首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Virus‐like particles (VLPs) are becoming established as vaccines, in particular for influenza pandemics, increasing the interest in the development of VLPs manufacturing bioprocess. However, for complex VLPs, the analytical tools used for quantification are not yet able to keep up with the bioprocess progress. Currently, quantification for Influenza relies on traditional methods: hemagglutination assay or Single Radial Immunodiffusion. These analytical technologies are time‐consuming, cumbersome, and not supportive of efficient downstream process development and monitoring. Hereby we report a label‐free tool that uses Biolayer interferometry (BLI) technology applied on an Octet platform to quantify Influenza VLPs at all stages of bioprocess. Human (α2,6‐linked sialic acid) and avian (α2,3‐linked sialic acid) biotinylated receptors associated with streptavidin biosensors were used, to quantify hemagglutinin content in several mono‐ and multivalent Influenza VLPs. The applied method was able to quantify hemagglutinin from crude samples up to final bioprocessing VLP product. BLI technology confirmed its value as a high throughput analytical tool with high sensitivity and improved detection limits compared to traditional methods. This simple and fast method allowed for real‐time results, which are crucial for in‐line monitoring of downstream processing, improving process development, control and optimization.  相似文献   

2.
MS‐based proteomics has emerged as a powerful tool in biological studies. The shotgun proteomics strategy, in which proteolytic peptides are analyzed in data‐dependent mode, enables a detection of the most comprehensive proteome (>10 000 proteins from whole‐cell lysate). The quantitative proteomics uses stable isotopes or label‐free method to measure relative protein abundance. The isotope labeling strategies are more precise and accurate compared to label‐free methods, but labeling procedures are complicated and expensive, and the sample number and types are also limited. Sequential window acquisition of all theoretical mass spectra (SWATH) is a recently developed technique, in which data‐independent acquisition is coupled with peptide spectral library match. In principle SWATH method is able to do label‐free quantification in an MRM‐like manner, which has higher quantification accuracy and precision. Previous data have demonstrated that SWATH can be used to quantify less complex systems, such as spiked‐in peptide mixture or protein complex. Our study first time assessed the quantification performance of SWATH method on proteome scale using a complex mouse‐cell lysate sample. In total 3600 proteins got identified and quantified without sample prefractionation. The SWATH method shows outstanding quantification precision, whereas the quantification accuracy becomes less perfect when protein abundances differ greatly. However, this inaccuracy does not prevent discovering biological correlates, because the measured signal intensities had linear relationship to the sample loading amounts; thus the SWATH method can predict precisely the significance of a protein. Our results prove that SWATH can provide precise label‐free quantification on proteome scale.  相似文献   

3.
Synthetic biology has promoted the development of biosensors as tools for detecting trace substances. In the past, biosensors based on synthetic biology have been designed on living cells, but the development of cell biosensors has been greatly limited by defects such as genetically modified organism problem and the obstruction of cell membrane. However, the advent of cell‐free synthetic biology addresses these limitations. Biosensors based on the cell‐free protein synthesis system have the advantages of higher safety, higher sensitivity, and faster response time over cell biosensors, which make cell‐free biosensors have a broader application prospect. This review summarizes the workflow of various cell‐free biosensors, including the identification of analytes and signal output. The detection range of cell‐free biosensors is greatly enlarged by different recognition mechanisms and output methods. In addition, the review also discusses the applications of cell‐free biosensors in environmental monitoring and health diagnosis, as well as existing deficiencies and aspects that should be improved. In the future, through continuous improvement and optimization, the potential of cell‐free biosensors will be stimulated, and their application fields will be expanded.  相似文献   

4.
The tremendous enhancement factors that surface‐enhanced Raman scattering (SERS) possesses coupled with the flexibility of photonic crystal fibers (PCFs) pave the way to a new generation of ultrasensitive biosensors. Thanks to the unique structure of PCFs, which allows direct incorporation of an analyte into the axially aligned air channels, interaction between the analyte and excitation light could be increased many folds leading to flexible, reliable and sensitive probes that can be used in preclinical or clinical biosensing. SERS‐active PCF probes provide unique opportunity to develop an opto‐fluidic liquid biopsy needle sensor that enables one‐step integrated sample collection and testing for disease diagnosis. Specificity being a key parameter to biosensors, the PCF inside the biopsy needle could be functionalized with targeting moieties to detect specific biomarkers. In this review article, we present some of the most promising recent biosensors based on PCFs including hollow‐core PCFs, suspended‐core PCFs and side‐channel PCFs. We provide a wide range of applications of such platform using Raman spectroscopy, label free SERS or labeled SERS detection and analyze some of the main challenges to be addressed for translating it to a clinically viable next generation sensitive biopsy needle sensing probe.  相似文献   

5.
近年来,CRISPR/Cas系统已经成为转录调控和基因组编辑的重要工具。除了在基因编辑领域的贡献,CRISPR/Cas系统独特的靶核酸顺式切割和非特异性单链核酸反式切割能力,在开发核酸检测的新型生物传感器方面展现出巨大潜力。构建基于CRISPR/Cas系统高灵敏度生物传感器的关键通常依赖其与不同信号扩增策略,诸如核酸扩增技术或特定信号转导方法的结合。基于此,本文旨在通过介绍不同类型的CRISPR/Cas系统,全面概述基于该系统的核酸检测生物传感器的研究进展,并重点对结合核酸扩增技术(PCR、LAMP、RCA、RPA和EXPAR)、灵敏的信号转导方法(电化学和表面增强拉曼光谱)和特殊结构设计生物传感的三大类型信号放大策略的CRISPR/Cas生物传感器进行总结和评论。最后,本文对目前的挑战以及未来的前景进行展望。  相似文献   

6.
The feasibility of using a polymerase chain reaction (PCR)‐based label‐free DNA sensor for the detection of Helicobacter pylori is investigated. In particular, H. pylori ureC gene, a specific H. pylori nucleic acid sequence, was selected as the target sequence. In the presence of ureC gene, the target DNA could be amplified to dsDNA with much higher detectable levels. After added the SYBR green I (SGI), the sensing system could show high fluorescence. Thus, the target DNA can be detected by monitoring the change of fluorescence intensity of sensing system. The clinical performance of this method was determined by comparing it with another conventional technique urea breath test (UBT). The result also showed good distinguishing ability between negative and positive patient, which was in good agreement with that obtained by the UBT. It suggests that the label‐free fluorescence‐based method is more suitable for infection confirmation test of H. pylori. This approach offers great potential for simple, sensitive and cost‐effective identification of H. pylori infection.  相似文献   

7.
It is estimated that over two thirds of all new crystal structures of proteins are determined via the protein selenium derivatization (selenomethionine (Se‐Met) strategy). This selenium derivatization strategy via MAD (multi‐wavelength anomalous dispersion) phasing has revolutionized protein X‐ray crystallography. Through our pioneer research, similarly, Se has also been successfully incorporated into nucleic acids to facilitate the X‐ray crystal‐structure and function studies of nucleic acids. Currently, Se has been stably introduced into nucleic acids by replacing nucleotide O‐atom at the positions 2′, 4′, 5′, and in nucleobases and non‐bridging phosphates. The Se derivatization of nucleic acids can be achieved through solid‐phase chemical synthesis and enzymatic methods, and the Se‐derivatized nucleic acids (SeNA) can be easily purified by HPLC, FPLC, and gel electrophoresis to obtain high purity. It has also been demonstrated that the Se derivatization of nucleic acids facilitates the phase determination via MAD phasing without significant perturbation. A growing number of structures of DNAs, RNAs, and protein–nucleic acid complexes have been determined by the Se derivatization and MAD phasing. Furthermore, it was observed that the Se derivatization can facilitate crystallization, especially when it is introduced to the 2′‐position. In addition, this novel derivatization strategy has many advantages over the conventional halogen derivatization, such as more choices of the modification sites via the atom‐specific substitution of the nucleotide O‐atom, better stability under X‐ray radiation, and structure isomorphism. Therefore, our Se‐derivatization strategy has great potentials to provide rational solutions for both phase determination and high‐quality crystal growth in nucleic‐acid crystallography. Moreover, the Se derivatization generates the nucleic acids with many new properties and creates a new paradigm of nucleic acids. This review summarizes the recent developments of the atomic site‐specific Se derivatization of nucleic acids for structure determination and function study. Several applications of this Se‐derivatization strategy in nucleic acid and protein research are also described in this review.  相似文献   

8.
Methods of nonlinear optics provide a vast arsenal of tools for label‐free brain imaging, offering a unique combination of chemical specificity, the ability to detect fine morphological features, and an unprecedentedly high, subdiffraction spatial resolution. While these techniques provide a rapidly growing platform for the microscopy of neurons and fine intraneural structures, optical imaging of astroglia still largely relies on filament‐protein‐antibody staining, subject to limitations and difficulties especially severe in live‐brain studies. Once viewed as an ancillary, inert brain scaffold, astroglia are being promoted, as a part of an ongoing paradigm shift in neurosciences, into the role of a key active agent of intercellular communication and information processing, playing a significant role in brain functioning under normal and pathological conditions. Here, we show that methods of nonlinear optics provide a unique resource to address long‐standing challenges in label‐free astroglia imaging. We demonstrate that, with a suitable beam‐focusing geometry and careful driver‐pulse compression, microscopy of second‐harmonic generation (SHG) can enable a high‐resolution label‐free imaging of fibrillar structures of astrocytes, most notably astrocyte processes and their endfeet. SHG microscopy of astrocytes is integrated in our approach with nonlinear‐optical imaging of red blood cells based on third‐harmonic generation (THG) enhanced by a three‐photon resonance with the Soret band of hemoglobin. With astroglia and red blood cells providing two physically distinct imaging contrasts in SHG and THG channels, a parallel detection of the second and third harmonics enables a high‐contrast, high‐resolution, stain‐free stereoimaging of gliovascular interfaces in the central nervous system. Transverse scans of the second and third harmonics are shown to resolve an ultrafine texture of blood‐vessel walls and astrocyte‐process endfeet on gliovascular interfaces with a spatial resolution within 1 μm at focusing depths up to 20 μm inside a brain.  相似文献   

9.
Conjugated polymers (CPs) with large, delocalised molecular structures exhibit unique optical and electrochemical characteristics that can be used as excellent sensing elements. Recently, research on chemical and biological sensors that use water-soluble CPs as transducers has generated intense interest. Two main sensing mechanisms are used for the detection of DNA-related events, such as hybridisation, mismatch, single nucleotide polymorphism (SNP), SNP genotyping, conformational changes, and cleavage of the nucleic acids. One mechanism takes advantage of the fluorescence resonance energy transfer (FRET) between CPs and a chromophore label on the nucleic acid probes in which a series of cationic polyfluorene, polythiophene and polyarylene derivatives are frequently used. The other mechanism relies on the conformational effects of CPs, which is induced by combination of the specific targets in which cationic polythiophene derivatives are often used. The electron transfer property of CPs are always used to design high sensitive electrochemical DNA biosensors. Here we review recent progress in the development of optical and electrochemical DNA biosensors based on water-soluble CPs.  相似文献   

10.
Extracting histones from cells is the first step in studies that aim to characterize histones and their post‐translational modifications (hPTMs) with MS. In the last decade, label‐free quantification is more frequently being used for MS‐based histone characterization. However, many histone extraction protocols were not specifically designed for label‐free MS. While label‐free quantification has its advantages, it is also very susceptible to technical variation. Here, we adjust an established histone extraction protocol according to general label‐free MS guidelines with a specific focus on minimizing sample handling. These protocols are first evaluated using SDS‐PAGE. Hereafter, a selection of extraction protocols was used in a complete histone workflow for label‐free MS. All protocols display nearly identical relative quantification of hPTMs. We thus show that, depending on the cell type under investigation and at the cost of some additional contaminating proteins, minimizing sample handling can be done during histone isolation. This allows analyzing bigger sample batches, leads to reduced technical variation and minimizes the chance of in vitro alterations to the hPTM snapshot. Overall, these results allow researchers to determine the best protocol depending on the resources and goal of their specific study. Data are available via ProteomeXchange with identifier PXD002885.  相似文献   

11.
Studying nucleic acids often requires labeling. Many labeling approaches require covalent bonds between the nucleic acid and the label, which complicates experimental procedures. Noncovalent labeling avoids the need for highly specific reagents and reaction conditions, and the effort of purifying bioconjugates. Among the least invasive techniques for studying biomacromolecules are NMR and EPR. Here, we report noncovalent labeling of DNA and RNA triplexes with spin labels that are nucleobase derivatives. Spectroscopic signals indicating strong binding were detected in EPR experiments in the cold, and filtration assays showed micromolar dissociation constants for complexes between a guanine‐derived label and triplex motifs containing a single‐nucleotide gap in the oligopurine strand. The advantages and challenges of noncovalent labeling via this approach that complements techniques relying on covalent links are discussed.  相似文献   

12.
Transmission measurement has been perceived as a potential candidate for label‐free investigation of biological material. It is a real‐time, label‐free and non‐invasive optical detection technique that has found wide applications in pharmaceutical industry as well as the biological and medical fields. Combining transmission measurement with optical trapping has emerged as a powerful tool allowing stable sample trapping, while also facilitating transmittance data analysis. In this study, a near‐infrared laser beam emitting at a wavelength of 1064 nm was used for both optical trapping and transmission measurement investigation of human immunodeficiency virus 1 (HIV‐1) infected and uninfected TZM‐bl cells. The measurements of the transmittance intensity of individual cells in solution were carried out using a home built optical trapping system combined with laser transmission setup using a single beam gradient trap. Transmittance spectral intensity patterns revealed significant differences between the HIV‐1 infected and uninfected cells. This result suggests that the transmittance data analysis technique used in this study has the potential to differentiate between infected and uninfected TZM‐bl cells without the use of labels. The results obtained in this study could pave a way into developing an HIV‐1 label‐free diagnostic tool with possible applications at the point of care .  相似文献   

13.
A growing body of evidence has substantiated the significance of quantitative phase imaging (QPI) in enabling cost‐effective and label‐free cellular assays, which provides useful insights into understanding the biophysical properties of cells and their roles in cellular functions. However, available QPI modalities are limited by the loss of imaging resolution at high throughput and thus run short of sufficient statistical power at the single‐cell precision to define cell identities in a large and heterogeneous population of cells—hindering their utility in mainstream biomedicine and biology. Here we present a new QPI modality, coined multiplexed asymmetric‐detection time‐stretch optical microscopy (multi‐ATOM) that captures and processes quantitative label‐free single‐cell images at ultrahigh throughput without compromising subcellular resolution. We show that multi‐ATOM, based upon ultrafast phase‐gradient encoding, outperforms state‐of‐the‐art QPI in permitting robust phase retrieval at a QPI throughput of >10 000 cell/sec, bypassing the need for interferometry which inevitably compromises QPI quality under ultrafast operation. We employ multi‐ATOM for large‐scale, label‐free, multivariate, cell‐type classification (e.g. breast cancer subtypes, and leukemic cells vs peripheral blood mononuclear cells) at high accuracy (>94%). Our results suggest that multi‐ATOM could empower new strategies in large‐scale biophysical single‐cell analysis with applications in biology and enriching disease diagnostics.   相似文献   

14.
Multispectral and hyperspectral imaging (HSI) are emerging optical imaging techniques with the potential to transform the way surgery is performed but it is not clear whether current systems are capable of delivering real‐time tissue characterization and surgical guidance. We conducted a systematic review of surgical in vivo label‐free multispectral and HSI systems that have been assessed intraoperatively in adult patients, published over a 10‐year period to May 2018. We analysed 14 studies including 8 different HSI systems. Current in‐vivo HSI systems generate an intraoperative tissue oxygenation map or enable tumour detection. Intraoperative tissue oxygenation measurements may help to predict those patients at risk of postoperative complications and in‐vivo intraoperative tissue characterization may be performed with high specificity and sensitivity. All systems utilized a line‐scanning or wavelength‐scanning method but the spectral range and number of spectral bands employed varied significantly between studies and according to the system's clinical aim. The time to acquire a hyperspectral cube dataset ranged between 5 and 30 seconds. No safety concerns were reported in any studies. A small number of studies have demonstrated the capabilities of intraoperative in‐vivo label‐free HSI but further work is needed to fully integrate it into the current surgical workflow.   相似文献   

15.
We experimentally demonstrate a label‐free biosensor for the ERBB2 cancer gene DNA target based on the distance‐dependent detection of surface‐enhanced fluorescence (SEF) on nanoporous gold disk (NPGD) plasmonic nanoparticles. We achieve detection of 2.4 zeptomole of DNA target on the NPGD substrate with an upper concentration detection limit of 1 nM. Without the use of molecular spacers, the NPGD substrate as an SEF platform was shown to provide higher net fluorescence for visible and NIR fluorophores compared to glass and non‐porous gold substrates. The enhanced fluorescence signals in patterned nanoporous gold nanoparticles make NPGD a viable material for further reducing detection limits for biomolecular targets used in clinical assays.

With patterned nanoporous gold disk (NPGD) plasmonic nanoparticles, a label‐free biosensor that makes use of distance‐dependent detection of surface‐enhanced fluorescence (SEF) is constructed and tested for zeptomole detection of ERBB2 cancer gene DNA targets.  相似文献   


16.
Advances in microscopy with new visualization possibilities often bring dramatic progress to our understanding of the intriguing cellular machinery. Picosecond optoacoustic micro‐spectroscopy is an optical technique based on ultrafast pump‐probe generation and detection of hypersound on time durations of picoseconds and length scales of nanometers. It is experiencing a renaissance as a versatile imaging tool for cell biology research after a plethora of applications in solid‐state physics. In this emerging context, this work reports on a dual‐probe architecture to carry out real‐time parallel detection of the hypersound propagation inside a cell that is cultured on a metallic substrate, and of the hypersound reflection at the metal/cell adhesion interface. Using this optoacoustic modality, several biophysical properties of the cell can be measured in a noncontact and label‐free manner. Its abilities are demonstrated with the multiple imaging of a mitotic macrophage‐like cell in a single run experiment.   相似文献   

17.
Label‐free quantitative imaging is highly desirable for studying live cells by extracting pathophysiological information without perturbing cell functions. Here, we demonstrate a novel label‐free multimodal optical imaging system with the capability of providing comprehensive morphological and molecular attributes of live cells. Our morpho‐molecular microscopy (3M) system draws on the combined strength of quantitative phase microscopy (QPM) and Raman microscopy to probe the morphological features and molecular fingerprinting characteristics of each cell under observation. While the commonr‐path geometry of our QPM system allows for highly sensitive phase measurement, the Raman microscopy is equipped with dual excitation wavelengths and utilizes the same detection and dispersion system, making it a distinctive multi‐wavelength system with a small footprint. We demonstrate the applicability of the 3M system by investigating nucleated and nonnucleated cells. This integrated label‐free platform has a promising potential in preclinical research, as well as in clinical diagnosis in the near future.   相似文献   

18.
Carbonaceous particle exposure and air pollution in general lead to a multitude of adverse human health effects and pose multiple challenges in terms of exposure, risk and safety assessment. Highly desirable for fast screening are label‐free approaches for detecting these particle types in biological or medical context. We report a powerful approach for detecting carbonaceous particles using photothermal pump‐probe microscopy, which directly probes their strong light absorption. The principle and reliability of this approach is demonstrated by examining 4 different carbon black (CB) species modeling soot with diameters ranging from 13 to 500 nm. Our results show that the proposed approach is applicable to a large number of CB types as well as black carbon. As the particles show a strong absorption over a wide spectral range as compared to other absorbing species, we can image CB particles almost background free. Our pump‐probe approach allows label‐free optical detection and unambiguous localization of CB particles in (bio)fluids and 3D cellular environments. In combination with fluorescence microscopy, this method allows for simultaneous colocalization of CB with different cellular components using fluorophores as shown here for human lung fibroblasts. We further demonstrate the versatility of pump‐probe detection in a flow cell.   相似文献   

19.
Changming Xu  Ning Li  Hui Liu  Jie Ma  Yunping Zhu  Hongwei Xie 《Proteomics》2012,12(23-24):3475-3484
Database searching based methods for label‐free quantification aim to reconstruct the peptide extracted ion chromatogram based on the identification information, which can limit the search space and thus make the data processing much faster. The random effect of the MS/MS sampling can be remedied by cross‐assignment among different runs. Here, we present a new label‐free fast quantitative analysis tool, LFQuant, for high‐resolution LC‐MS/MS proteomics data based on database searching. It is designed to accept raw data in two common formats (mzXML and Thermo RAW), and database search results from mainstream tools (MASCOT, SEQUEST, and X!Tandem), as input data. LFQuant can handle large‐scale label‐free data with fractionation such as SDS‐PAGE and 2D LC. It is easy to use and provides handy user interfaces for data loading, parameter setting, quantitative analysis, and quantitative data visualization. LFQuant was compared with two common quantification software packages, MaxQuant and IDEAL‐Q, on the replication data set and the UPS1 standard data set. The results show that LFQuant performs better than them in terms of both precision and accuracy, and consumes significantly less processing time. LFQuant is freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/lfquant/ .  相似文献   

20.
Hematopoietic stem cell transplantation (HSCT) is the ultimate choice of treatment for patients with hematological diseases and cancer. The success of HSCT is critically dependent on the number and engraftment efficiency of the transplanted donor hematopoietic stem cells (HSCs). Various studies show that bone marrow‐derived mesenchymal stromal cells (MSCs) support hematopoiesis and also promote ex vivo expansion of HSCs. MSCs exert their therapeutic effect through paracrine activity, partially mediated through extracellular vesicles (EVs). Although the physiological function of EVs is not fully understood, inspiring findings indicate that MSC‐derived EVs can reiterate the hematopoiesis, supporting the ability of MSCs by transferring their cargo containing proteins, lipids, and nucleic acids to the HSCs. The activation state of the MSCs or the signaling mechanism that prevails in them also defines the composition of their EVs, thereby influencing the fate of HSCs. Modulating or preconditioning MSCs to achieve a specific composition of the EV cargo for the ex vivo expansion of HSCs is, therefore, a promising strategy that can overcome several challenges associated with the use of naïve/unprimed MSCs. This review aims to speculate upon the potential role of preconditioned/primed MSC‐derived EVs as “cell‐free biologics,” as a novel strategy for expanding HSCs in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号