首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A sensitive and stereoselective high-performance liquid chromatographic assay for the determination of the enantiomers of metoprolol (R- and S-) and the diastereoisomers of α-hydroxymetoprolol (IIA, IIB) in plasma is reported. Chromatography involved direct separation of enantiomers using a Chirobiotic T bonded phase column (250×4.6 mm) and a mobile phase consisting of acetonitrile–methanol–methylene chloride–glacial acetic acid–triethylamine (56:30:14:2:2, v/v). Solid-phase extraction using silica bonded with ethyl group (C2) was used to extract the compounds of interest from plasma and atenolol was used as the internal standard. The column effluent was monitored using fluorescence detection with excitation and emission wavelengths of 225 and 310 nm, respectively. S-Metoprolol,R-metoprolol, IIB and IIA eluted at about 5.9, 6.7, 7.3 and 8.2 min without any interfering peaks. The calibration curve was linear over the range of 0.5 to 100 ng/ml for each isomer of metoprolol and 1 to 100 ng/ml for each isomer of α-hydroxymetoprolol (IIA & IIB). The mean intra-run accuracies were in the range of 96.2 to 114% for R-metoprolol, 94.0 to 111% for S-metoprolol, 90.2 to 110% for IIA, and 94.6 to 106% for IIB. The mean intra-run precisions were all in the range of 2.2 to 12.0% for R-metoprolol, 2.1 to 11.1% for S-metoprolol, 1.9 to 14.5% for IIA, and 3.2 to 11.0% for IIB. The lowest level of quantitation for the enantiomers of metoprolol was 0.5 ng/ml and 1.0 ng/ml for α-hydroxymetoprolol (IIA and IIB). The absolute recoveries for each analyte was ≥95%. The validated method accurately quantitated the enantiomers of parent drug and metabolite after a single dose of an extended release metoprolol formulation.  相似文献   

2.
The drug chirality is attracting increasing attention because of different biological activities, metabolic pathways, and toxicities of chiral enantiomers. The chiral separation has been a great challenge. Optimized high‐performance liquid chromatography (HPLC) methods based on vancomycin chiral stationary phase (CSP) were developed for the enantioseparation of propranolol, atenolol, metoprolol, venlafaxine, fluoxetine, and amlodipine. The retention and enantioseparation properties of these analytes were investigated in the variety of mobile phase additives, flow rate, and column temperature. As a result, the optimal chromatographic condition was achieved using methanol as a main mobile phase with triethylamine (TEA) and glacial acetic acid (HOAc) added as modifiers in a volume ratio of 0.01% at a flow rate of 0.3 mL/minute and at a column temperature of 5°C. The thermodynamic parameters (eg, ΔH, ΔΔH, and ΔΔS) from linear van 't Hoff plots revealed that the retention of investigated pharmaceuticals on vancomycin CSP was an exothermic process. The nonlinear behavior of lnk′ against 1/T for propranolol, atenolol, and metoprolol suggested the presence of multiple binding mechanisms for these analytes on CSP with variation of temperature. The simulated interaction processes between vancomycin and pharmaceutical enantiomers using molecular docking technique and binding energy calculations indicated that the calculated magnitudes of steady combination energy (ΔG) coincided with experimental elution order for most of these enantiomers.  相似文献   

3.
Intra-arterial ambulatory blood pressure was measured over 24 hours, in 34 patients with newly diagnosed hypertension, both before and after double-blind randomisation to treatment with atenolol (n=9), metoprolol (n=9), pindolol (n=9), or propranolol in its slow-release form (n=7). The dosage of each drug was adjusted at monthly clinic visits until satisfactory control of blood pressure was achieved (140/90 mm Hg or less by cuff) or the maximum dose in the study protocol was reached. A second intra-arterial recording was made after these drugs had been taken once daily at 0800 for three to eight months (mean 5·0±SD 1·4) and was started four hours after the last dose.At the end of the 24-hour recordings blood pressure was significantly lower with all four drugs. The extent to which the drugs reduced blood pressure, however, differed over the 24 hours. Atenolol lowered mean arterial pressure significantly throughout all 24 recorded hours, metoprolol for 12 hours, pindolol for 15 hours, and slow-release propranolol for 22 hours. Neither metoprolol nor pindolol lowered blood pressure during sleep. A significant reduction in heart rate was observed over 20 hours with atenolol, 20 hours with metoprolol, 10 hours with pindolol, and 24 hours with slow-release propranolol. Atenolol, metoprolol, and slow-release propranolol continued to slow the heart rate 24 hours after the last tablet was taken; this effect on heart rate, however, was not sustained throughout the second morning in those patients taking atenolol. Pindolol, the only drug studied that has intrinsic sympathomimetic activity, increased heart rate and did not lower blood pressure during sleep.Atenolol and slow-release propranolol are effective as antihypertensive agents over 24 hours when taken once daily, whereas metoprolol and pindolol may need to be taken more frequently. At times of low sympathetic tone, however, such as during sleep, beta-blockers with intrinsic sympathomimetic activity may raise heart rate and attenuate the fall in blood pressure with treatment.  相似文献   

4.
We present a method for the enantioselective analysis of propafenone in human plasma for application in clinical pharmacokinetic studies. Propafenone enantiomers were resolved on a 10-μm Chiralcel OD-R column (250×4.6 mm I.D.) after solid-phase extraction using disposable solid-phase extraction tubes (RP-18). The mobile phase used for the resolution of propafenone enantiomers and the internal standard propranolol was 0.25 M sodium perchlorate (pH 4.0)–acetonitrile (60:40, v/v), at a flow-rate of 0.7 ml/min. The method showed a mean recovery of 99.9% for (S)-propafenone and 100.5% for (R)-propafenone, and the coefficients of variation obtained in the precision and accuracy study were below 10%. The proposed method presented quantitation limits of 25 ng/ml and was linear up to a concentration of 5000 ng/ml of each enantiomer.  相似文献   

5.
This study presents a novel, sensitive and selective molecularly imprinted solid‐phase extraction (MISPE)–spectrofluorimetric method for the removal and determination of atenolol from human urine. Molecularly imprinted and non‐imprinted polymers were synthesized thermally using a radical chain polymerization technique and used as solid‐phase extraction sorbents. Acrylic acid ethylene glycol dimethacrylate, dibenzoyl peroxide and dichloroethane were used as a functional monomer, cross‐linker, initiator and porogen, respectively. The calibration curve was in the range of 0.10–2.0 μg/ml for the developed method. Limit of detection and limit of quantification values were 0.032 and 0.099 μg/ml, respectively. Owing to the selectivity of the MISPE technique and the sensitivity of spectrofluorimetry, trace levels of atenolol have been successfully determined from both organic and aqueous media. Relatively high imprinting factor (4.18) and recovery results (74.5–75.3%) were obtained. In addition, intra‐ and interday precision values were 0.38–1.03% and 0.47–2.05%, respectively, proving the precision of the proposed method. Thus, a selective, sensitive and simple MISPE–spectrofluorimetric method has been developed and applied to the direct determination of atenolol from human urine.  相似文献   

6.
A simple and rapid chiral high‐performance liquid chromatography (HPLC) method was developed and validated for bioanalysis of clopidogrel enantiomers on rat dried blood spots (DBS). Clopidogrel enantiomers were extracted from DBS using ethanol: methanol (80:20, v/v) and separated on a Chiralcel OJ‐H column containing cellulose tris (4‐methly benzoate) as a polysaccharide stationary phase using n‐hexane–ethanol‐diethylamine (70:30, 0.1 v/v) as a mobile phase at a flow rate of 1.0 mL/min. The detection was carried out at 220 nm using a photodiode array (PDA) detector while the elution order of the enantiomers was determined by a polarimeter connected to PDA in series. The effect of hematocrit on extraction of clopidogrel enantiomers from DBS was evaluated and no interference from endogenous substances was noticed. The overall accuracy of (R) and (S) enantiomers of clopidogrel from DBS were 91.6 and 89.2%, respectively. The calibration curves were linear over the concentration range of 1–500 µg/mL for both enantiomers. The results show that the method is specific, precise, and reproducible (intra‐ and interday precision relative standard deviations (RSDs) <10.0%). The stability of racemic clopidogrel was performed under all storage conditions and the results were found to be well within the acceptance limits. Chirality 26:102–107, 2014.© 2014 Wiley Periodicals, Inc.  相似文献   

7.
A novel amide based chiral stationary phase m-[(+)-alpha-methyl benzyl carboxamide] XAD-4 has been synthesized by covalently linking R(+)-1-phenylethylamine to chloroformoyl Amberlite XAD-4 under weak alkaline conditions. The synthesized resin has been primarily characterized by m.p., elemental analysis and FT-IR and 13C NMR spectra. beta-Blockers viz. atenolol, metoprolol, and propranolol were successfully separated into their enantiomers using a mixture of sodium acetate-acetic acid buffer (pH 4.1):acetonitrile (4:6, v/v) solution using the synthesized resin. Hydrogen bonding and pi-pi interactions are supposed to be the major analyte-chiral stationary phase interactions.  相似文献   

8.
采用沉淀聚合法制备孔雀石绿分子印迹聚合物(MG-MIPs),以洗脱效率及吸附量为指标,考察超声波辅助抽提法对MIPs中MG洗脱效果及吸附性能的影响,通过扫描电镜观察MIPs的表面形态,并对其吸附性能进行研究。结果表明:模板分子MG在超声30 min、超声10次、料液比m(MG-MIPs)∶V(甲醇-乙酸溶液)为1∶10(g/m L)、温度为25℃、超声功率为270 W的条件下,洗脱效果最好,MIPs在固相萃取柱中的吸附效率较高,达到198μg/g。  相似文献   

9.
Most of the β-blocking drugs for treating diseases of the cardiovascular system are chiral aryloxy–propanolamine derivatives. Tipically, the S(−) enantiomers are more active than the R(+) enantiomers. Only some of them (for example timolol) are used as single enantiomers, the others are employed as racemates. For the determination of the enantiomeric purity of timolol European Pharmacopoeia prescribes an HPLC method using chiral stationary phase. However, the use of chiral capillary zone electrophoresis for the determination of the enantiomeric purity is of pharmaceutical interest. This study describes the application of various cyclodextrin derivatives, hydroxypropyl-β-cyclodextrin, randomly methylated β-cyclodextrin, sulphated β-cyclodextrin and sulphated -cyclodextrin for the stereoselective analyses of β-blockers. Baseline separation was obtained for bopindolol, carvedilol, mepindolol, pindolol and alprenolol, while only partial separation was observed for sotalol, propranolol, oxprenolol, atenolol, bisoprolol, bupranolol, and metoprolol. The uneven molecular recognition of the enantiomers of the β-blockers, especially of the optical isomers of labetalol and nadolol, showed the importance of the chemical nature of the separators and the analytes.  相似文献   

10.
We follow template‐binding induced aggregation of nanoparticles enantioselectively imprinted against (S)‐propranolol, and the non‐imprinted ones, using photon correlation spectroscopy (dynamic light scattering). The method requires no separation steps. We have characterized binding of (R,S)‐propranolol to the imprinted polymers and determined the degree of non‐specificity by comparing the specific binding with the results obtained using non‐imprinted nanoparticles. Using (S)‐propranolol as a template for binding to (S)‐imprinted nanoparticle, and (R)‐propranolol as a non‐specific control, we have determined range of concentrations where chiral recognition can be observed. By studying aggregation induced by three analytes related to propranolol, atenolol, betaxolol, and 1‐amino‐3‐(naphthalen‐1‐yloxy)propan‐2‐ol, we were able to determine which parts of the template are involved in the specific binding, discuss several details of specific adsorption, and the structure of the imprinted site. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
In this study we evaluated a liquid-liquid extraction procedure and a solid-phase extraction procedure for sample preparation for the enantioselective analysis of atenolol in plasma and urine by high-performance liquid chromatography. A Chiralcel OD-H column was used for the resolution of atenolol enantiomers with hexane-ethanol (85:15, v/v) plus 0.1% diethylamine as the mobile phase. In the liquid-liquid extraction procedure, atenolol was extracted from alkalinized body fluids with 5 ml chloroform-2-propanol (4:1, v/v). In the solid-phase extraction procedure, atenolol was isolated from plasma using a C8 column and methanol. Both extraction procedures were efficient in recovering atenolol and removing endogenous interferents. The RSDs and deviation from nominal values were lower than 10% for both within-day and between-day assays. The results show that there were no statistically significant differences in between-day variation. The t-test showed that there were no significant differences between the real concentrations and the determined concentrations. The limit of quantitation was 10 ng/ml and the linear range was 10-5,000 ng/ml for both methods. These methods can be used in pharmacokinetic studies.  相似文献   

12.
A high-performance liquid chromatographic method with electrochemical detection has been developed for the determination of six β-blockers; atenolol, nadolol, timolol, metoprolol, oxprenolol, and alprenolol.The chromatographic separation was performed using a μBondapack C18 column, a mobile phase of acetonitrile-water (40:60), containing 5 mM KH2PO4/K2HPO4 proved to be optimal at a 1.3 ml/min flow-rate, and a pH of 6.5. The temperature was optimized at 30±0.2°C. The amperometric detector, equipped with a glassy carbon electrode, was operated at 1300 mV versus Ag/AgCl in the direct current mode. The method was applied to the determination of these compounds at two concentration levels: ppm and ppb (ng/ml), obtaining relative standard deviations lower than 5% at ppm levels and lower than 10% at ppb levels, and quantitation limits ranging from 15 ppb to 500 ppb.The method was applied to the screening of β-blockers in spiked urine samples, with a total elution time lower than 12 min, obtaining the best recoveries for timolol and metoprolol (never greater than 93%). These recoveries together with the low limits of quantitation achieved, allows its application to doping analysis in human urine.  相似文献   

13.
Six selected β-blocker drugs (alprenolol, atenolol, metoprolol, nadolol, pindolol and propranolol) passing across 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer were studied using all-atom molecular dynamics simulation. The free energy profiles can be divided into two groups, according to their shapes: the free energy curve of group one (atenolol, nadolol and pindolol) has an obvious minimum while that of the other group (propranolol, metoprolol and alprenolol) is flat inside membrane. Energy analysis shows that electrostatic interaction plays an important role for the first group drugs. The hydrogen bond analysis results also certify that the first group drugs form more hydrogen bonds than the other β-blockers. The calculated permeability sequence agrees with the experimental ones. Our calculation suggests that the permeability model using potential of mean force (PMF) method can be also applied to chemically similar compounds besides chemically diverse compounds.  相似文献   

14.
《Chirality》2017,29(7):340-347
Acrylamide (AM) was copolymerized with ethylene glycol dimethacrylate (EGDMA) in the presence of (R )‐1,1′‐binaphthalene‐2‐naphthol (BINOL) as the template molecules on the surface of silica gel by a free radical polymerization to produce a chiral stationary phase based on the surface molecularly imprinted polymer (SMIP‐CSP). The SMIP‐CSP showed a much better separation factor (α = 4.28) than the CSP based on the molecularly imprinted polymer (MIP‐CSP) without coating on the silica gel (α = 1.96) during the chiral separation of BINOL enantiomers by high‐performance liquid chromatography. The influence of the pretreatment temperature and the content of the template molecule ((R )‐BINOL) of the SMIP‐CSP, and the mobile phase composition on the separation of the racemic BINOL were systematically investigated.  相似文献   

15.
A sensitive and high‐throughput chiral liquid chromatography–tandem mass spectrometry method was developed and validated for the quantification of R‐pantoprazole and S‐pantoprazole in human plasma. Sample extraction was carried out by using ethyl acetate liquid–liquid extraction in 96‐well plate format. The separation of pantoprazole enantiomers was performed on a CHIRALCEL OJ‐RH column and an overlapping injection mode was used to achieve a run time of 5.0 min/sample. The mobile phase consisted of 1) 10 mM ammonium acetate in methanol: acetonitrile (1:1, v/v) and 2) 20 mM ammonium acetate in water. Isocratic elution was used with flow rate at 500 μL/min. The enantiomers were quantified on a triple‐quadrupole mass spectrometer under multiple reaction monitoring (MRM) mode with m/z 382.1/230.0 for pantoprazole and m/z 388.4/230.1 for pantoprazole‐d7. Linearity from 20.0 to 5000 ng/mL was established for each enantiomer (r2 > 0.99). Extraction recovery ranged from 91.7% to 96.4% for R‐pantoprazole and from 92.5% to 96.5% for S‐pantoprazole and the IS‐normalized matrix factor was 0.98 to 1.07 for R‐pantoprazole and S‐pantoprazole, respectively. The method was demonstrated with acceptable accuracy, precision, selectivity, and stability and the method was applied to support a pharmacokinetic study of a phase I clinical trial of racemic pantoprazole in healthy Chinese subjects. Chirality 28:569–575, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Two different enantioselective chiral chromatographic methods were developed and validated to investigate the disposition of the β1-receptor antagonist atenolol in blood and in brain extracellular fluid of rats (tissue dialysates). System A for the plasma samples was a one-column chromatographic system with a Chiral CBH column with an aqueous buffer as mobile phase into which cellobiose was added for selective regulation of the retention of the internal standard, (S)-metoprolol. The plasma samples were analysed after a simple extraction procedure. The limit of quantitation was 0.2 μg/ml for the atenolol enantiomers. The repeatability of the medium concentration quality control plasma sample (6.0 μg rac-atenolol/ml) was 11–18% for the enantiomers. The dynamic linear range of the plasma samples was 0.5–20 μg/ml. For system B, since atenolol is an extremely hydrophilic drug, the tissue dialysate sample required a much more sensitive system as compared to the plasma samples. A coupled column system was used for peak compression of the enantiomers in the eluate after the separation on the Chiral CBH column, hence increasing the detection sensitivity. The limit of quantification was 0.045 μg/ml for the atenolol enantiomers in artificial CSF. The repeatability of the medium concentration quality control samples (0.1 and 4.0 μg rac-atenolol/ml in artificial CSF and Hepes Ringer, respectively) was 2.8–9.3% for the two enantiomers. The dynamic linear range of the brain samples was 0.05–1.0 and 0.5–20 μg/ml in artificial CSF and Hepes Ringer, respectively. Chirality 9:329–334, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Metoprolol is available for clinical use as a racemic mixture. The S‐(?)‐metoprolol enantiomer is the one expressing higher activity in the blockade of the β1‐adrenergic receptor. The α‐hydroxymetoprolol metabolite also has activity in the blockade of the β1‐adrenergic receptor. The present study describes the development and validation of a stereoselective method for sequential analysis of metoprolol and of α‐hydroxymetoprolol in plasma using high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS). 1‐ml aliquots of plasma were extracted with dichloromethane : diisopropyl ether (1:1, v/v). Metoprolol enantiomers and α‐hydroxymetoprolol isomers were separated on a Chiralpak AD column (Daicel Chemical Industries, New York, NY, USA) and quantitated by LC‐MS/MS. The limit of quantitation obtained was 0.2 ng of each metoprolol enantiomer/ml plasma and 0.1 ng/ml of each α‐hydroxymetoprolol isomer/ml plasma. The method was applied to the study of kinetic disposition of metoprolol in plasma samples collected up to 24 h after the administration of a single oral dose of 100‐mg metoprolol tartrate to a hypertensive parturient with a gestational age of 42 weeks. The clinical study showed that the metoprolol pharmakokinetics is enantioselective, with the observation of higher area under the curve (AUC)0?∞ values for S‐(?)‐metoprolol (AUCS‐(?)/AUCR‐(+) = 1.81) and the favoring of the formation of the new chiral center 1′R of α‐hydroxymetoprolol (AUC0?∞1′R/1′S = 2.78). Chirality, 25:1–7, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
A reversed-phase high-performance liquid chromatographic method for the determination of the enantiomers of atenolol in rat hepatic microsome has been developed. Racemic atenolol was extracted from alkalinized rat hepatic microsome by ethyl acetate. The organic layer was dried with anhydrous sodium sulfate and evaporated using a gentle stream of air. Atenolol racemic compound was derivatized with 2,3,4,6-tetra-O-acetyl-β- -glycopyranosyl isothiocyanate at 35°C for 30 min to form diastereomers. After removal of excess solvent, the diastereomers were dissolved in phosphate buffer (pH 4.6)–acetonitrile (50:30). The diastereomers were separated on a Shimadzu CLC-C18 column (10 μm particle size, 10 cm×0.46 cm I.D.) with a mobile phase of phosphate buffer–methanol–acetonitrile (50:20:30, v/v) at a flow-rate of 0.5 ml/min. A UV–VIS detector was operated at 254 nm. For each enantiomer, the limit of detection was 0.055 μg/ml (signal-to-noise ratio 3) and the limit of quantification (signal-to-noise ratio 10) was 0.145 μg/ml (RSD <10%). In the range 0.145–20 μg/ml, intra-day coefficients of variation were 1.0–7.0% and inter-day coefficients of variation were 0.4–16.5% for each enantiomer. The assay was applied to determine the concentrations of atenolol enantiomers in rat hepatic microsome as a function of time after incubation of racemic atenolol.  相似文献   

19.
A stereoselective reversed-phase HPLC assay to quantify S-(−) and R-(+) enantiomers of propranolol and 4-hydroxypropranolol in human plasma was developed. The method involved liquid–liquid extraction for sample clean-up and employed 2,3,4,6-tetra-O-acetyl-β-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The internal standard used was 4-methylpropranolol. The derivatized products were separated on an Altex C18 column using a mixture of acetonitrile–water–phosphoric acid–triethylamine (58:42:0.1:0.06 and 50:50:0.15:0.06, v/v, for propranolol and 4-hydroxypropranolol, respectively) as mobile phase. The detection of propranolol derivatives was made at λex=280 nm and λem=325 nm, and the corresponding 325 and 400 nm were used for 4-hydroxypropranolol derivatives. The assay was linear from 1 to 100 ng/ml and from 2 to 50 ng/ml using 0.5 ml of human plasma for propranolol and 4-hydroxypropranolol enantiomers, respectively. The present assay is used to quantify the enantiomers of propranolol and 4-hydroxypropranolol, respectively, in human plasma for pharmacokinetic studies.  相似文献   

20.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号