首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Aim Theory suggests that introduced species that are phylogenetically distant from their recipient communities should be more successful than closely related introduced species because they can exploit open niches and escape enemies in their new range, i.e. Darwin’s Naturalization Hypothesis. Alternatively, it has also been hypothesized that closely related invaders might be more successful than novel invaders because they are pre‐adapted to conditions in their new range; a paradox coined Darwin’s Naturalization Conundrum. To date, these hypotheses have been tested primarily at the regional scale, not within local plant communities where introduced species colonize, compete and encounter herbivores. Location Global. Methods and Results We used community phylogenetics to analyse data from 49 published experiments to examine the importance of phylogenetic relatedness and generalist herbivory on native and exotic plant success at the community level. Plants that were categorized as ‘invasive’ were indeed less related to the recipient community than ‘non‐pest’ exotic plants. Distantly related exotic plants were also more abundant than closely related species. Phylogenetic relatedness predicted herbivore impact, but in a way that was opposite to predictions, as herbivores had stronger, not lesser, impacts on distantly related plants. Importantly, these same patterns generally held for native plants, as distantly related native plants were more abundant and more susceptible to herbivores than closely related species, ultimately resulting in herbivores suppressing community‐level phylogenetic diversity. Main conclusions Distantly related plants were more locally successful despite experiencing stronger control by generalist herbivores, a finding that was robust across native and exotic species. To our knowledge, this is the first evidence that phylogenetic matching influences the local success of both native and exotic species and that herbivores can influence community phylodiversity. Phylogenetic relatedness explained a relatively small portion of the variance in the data even after taking herbivory into account, however, suggesting that phylogenetic matching works in combination with other factors to influence community assembly.  相似文献   

2.
Plants activate direct and indirect defences in response to insect egg deposition. However, whether eggs can manipulate plant defence is unknown. In Arabidopsis thaliana, oviposition by the butterfly Pieris brassicae triggers cellular and molecular changes that are similar to the changes caused by biotrophic pathogens. In the present study, we found that the plant defence signal salicylic acid (SA) accumulates at the site of oviposition. This is unexpected, as the SA pathway controls defence against fungal and bacterial pathogens and negatively interacts with the jasmonic acid (JA) pathway, which is crucial for the defence against herbivores. Application of P. brassicae or Spodoptera littoralis egg extract onto leaves reduced the induction of insect‐responsive genes after challenge with caterpillars, suggesting that egg‐derived elicitors suppress plant defence. Consequently, larval growth of the generalist herbivore S. littoralis, but not of the specialist P. brassicae, was significantly higher on plants treated with egg extract than on control plants. In contrast, suppression of gene induction and enhanced S. littoralis performance were not seen in the SA‐deficient mutant sid2‐1, indicating that it is SA that mediates this phenomenon. These data reveal an intriguing facet of the cross‐talk between SA and JA signalling pathways, and suggest that insects have evolved a way to suppress the induction of defence genes by laying eggs that release elicitors. We show here that egg‐induced SA accumulation negatively interferes with the JA pathway, and provides an advantage for generalist herbivores.  相似文献   

3.
1.  There is growing concern that the current loss of biodiversity may negatively affect ecosystem functioning and stability. Although it has been shown that species loss may reduce biomass production and increase temporal variability, experimental evidence that species loss affects ecosystem resistance and resilience after perturbation is limited.
2.  Here, we use the response of experimental plant communities – which differ in diversity – to a natural drought to disentangle the effects of diversity and biomass on resistance, recovery and resilience.
3.  Resistance to drought decreased with diversity, but this pattern was highly dependent upon pre-drought biomass. When corrected for biomass, no relationship between diversity and resistance was observed: at each level of diversity, biomass production was reduced by approximately 30%.
4.  In contrast, recovery (change in biomass production after drought) increased with diversity and was independent of biomass. Resilience (measured as the ratio of post- to pre-drought biomass) was similar at each level of diversity.
5.   Synthesis . On the one hand, our results confirm earlier findings that a positive relationship between diversity and resistance is mainly driven by pre-perturbation performance rather than by diversity. However, the results also show that recovery after drought strongly increased with diversity, independent of performance. We conclude that it is this diversity-dependent recovery which allowed diverse, productive communities to reach the same level of resilience as less diverse (and productive) communities. This finding provides strong experimental evidence for the insurance hypothesis.  相似文献   

4.
The success of invasive plants has been attributed to their escape from natural enemies and subsequent evolutionary change in allocation from defence to growth and reproduction. In common garden experiments with Senecio jacobaea, a noxious invasive weed almost worldwide, the invasive populations from North America, Australia, and New Zealand did indeed allocate more resources to vegetative and reproductive biomass. However, invasive plants did not show a complete change in allocation from defence to growth and reproduction. Protection against generalist herbivores increased in invasive populations and pyrrolizidine alkaloids, their main anti‐herbivore compounds, did not decline in invasive populations but were higher overall compared with native populations. In contrast, invasive plants lost additional protection against specialist herbivores adapted to pyrrolizidine alkaloids. Hence, the absence of specialist herbivores in invasive populations resulted in the evolution of lower protection against specialists and increased growth and reproduction, but also allowed a shift towards higher protection against generalist herbivores.  相似文献   

5.
1. The relationship between plant traits and the frequency of attack by a stem galling midge, Neolasioptera sp. (Diptera: Cecidomyiidae), on Eremanthus erythropappus (Asteraceae) was studied. The morphological changes of the host after a galler attack and the potential effects of these changes on attacks by the next generation of gallers were analysed. The study was conducted in the Serra do Japi, São Paulo, south-eastern Brazil. 2. Galled branches were significantly longer, thicker, and had more leaves than ungalled branches. Accordingly, gall establishment was higher in the longer and more foliose branches. Hence, it is suggested that ovipositing females are maximizing their performance by selecting larger branches. 3. Galled branches were larger than ungalled branches of the same age. Two hypotheses, not necessarily exclusive, can explain this pattern: (1) the plant vigour hypothesis that the females are choosing the more vigorous, fast-growing branches, which still remain more vigorous after galling; or (2) the resource regulation hypothesis that galling increases branch growth rates, thus increasing resource quality for forthcoming conspecifics. 4. Co-occurrence frequencies of current and past generation galls showed that the likelihood of a branch being galled increased when it, or the branch from which it stemmed, had been galled before. The data indicated that this preference was conditioned by the number of previous attacks. Heavier attack intensities, such as one gall in the same branch and another in the branch from which it stemmed, decreased the probability of further galling. 5. The suggested links between herbivore attack and plant traits indicate that studies on host selection by phytophagous insects must take into account that herbivory itself may change the plant traits that are postulated to be selected by the insects.  相似文献   

6.
7.
Many plant species have evolved defense traits against herbivores. Associational effects (AEs) refer to a kind of apparent interaction where the herbivory risk to a focal plant species depends on the composition of other plant species in a neighborhood. Despite ample evidence for AEs between different plant species, this point of view has rarely been applied to polymorphism in defense traits within a plant species. The purpose of this review is to highlight an overlooked role of conspecific AEs in maintaining polymorphism in antiherbivore defense. First, I present a general review of AE between plant species and its role in the coexistence of plant species. This viewpoint of AE can be applied to genetic polymorphism within a plant species, as it causes frequency‐ and density‐dependent herbivory between multiple plant types. Second, I introduce a case study of conspecific AEs in the trichome‐producing (hairy) and glabrous plants of Arabidopsis halleri subsp. gemmifera. Laboratory and semi‐field experiments illustrated that AEs against the brassica leaf beetle Phaedon brassicae mediate a minority advantage in defense and fitness between hairy and glabrous plants. Combined with a statistical modeling approach, field observation revealed that conspecific AEs can maintain the trichome dimorphism via negative frequency‐dependent selection in a plant population. Finally, I discuss spatial and temporal scales at which AEs contribute to shaping genetic variation in antiherbivore defense in a plant metapopulation. Based on the review and evidence, I suggest that AEs play a key role in the maintenance of genetic variation within a plant species.  相似文献   

8.
So far, effects of species richness on ecosystem functioning have mainly been investigated in the short term in experimental communities from which invasion was prevented. We kept the local species pools of experimental grassland communities with 1, 2, 4, 8, and 32 species closed for five years and subsequently opened them for invasion by cessation of weeding. As long as communities were weeded, extinctions were rare but positively related to species richness, diversity-productivity relationships were positive, and more diverse systems had a greater temporal stability. Following cessation of weeding, species-poor communities were more prone to invasion. However, invasion increased extinction especially in species-rich communities. Within two years, differences in species richness and biomass production between sets of communities of different initial species richness disappeared and the positive diversity-productivity relationship was no longer detectable whereas species compositions remained distinct. This indicates that the positive diversity-productivity relationships during the weeding phase were mainly controlled by species richness.Bis anhin wurden die Effekte der Artenvielfalt auf das Funktionieren von Ökosystemen vor allem in kurzfristigen Experimenten untersucht, in denen die Einwanderung von Pflanzenarten in die bestehenden Gesellschaften verhindert wurde. Im vorliegenden Versuch wurden die lokalen Artenpools von 1, 2, 4, 8 und 32 Arten unserer experimentellen Graslandgesellschaften während 5 Jahren künstlich geschlossen gehalten und danach geöffnet indem nicht mehr gejätet wurde. Solange die Gesellschaften gejätet wurden, gab es wenige Aussterbeereignisse, die aber positiv mit der Artenvielfalt korreliert waren. Die Beziehung zwischen Diversität und Produktivität war positiv und Systeme höherer Diversität zeigten eine größere zeitliche Stabilität. Nach der Aufgabe des Jätens nahm die Einwanderung vor allem in artenarmen Gesellschaften zu. Die Einwanderung erhöhte jedoch besonders das Aussterben in ursprünglich artenreichen Gesellschaften. Innerhalb von zwei Jahren verschwanden die Unterschiede in der Artenzahl und Biomasseproduktion zwischen den verschiedenen Graslandgesellschaften und eine positive Beziehung zwischen Diversität und Produktivität war nicht mehr feststellbar. Die Artenzusammensetzung der Versuchsflächen blieb jedoch unterschiedlich. Das deutet darauf hin, daß die positive Beziehung zwischen Diversität und Produktivität während der ersten Phase des Experiments vor allem durch die Artenzahl und nicht durch die Artenzusammensetzung hervorgerufen wurde.  相似文献   

9.
Biodiversity and ecosystem functioning in naturally assembled communities   总被引:1,自引:0,他引:1  
Approximately 25 years ago, ecologists became increasingly interested in the question of whether ongoing biodiversity loss matters for the functioning of ecosystems. As such, a new ecological subfield on Biodiversity and Ecosystem Functioning (BEF) was born. This subfield was initially dominated by theoretical studies and by experiments in which biodiversity was manipulated, and responses of ecosystem functions such as biomass production, decomposition rates, carbon sequestration, trophic interactions and pollination were assessed. More recently, an increasing number of studies have investigated BEF relationships in non‐manipulated ecosystems, but reviews synthesizing our knowledge on the importance of real‐world biodiversity are still largely missing. I performed a systematic review in order to assess how biodiversity drives ecosystem functioning in both terrestrial and aquatic, naturally assembled communities, and on how important biodiversity is compared to other factors, including other aspects of community composition and abiotic conditions. The outcomes of 258 published studies, which reported 726 BEF relationships, revealed that in many cases, biodiversity promotes average biomass production and its temporal stability, and pollination success. For decomposition rates and ecosystem multifunctionality, positive effects of biodiversity outnumbered negative effects, but neutral relationships were even more common. Similarly, negative effects of prey biodiversity on pathogen and herbivore damage outnumbered positive effects, but were less common than neutral relationships. Finally, there was no evidence that biodiversity is related to soil carbon storage. Most BEF studies focused on the effects of taxonomic diversity, however, metrics of functional diversity were generally stronger predictors of ecosystem functioning. Furthermore, in most studies, abiotic factors and functional composition (e.g. the presence of a certain functional group) were stronger drivers of ecosystem functioning than biodiversity per se. While experiments suggest that positive biodiversity effects become stronger at larger spatial scales, in naturally assembled communities this idea is too poorly studied to draw general conclusions. In summary, a high biodiversity in naturally assembled communities positively drives various ecosystem functions. At the same time, the strength and direction of these effects vary highly among studies, and factors other than biodiversity can be even more important in driving ecosystem functioning. Thus, to promote those ecosystem functions that underpin human well‐being, conservation should not only promote biodiversity per se, but also the abiotic conditions favouring species with suitable trait combinations.  相似文献   

10.
功能多样性-生产力关系研究结果支持质量比假说和多样性假说, 但对于这两种假说的适用条件尚有争议。通过对吉林省西部草甸和沼泽植物群落的地上生物量、2个物种多样性指标(物种丰富度和Shannon-Weaver指数)、7种植物性状的两类功能多样性指标(群落权重均值和Rao二次熵), 以及土壤环境因子进行调查测量, 研究了群落功能多样性与生产力的关系。结果表明: 1)功能多样性与生产力的关系比物种多样性与生产力的关系更为密切; 2)功能群落权重均值解释生产力变异的能力好于Rao二次熵, 即优势物种对群落生产力的影响作用更大; 3)水淹条件影响着功能多样性与生产力的关系, 以群落权重均值为基础的质量比假说适于解释草甸群落功能多样性与生产力的关系, 而以Rao二次熵为基础的多样性假说适于解释有强烈环境筛(水淹)的沼泽群落功能多样性与生产力的关系。  相似文献   

11.
1. How herbivore plant diversity relationships are shaped by the interplay of biotic and abiotic environmental variables is only partly understood. For instance, plant diversity is commonly assumed to determine abundance and richness of associated specialist herbivores. However, this relationship can be altered when environmental variables such as temperature covary with plant diversity. 2. Using gall‐inducing arthropods as focal organisms, biotic and abiotic environmental variables were tested for their relevance to specialist herbivores and their relationship to host plants. In particular, the hypothesis that abundance and richness of gall‐inducing arthropods increase with plant richness was addressed. Additionally, the study asked whether communities of gall‐inducing arthropods match the communities of their host plants. 3. Neither abundance nor species richness of gall‐inducing arthropods was correlated with plant richness or any other of the tested environmental variables. Instead, the number of gall species found per plant decreased with plant richness. This indicates that processes of associational resistance may explain the specialised plant herbivore relationship in our study. 4. Community composition of gall‐inducing arthropods matched host plant communities. In specialised plant herbivore relationships, the presence of obligate host plant species is a prerequisite for the occurrence of its herbivores. 5. It is concluded that the abiotic environment may only play an indirect role in shaping specialist herbivore communities. Instead, the occurrence of specialist herbivore communities might be best explained by plant species composition. Thus, plant species identity should be considered when aiming to understand the processes that shape diversity patterns of specialist herbivores.  相似文献   

12.
The influence of biotic interactions on soil biodiversity   总被引:12,自引:1,他引:12  
Wardle DA 《Ecology letters》2006,9(7):870-886
Belowground communities usually support a much greater diversity of organisms than do corresponding aboveground ones, and while the factors that regulate their diversity are far less well understood, a growing number of recent studies have presented data relevant to understanding how these factors operate. This review considers how biotic factors influence community diversity within major groups of soil organisms across a broad spectrum of spatial scales, and addresses the mechanisms involved. At the most local scale, soil biodiversity may potentially be affected by interactions within trophic levels or by direct trophic interactions. Within the soil, larger bodied invertebrates can also influence diversity of smaller sized organisms by promoting dispersal and through modification of the soil habitat. At larger scales, individual plant species effects, vegetation composition, plant species diversity, mixing of plant litter types, and aboveground trophic interactions, all impact on soil biodiversity. Further, at the landscape scale, soil diversity also responds to vegetation change and succession. This review also considers how a conceptual understanding of the biotic drivers of soil biodiversity may assist our knowledge of key topics in community and ecosystem ecology, such as aboveground–belowground interactions, and the relationship between biodiversity and ecosystem functioning. It is concluded that an improved understanding of what drives the diversity of life in the soil, incorporated within appropriate conceptual frameworks, should significantly aid our understanding of the structure and functioning of terrestrial communities.  相似文献   

13.
Livestock farmers rely on a high and stable grassland productivity for fodder production to sustain their livelihoods. Future drought events related to climate change, however, threaten grassland functionality in many regions across the globe. The introduction of sustainable grassland management could buffer these negative effects. According to the biodiversity–productivity hypothesis, productivity positively associates with local biodiversity. The biodiversity–insurance hypothesis states that higher biodiversity enhances the temporal stability of productivity. To date, these hypotheses have mostly been tested through experimental studies under restricted environmental conditions, hereby neglecting climatic variations at a landscape‐scale. Here, we provide a landscape‐scale assessment of the contribution of species richness, functional composition, temperature, and precipitation on grassland productivity. We found that the variation in grassland productivity during the growing season was best explained by functional trait composition. The community mean of plant preference for nutrients explained 24.8% of the variation in productivity and the community mean of specific leaf area explained 18.6%, while species richness explained only 2.4%. Temperature and precipitation explained an additional 22.1% of the variation in productivity. Our results indicate that functional trait composition is an important predictor of landscape‐scale grassland productivity.  相似文献   

14.
Overyielding among plant functional groups in a long-term experiment   总被引:12,自引:0,他引:12  
A recent debate among ecologists has focused on mechanisms by which species diversity might affect net primary productivity. Communities with more species could use a greater variety of resource capture characteristics, leading to greater use of limiting resources (complementarity) and therefore greater productivity (overyielding). Recent experiments, however, have shown a variety of relationships between diversity and productivity. In an experiment on serpentine grassland communities spanning 8 years, we found that overyielding increased several years after plot establishment. Overyielding varied greatly depending on the functional characteristics of the species involved and the biotic and abiotic environment (particularly water availability). While functional differences among species led to strong complementarity and facilitation, these effects were not sufficient to cause significant transgressive overyielding or consistent increases in productivity with increased plant diversity. These results suggest that greater absolute production with greater diversity may be restricted to particular species combinations or environmental conditions.  相似文献   

15.
The high tree diversity of subtropical forests is linked to the biodiversity of other trophic levels. Disentangling the effects of tree species richness and composition, forest age, and stand structure on higher trophic levels in a forest landscape is important for understanding the factors that promote biodiversity and ecosystem functioning. Using a plot network spanning gradients of tree diversity and secondary succession in subtropical forest, we tested the effects of tree community characteristics (species richness and composition) and forest succession (stand age) on arthropod community characteristics (morphotype diversity, abundance and composition) of four arthropod functional groups. We posit that these gradients differentially affect the arthropod functional groups, which mediates the diversity, composition, and abundance of arthropods in subtropical forests. We found that herbivore richness was positively related to tree species richness. Furthermore, the composition of herbivore communities was associated with tree species composition. In contrast, detritivore richness and composition was associated with stand age instead of tree diversity. Predator and pollinator richness and abundance were not strongly related to either gradient, although positive trends with tree species richness were found for predators. The weaker effect of tree diversity on predators suggests a cascading diversity effect from trees to herbivores to predators. Our results suggest that arthropod diversity in a subtropical forest reflects the net outcome of complex interactions among variables associated with tree diversity and stand age. Despite this complexity, there are clear linkages between the overall richness and composition of tree and arthropod communities, in particular herbivores, demonstrating that these trophic levels directly impact each other.  相似文献   

16.
Aims The superior performance of many non-indigenous species in a new range can be attributed to different factors such as pre-adaptation to environmental conditions in new areas or to factors inherent to displacement mechanisms such as loss of co-evolved pathogens and herbivores that increase the speed of evolutionary change towards a shift in allocation from defence to growth and reproduction. To assess the importance of the different mechanisms governing the success of Conyza canadensis, a globally successful invader, we simultaneously tested several recent hypotheses potentially explaining the factors leading to biological invasion.Methods We tested (i) whether plants from the non-native range showed a higher fitness than plants from the native North American range, (ii) whether they differed in resistance against an invasive generalist herbivore, the slug Arion lusitanicus and against a recently established specialist aphid herbivore, Uroleucon erigeronense and (iii) experimentally assessed whether C. canadensis releases allelopathic chemicals that have harmful effects on competing species in the non-native range. We compared populations along a similar latitudinal gradient both in the native North American and invasive European range and analysed patterns of adaptive clinal variation in biomass production.Important findings The invasion success of C. canadensis in Europe cannot be attributed to a single trait, but to a combination of factors. Invasive plants benefited from increased growth and above all, increased reproduction (a key trait in an annual plant) and were less attacked by a co-migrated specialist enemy. The observed loss of defence against generalist slugs did not translate into a decreased fitness as invasive C. canadensis plants showed a high re-growth potential. In contrast to earlier in vitro studies, we detected no allelopathic effects on the competing flora in the non-native range. The latitudinal cline in vegetative biomass production in the non-native range observed in our common garden study indicates a high adaptive potential. However, only further genetic studies will provide conclusive evidence whether the differentiation in the non-native range is caused by pre-adaptation and sorting-out processes of putatively repeatedly introduced populations of this composite, long-distance disperser with highly volatile seeds or evolved de novo as a rapid response to new selection pressures in the non-native range.  相似文献   

17.
18.
  1. Studies on the effects of human‐driven forest disturbance usually focus on either biodiversity or carbon dynamics but much less is known about ecosystem processes that span different trophic levels. Herbivory is a fundamental ecological process for ecosystem functioning, but it remains poorly quantified in human‐modified tropical rainforests.
  2. Here, we present the results of the largest study to date on the impacts of human disturbances on herbivory. We quantified the incidence (percentage of leaves affected) and severity (the percentage of leaf area lost) of canopy insect herbivory caused by chewers, miners, and gall makers in leaves from 1,076 trees distributed across 20 undisturbed and human‐modified forest plots in the Amazon.
  3. We found that chewers dominated herbivory incidence, yet were not a good predictor of the other forms of herbivory at either the stem or plot level. Chewing severity was higher in both logged and logged‐and‐burned primary forests when compared to undisturbed forests. We found no difference in herbivory severity between undisturbed primary forests and secondary forests. Despite evidence at the stem level, neither plot‐level incidence nor severity of the three forms of herbivory responded to disturbance.
  4. Synthesis. Our large‐scale study of canopy herbivory confirms that chewers dominate the herbivory signal in tropical forests, but that their influence on leaf area lost cannot predict the incidence or severity of other forms. We found only limited evidence suggesting that human disturbance affects the severity of leaf herbivory, with higher values in logged and logged‐and‐burned forests than undisturbed and secondary forests. Additionally, we found no effect of human disturbance on the incidence of leaf herbivory.
  相似文献   

19.
Phylogenetic properties of communities (phylogenetic diversity and phylogenetic structure) allow for the characterisation of phylogenetic patterns and provide the information necessary to infer mechanisms of species assembly. Because humans have introduced exotic species and modified the physical conditions of landscapes, the phylogenetic properties of communities should change according to the proportion of natives to exotics hosted by sites and to the strength of the conditions that act as habitat filters in human‐disturbed habitats. To assess the effects of the introduction of exotic plant species, we characterized the phylogenetic properties of 67 plant communities with different degrees of exotic species dominance in a region of central Chile with a Mediterranean climate. Five indices were used to estimate the phylogenetic properties. The Faith index (FPD), the mean pairwise distance (MPD) and the mean nearest neighbour distance (MNND) were used to estimate phylogenetic diversity, and the nearest relative index (NRI) and the nearest taxon index (NTI) were used as estimators of the phylogenetic structure (the phylogenetic distribution of taxa in a community) of species assemblages. We observed greater phylogenetic diversity of natives versus exotic plants despite the fact that natives accounted for a fewer number of taxa among the studied communities. Second, assemblages exhibited a phylogenetically clustered structure, which is attributable to an over‐representation of some families of exotic flora (Asteraceae, Brassicaceae, Fabaceae, Papaveraceae, Poaceae) and suggests habitat filtering processes that could have acted by selecting species with traits that permit adaptation to the harsh conditions of human‐disturbed sites.  相似文献   

20.
Caiçaras are native inhabitants of the Atlantic coast on southeastern Brazil, whose subsistence is based especially on agriculture and artisanal fishing. Because of their knowledge about the environment acquired through generations, Caiçara people can play an important role in Atlantic Forest conservation. An ethnobotanical study was conducted within two Caiçara communities (Ponta do Almada and Camburí beach, São Paulo State, Brazil), focusing on plant uses. In 102 interviews, 227 plant ethnospecies were quoted, mainly for food, medicine, handicraft and construction of houses and canoes. People from studied communities depend on the native vegetation for more than a half of the species known and used. Using diversity indices, plant uses are compared between studied communities and between gender and age categories within each community. We found quantitative differences in the knowledge about plants between gender categories for each kind of use (medicinal, food and handicrafts). Older and younger informants also have different knowledge about plants for handicraft and medicine, but not for edible plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号