首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leucine specific tRNA of soybean cotyledons was frationated into six peaks (1–6). The relative amounts of Leu-tRNA 5 and 6 are lower in developing cotyledons than in germinating cotyledons. Leu-tRNA synthetase from developing cotyledons is less active in aminoacylating Leu-tRNA 5 and 6 compared to enzyme from 5-day-old germinating cotyledons. Leu-tRNA synthetase from cotyledons of germinating seedlings and developing cotyledons can be fractionated into three peaks (1–3). Peak 1 in the developing cotyledon is about 36% less than peak 1 from 5-day-old germinating cotyledons. Peaks 2 and 3 from developing cotyledons are about 10 and 18% higher than from germinating cotyledons, respectively. Peak 1 from developing cotyledons acylates all six species of Leu-tRNA in contrast with peak 1 from germinating cotyledons, which essentially acylates only Leu-tRNA 5 and 6. The specificity of peaks 2 and 3 towards Leu-tRNA 1–4 is identical in both the organs.  相似文献   

2.
The tyrosyl-tRNA synthetases located in cytoplasm and chloroplasts of soybean cotyledons were purified to near homogeneity by ammonium sulfate precipitation, DEAE-cellulose chromatography, hydroxylapatite chromatography, and DEAE-Sephadex A-25 chromatography. Purified cytoplasmic tyrosyl-tRNA synthetase shows only a single band in acrylamide gel electrophoresis which corresponds to a MW of 126000. In SDS-acrylamide gel electrophoresis the enzyme again shows only a single band which corresponds to a MW of 61 000. Chloroplast tyrosyl-tRNA synthetase shows only one band in both acrylamide and SDS-acrylamide gel electrophoresis with MWs being 98 000 and 43 000, respectively. For cytoplasmic tyrosyl-tRNA synthetase the apparent Kms determined are 6.8 μM L-tyrosine, 49 μM ATP, and 8.9 × 10?8 M tRNA (as total tRNA). Apparent Kms for chloroplast tyrosyl-tRNA synthetase are 4.9 μM L-tyrosine, 214 μM ATP and 2.2 × 10?8 M tRNA (as BDC-ethanol fraction tRNA). Fractionation of soybean cotyledon-tRNA on RPC-5 columns gives 4 tyrosyl-tRNA species, the first two species (tRNA1 and 2Tyr) are acylated only by cytoplasmic tyrosyl-tRNA synthetase while the last two species (tRNA3 and 4Tyr) are acylated only by chloroplast tyrosyl-tRNA synthetase.  相似文献   

3.
Lysine accepting transfer RNA of lupin seeds and lupin embryo axes can be fractionated into at least 5 species by reversed-phase chromatography (RPC-5). One main and two minor isoacceptors were observed in wheat and barley embryos. Changes in isoaccepting species of tRNA1ys were followed in cotyledons of germinating lupin seedlings. Ribosome binding studies revealed that one of the main lupin tRNA1ys species recognizes the AAG codon, the second AAA and the third one AAA and AAG.  相似文献   

4.
Carbamoyl phosphate synthetase activity was measured in partially purified extracts from cotyledons of developing and germinating seeds of Pisum sativum L. Some properties of the enzyme were established. During cotyledon development, the activity initially increased sharply but decreased during further development. The activity from germinating seeds was only one-tenth of the maximum activity at an early developmental phase. The results are discussed in relation to pea seed development and germination.  相似文献   

5.
Two isoaccepting tRNAPhe were isolated from yellow lupin seeds by DEAE-cellulose, BD-cellulose and reversed phase chromatography. The products obtained were characterized by aminoacylation and fluorescence. The chromatographic behaviour and some properties of the isolated tRNAs are discussed and compared with the known tRNAPhe from other sources.  相似文献   

6.
Three isoaccepting forms of leucyl transfer RNA in mitochondria   总被引:2,自引:0,他引:2  
  相似文献   

7.
The separation of isotransferring aminoacyl-tRNA synthetase activities (amino acid: tRNA ligases, EC 6.1.1.x) for several amino acids extracted from tissues of embryonic and germinating cotton seeds was carried out by DEAE-cellulose column chromatography. Evidence was obrained that the separated activities represent discrete enzymes, and could be defined as cytosol or chloroplast enzymes by several criteria. The levels of the cytosol enzymes per cell were found to be constant in germinated and ungerminated cotyledons. Chloroplast enzymes were found to be present in immature embryonic cotyledons and in roots at constant levels relative to the cytosol enzymes, but found to increase markedly in germinating cotyledons. This increase takes place to the same extent in etiolated cotyledons as in greened cotyledons indicating that the chloroplast synthetase increase is analogous to the simultaneous increase in chloroplast tRNA and rRNA which also is not light dependent. The separated cytosol and chloroplast enzymes show varying degrees of specificity for isoaccepting tRNA species from homologous and heterologous sources.  相似文献   

8.
Two of the six leucine isoaccepting tRNA species from soybean (Glycine max) cotyledons recognize U-beginning codons, and contain cytokinin moieties in their structure. These same two isoaccepting species have been shown to undergo quantitative changes in their relative amounts upon treatment with N6-benzyladenine in vivo. In addition a procedure has been developed for purification of the isoaccepting species of leucine tRNA from soybean cotyledons resulting in isoacceptors of minimum purity, calculated by amino acid acceptance capacity, of from 46 to 78% leucine tRNA.  相似文献   

9.
10.
To prevent potential errors in protein synthesis, some aminoacyl-transfer RNA (tRNA) synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). Class Ia leucyl-tRNA synthetase (LeuRS) may misactivate various natural and non-protein amino acids and then mischarge tRNALeu. It is known that the fidelity of prokaryotic LeuRS depends on multiple editing pathways to clear the incorrect intermediates and products in the every step of aminoacylation reaction. Here, we obtained human cytoplasmic LeuRS (hcLeuRS) and tRNALeu (hctRNALeu) with high activity from Escherichia coli overproducing strains to study the synthetic and editing properties of the enzyme. We revealed that hcLeuRS could adjust its editing strategy against different non-cognate amino acids. HcLeuRS edits norvaline predominantly by post-transfer editing; however, it uses mainly pre-transfer editing to edit α-amino butyrate, although both amino acids can be charged to tRNALeu. Post-transfer editing as a final checkpoint of the reaction was very important to prevent mis-incorporation in vitro. These results provide insight into the modular editing pathways created to prevent genetic code ambiguity by evolution.  相似文献   

11.
The metabolism of glutamine in the leaf and subtended fruit of the aging pea (Pisum sativum L. cv. Burpeeana) has been studied in relation to changes in the protein, chlorophyll, and free amino acid content of each organ during ontogenesis. Glutamine synthetase [EC 6.3.1.2] activity was measured during development and senescence in each organ. Glutamate synthetase [EC 2.6.1.53] activity was followed in the pod and cotyledon during development and maturation. Maximal glutamine synthetase activity and free amino acid accumulation occurred together in the young leaf. Glutamine synthetase (in vitro) in leaf extracts greatly exceeded the requirement (in vivo) for reduced N in the organ. Glutamine synthetase activity, although declining in the senescing leaf, was sufficient (in vitro) to produce glutamine from all of the N released during protein hydrolysis (in vivo). Maximal glutamine synthetase activity in the pod was recorded 6 days after the peak accumulation of the free amino acids in this organ.

In the young pod, free amino acids accumulated as glutamate synthetase activity increased. Maximal pod glutamate synthetase activity occurred simultaneously with maximal leaf glutamine synthetase activity, but 6 days prior to the corresponding maximum of glutamine synthetase in the pod. Cotyledonary glutamate synthetase activity increased during the assimilatory phase of embryo growth which coincided with the loss of protein and free amino acids from the leaf and pod; maximal activity was recorded simultaneously with maximal pod glutamine synthetase.

We suggest that the activity of glutamine synthetase in the supply organs (leaf, pod) furnishes the translocated amide necessary for the N nutrition of the cotyledon. The subsequent activity of glutamate synthetase could provide a mechanism for the transfer of imported amide N to alpha amino N subsequently used in protein synthesis. In vitro measurements of enzyme activity indicate there was sufficient catalytic potential in vivo to accomplish these proposed roles.

  相似文献   

12.
The development of sink organs such as fruits and seeds strongly depends on the amount of nitrogen that is moved within the phloem from photosynthetic‐active source leaves to the reproductive sinks. In many plant species nitrogen is transported as amino acids. In pea (Pisum sativum L.), source to sink partitioning of amino acids requires at least two active transport events mediated by plasma membrane‐localized proteins, and these are: (i) amino acid phloem loading; and (ii) import of amino acids into the seed cotyledons via epidermal transfer cells. As each of these transport steps might potentially be limiting to efficient nitrogen delivery to the pea embryo, we manipulated both simultaneously. Additional copies of the pea amino acid permease PsAAP1 were introduced into the pea genome and expression of the transporter was targeted to the sieve element‐companion cell complexes of the leaf phloem and to the epidermis of the seed cotyledons. The transgenic pea plants showed increased phloem loading and embryo loading of amino acids resulting in improved long distance transport of nitrogen, sink development and seed protein accumulation. Analyses of root and leaf tissues further revealed that genetic manipulation positively affected root nitrogen uptake, as well as primary source and sink metabolism. Overall, the results suggest that amino acid phloem loading exerts regulatory control over pea biomass production and seed yield, and that import of amino acids into the cotyledons limits seed protein levels.  相似文献   

13.
Codon-anticodon recognition and transfer RNA utilization for the leucine tRNA isoaccepting species of Escherichia coli have been studied by protein synthesis in vitro directed by sequenced bacteriophage MS2 RNA. We have added radioactive Leu-tRNALeu isoaccepting species as tracers, rather than use a tRNA-dependent system, since in the presence of an excess of non-radioactive leucine, there is no transfer of radioactive leucine from one isoaccepting species to another. MS2-specific peptides containing leucine residues encoded by known codons were isolated and identified, and the relative abilities of the Leu-tRNALeu isoaccepting species to transfer leucine into these peptides compared. Sequenced tRNA1Leu and sequenced tRNA3Leu are of roughly equal efficiency in their ability to recognize CUC and CUA codons, while tRNA3Leu is highly preferred for the CUU codon; tRNA4Leu and tRNA5Leu both recognize UUA and UUG codons, with tRNA4Leu slightly preferred for the UUA codon. We conclude that: (1) wobble is greater than permitted by the wobble hypothesis; (2) there is still some discrimination in the third code letter, and that the CUX4 (CUC, CUA, CUU, CUG) portion of the leucine family of six codons is not read by a simple “two out of three” mechanism; (3) a Watson-Crick pair (C · G) between codon and anticodon does not appear to be preferred over an unorthodox pair (C · C) in the wobble position; (4) a standard wobble pair (U · G) between codon and anticodon is preferred over an unorthodox pair (U · C); and (5) the extensive wobble observed in the CUX4 leucine codon series is not paralleled in the UUX4 leucine (UUG, UUA) and phenylalanine (UUU, UUC) codon series, where mistranslation would be the consequence of such wobble.  相似文献   

14.
Asparagine is present in the mature leaves of young pea (Pisum sativum cv Little Marvel) seedlings, and is synthesized in detached shoots. This accumulation and synthesis is greatly enhanced by darkening. In detached control shoots, [14C]aspartate was metabolized predominantly to organic acids and, as other workers have shown, there was little labeling of asparagine (after 5 hours, 3.1% of metabolized label). Addition of the aminotransferase inhibitor aminooxyacetate decreased the flow of aspartate carbon to organic acids and enhanced (about 3-fold) the labeling of asparagine. The same treatment applied to darkened shoots resulted in a substantial conversion of [14C]aspartate to asparagine, over 10-fold greater than in control shoots (66% of metabolized label), suggesting that aspartate is the normal precursor of asparagine.

Only traces of glutamine-dependent asparagine synthetase activity could be detected in pea leaf or root extracts; activity was not enhanced by sulfhydryl reagents, oxidizing conditions, or protease inhibitors. Asparagine synthetase is readily extracted from lupin cotyledons, but yield was greatly reduced by extraction in the presence of pea leaf tissue; pea leaf homogenates contained an inhibitor which produced over 95% inhibition of an asparagine synthetase preparation from lupin cotyledons. The inhibitor was heat stable, with a low molecular weight. Presence of an inhibitor may prevent detection of asparagine synthetase in pea extracts and in Asparagus, where a cyanide-dependent pathway has been proposed to account for asparagine synthesis: an inhibitor with similar properties was present in Asparagus shoot tissue.

  相似文献   

15.
The distribution of cytokinin activity in wheat (Triticum aestivum) germ tRNA fractionated by BD-cellulose and RPC-5 chromatography has been examined. As in other organisms, the cytokinin moieties in wheat germ tRNA appear to be restricted to tRNA species that would be expected to respond to codons beginning with U. Only a few of the wheat germ tRNA species in this coding group actually contain cytokinin modifications. Cytokinin activity was associated with isoaccepting tRNASer species and with a minor tRNALeu species from wheat germ. All other wheat germ tRNA species corresponding to codons beginning with U were devoid of cytokinin activity in the tobacco callus bioassay.  相似文献   

16.
The influence of carbohydrates on ammonium uptake and ammonium transporter (AMT1) expression was investigated in roots of field pea (Pisum arvense) and rutabaga (Brassica napus var. rapifera). Ammonium transport into field pea seedlings diminished markedly following cotyledon removal, which indicated that uptake of ammonium was under control of reserves stored in the cotyledons. Excision of cotyledons decreased also the level of some amino acids, glucose and total reducing sugars in field pea roots. To investigate the importance of the sugar supply for the regulation of ammonium uptake at low external NH 4 + level, 1 mM glucose or sucrose was supplied for several hours to the field pea seedlings deprived cotyledons or to intact rutabaga plants. Supply of both sugars resulted in a substantial increase in ammonium uptake by both plant species and enhanced markedly the expression of AMT1 in rutabaga roots. The results indicate that sugars may regulate ammonium transport at the genetic level.  相似文献   

17.
Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment. RNase activity was low in cotyledons of quiescent seeds, but the enzyme was activated during germination and seedling establishment. Salinity reduced cotyledon RNase activity, and this effect appeared to be due to a delay in its activation. The RNases from roots, stems, and leaves were immunologically identical to that found in cotyledons. Partially purified RNase fractions from the different parts of the seedling showed some activity with DNA as substrate. However, this DNA hydrolyzing activity was much lower than that of RNA hydrolyzing activity. The DNA hydrolyzing activity was strongly inhibited by Cu2+, Hg2+, and Zn2+ ions, stimulated by MgCl2, and slowly inhibited by EDTA. This activity from the most purified fraction was inhibited by increasing concentrations of RNA in the reaction medium. It is suggested that the major biological role of this cotyledon RNase would be to hydrolyze seed storage RNA during germination and seedling establishment, and it was discussed that it might have a protective role against abiotic stress during later part of seedling establishment.  相似文献   

18.
Ornithine carbamoyltransferase, argininosuccinate synthetase, argininosuccinate lyase, and arginase activity were measured in extracts from cotyledons of developing and germinating seeds of Pisum sativum L. The course of activity of these four urea cycle enzymes showed a similar pattern during seed development. The activity per cotyledon increased sharply initially and reached a maximum about 5 weeks after anthesis, when the relative water content of the seeds was about 60%. About 8 weeks after anthesis, the seeds were mature (air-dry) and had enzyme activities which were much lower. The activities of the enzymes differed considerably. Ornithine carbamoyltransferase showed the highest activity, followed in order of decreasing activity by arginase, argininosuccinate lyase, and finally argininosuccinate synthetase.

The course of the activity of the four enzymes was different during germination. Arginase activity increased sharply 7 hours after the onset of germination and remained at a constant level during the following days. Argininosuccinate synthetase activity decreased; the other enzymes showed a small increase in activity and a subsequent decrease. Results are discussed in relation to the regulation of the arginine metabolism during pea seed development and germination.

  相似文献   

19.
Transfer RNA was isolated from different organs of 17-day-old chick embryos and the acceptor activity for each of the 20 amino acids was determined. The most abundant acceptor activities found in tRNA from tendon cells were for glycine, arginine, proline and alanine. When compared to the average acceptor activity found in brain, liver and heart, the tendon tRNA showed an increase in acceptor activity of 33% in glycine, 40% in arginine and 83% in proline. Reversed phase chromatography of the tRNA charged with glycine demonstrated that the increase in glycyl-tRNA in tendon could be accounted for by an increase in one of four major isoaccepting species. Such an increase in a single species was also observed in tRNA isolated from calvaria. The codon response of this species was shown to differ from that of the other glycyl-tRNA species. No major differences in the relative proportions of isoaccepting species could be demonstrated for any other amino acid. These results suggest that a characteristic complement of tRNA species may be associated with collagen synthesis.  相似文献   

20.
Indole-3-acetic acid (IAA) amidosynthetases catalyzing the ATP-dependent conjugation of IAA and amino acids play an important role in the maintenance of auxin homeostasis in plant cells. A new amidosynthetase, indole-3-acetic acid:l-aspartic acid ligase (IAA-Asp synthetase) involved in IAA-amino acid biosynthesis, was isolated via a biochemical approach from immature seeds of the pea (Pisum sativum L). The enzyme was purified to homogeneity by a three-step procedure, involving PEG 6000 fractionation, DEAE-Sephacel anion-exchange chromatography, and preparative PAGE, and characterized as a 70-kDa monomeric protein by analytical gel filtration and SDS-PAGE. Rabbit antiserum against recombinant AtGH3.5 cross-reacted with the pea IAA-Asp synthetase, and a single immunoreactive polypeptide band was observed at 70 kDa. The purified enzyme had an apparent isoelectric point at pH 4.7, the highest activity at pH 8.2, preferred Mg2+ as a cofactor, and was strongly activated by reducing agents. Similar to known recombinant GH3 enzymes, an IAA-Asp synthetase from pea catalyzes the conjugation of phytohormone acyl substrates to amino acids. The enzyme had the highest synthesizing activity on IAA, followed by 1-NAA, SA, 2,4-D, and IBA, whereas activities on l-Trp, IPA, PAA, (±)JA, and 2-NAA were not significant or not detected. Of 14 amino acids tested, the enzyme had the highest activity on Asp and lower activity on Ala and Lys. Glutamate was found to be a very poor substrate and no conjugating activity was observed on the rest of the amino acids. Steady-state kinetic analysis indicated that IAA and aspartate were preferred substrates for the pea IAA-Asp synthetase. The enzyme exhibited both higher affinities for IAA and Asp (K m = 0.2 and 2.5 mM, respectively) and catalytic efficiencies (k cat/K m = 682,608.7 and 5080 s−1 M−1, respectively) compared with other auxins and amino acids examined. This study describes the first amidosynthetase isolated and purified from plant tissue and provides the foundation for future genetic approaches to explain the role of IAA-Asp in Pisum sativum physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号