材,近几年由于生境的严重破坏,已濒临灭绝,并被列入濒危植物名单。为了探索唐古特大黄物种濒危的原因并保护其野生资源,本研究采集了9个居群87个个体的唐古特大黄样本,基于该物种的叶绿体基因trn S-G序列对其进行了遗传多样性研究。结果表明,唐古特大黄物种具有较高的遗传多样性水平(Ht=0.694),其中95.97%的遗传分化来自于居群间(G_(ST)=0.960),4.03%的遗传分化来自于居群内(Hs=0.028)。AMOVA分析也显示唐古特大黄居群间基因流较小(N_m=0.01),存在较高的遗传分化(F_(ST)=0.9631)。唐古特大黄较高的遗传多样性水平可能与该物种较长的进化史和生活史有关,居群间较高的遗传分化可能与高山地区特殊的地理环境和人类活动有关。根据研究结果,建议对唐古特大黄所有野生居群进行就地保护,同时收集种质资源开展异地繁殖工作,以保护物种的遗传多样性,维持其进化潜力。  相似文献   

19.
Aim Japanese red maple (Acer pycnanthum K. Koch) is an endangered species which grows in discrete wetland ecosystems within a limited geographical range. It is an important relic of geologic time, an endemic of unique wetland ecosystems and an indicator of hotspots of plant species diversity. However, information on its genetic characteristics across its range is lacking. Our aim was to determine the genetic structure and diversity of the species and make recommendations for conservation. Location Wetlands in central Honshu Island, Japan. Methods We collected leaf samples from 400 individuals of A. pycnanthum in 30 populations, extracted total DNA from each and sequenced three non‐coding regions of chloroplast DNA. Results We identified nine haplotypes. High haplotype diversity (0.81) and the occurrence of rare haplotypes in eight distant populations suggest that wetlands provided multiple, adequate‐size refuges during the Last Glacial Maximum. We found only one to four haplotypes within populations. The high degree of differentiation (GST = 0.83) implies that gene flow by seeds among populations is restricted. Eight populations demonstrated a positive contribution to the total genetic diversity owing to occurrence of rare and private haplotypes. Such populations are concentrated in the south‐western part of the species distribution. According to the spatial autocorrelation analysis, there were significant spatial clusters of populations, which were characterized by similar haplotype composition. Using the haplotype distribution, samova and barrier detected nearly identical genetic boundaries. Main conclusion In spite of the species’ limited geographical range, we identified a relatively high number of haplotypes and a clear geographical structure. We propose six management units, which can be used for future conservation activities, such as introduction of new individuals for on‐site conservation projects and seed collection for ex situ conservation.  相似文献   

20.
Identification of population units is crucial for management and monitoring programs, especially for endangered wild species. The roughskin sculpin (Trachidermus fasciatus Heckel) is a small catadromous fish and has been listed as a second class state protected aquatic animal since 1988 in China. To achieve sustainable conservation of this species, it is necessary to clarify the existing genetic structure both between and within populations. Here, population genetic structure among eight populations of T. fasciatus were analyzed by using 16 highly polymorphic microsatellites. High levels of genetic variation were observed in all populations. All pairwise F ST estimates were significant after false discovery rate correction (overall average F ST = 0.054). Furthermore, both STRUCTURE and discriminant analysis of principal components (DAPC) analysis showed that the eight populations were grouped into six clusters. BAYESASS analysis showed generally low recent and asymmetric migration among populations. All these results suggested significant genetic structure across populations. However, there was no isolation by distance relationship among populations, likely resulting from barriers to gene flow created by habitat fragmentation. Our results highlight the need for in situ conservation efforts for T. fasciatus across its entire distribution range, through maximizing habitat size and quality to preserve overall genetic diversity and evolutionary potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号