首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The enantiomeric separation of eight pesticides including bitertanol ( 1 ), diclobutrazol ( 2 ), fenbuconazole ( 3 ), triticonazole ( 4 ), imazalil ( 5 ), triapenthenol ( 6 ), ancymidol ( 7 ), and carfentrazone‐ethyl ( 8 ) was achieved, using normal‐phase high‐performance liquid chromatography on two cellulosed‐based chiral columns. The effects of isopropanol composition from 2% to 30% in the mobile phase and column temperature from 5 to 40 °C were investigated. Satisfactory resolutions were obtained for bitertanol ( 1 ), triticonazole ( 4 ), imazalil ( 5 ) with the (+)‐enantiomer eluted first and fenbuconazole ( 3 ) with the (—)‐enantiomer eluted first on Lux Cellulose‐2 and Lux Cellulose‐3. (+)‐Enantiomers of diclobutrazol ( 2 ) and triapenthenol ( 6 ) were first eluted on Lux Cellulose‐2. (—)‐Carfentrazone‐ethyl ( 8 ) were eluted first on Lux Cellulose‐2 and Lux Cellulose‐3 with incomplete separation. Reversed elution orders were obtained for ancymidol (7). (+)‐Ancymidol was first eluted on Lux Cellulose‐2 while on Lux Cellulose‐3 (—)‐ancymidol was first eluted. The results of the elution order at different column temperatures suggested that column temperature did not affect the optical signals of the enantiomers. These results will be helpful to prepare and analyze individual enantiomers of chiral pesticides. Chirality 27:32–38, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
The preparation of all four stereoisomers of the proline analog that bears a phenyl group attached to the β carbon either cis or trans to the carboxylic acid (cis‐ and trans‐β‐phenylproline, respectively) has been addressed. The methodology developed allows access to multigram quantities of the target amino acids in enantiomerically pure form and suitably protected for use in peptide synthesis. Racemic precursors of cis‐β‐phenylproline and trans‐β‐phenylproline were prepared from easily available starting materials and subjected to high‐performance liquid chromatography enantioseparation. Semipreparative columns (250 × 20 mm) containing chiral stationary phases based on amylose (Chiralpak IA) (Daicel‐Chiral Technologies Europe, Illkirch, France) or cellulose (Chiralpak IC) were used respectively for the resolution of the cis‐ and trans‐β‐phenylproline precursors. Chirality, 24:1082‐1091, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
Four 4-halogen-substituted phenylcarbamate derivatives of amylose were prepared and their chiral recognition abilities as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) were evaluated and compared with those of the corresponding cellulose derivatives. The amylose derivatives with fluoro, chloro, bromo, or iodo group at the four-position on the phenyl group were found to show higher chiral resolving ability than the corresponding cellulose derivatives. Among four amylose derivatives 4-fluoro- and 4-chlorophenylcarbamates showed an excellent chiral recognition ability. Especially, amylose tris(4-chlorophenylcarbamate) resolved (±)-1,2,2,2-tetraphenylethanol with a very high α value (α = 8.29). In order to obtain useful information concerning the chiral recognition mechanism of this resolution, we also performed enantioseparation of a variety of analogous racemic alcohols, and found that both the hydroxy and bulky triphenylmethyl groups of the racemate are essential for the effective chiral recognition. Chirality 9:63–68, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

4.
Nanocrystalline cellulose (NCC) with high surface area and high ordered crystalline structure was prepared from microcrystalline cellulose (MCC) under the hydrolysis of sodium hypochlorite. NCC was further reacted with 3,5‐dimethylphenyl isocyanate to obtain the nanocellulose derivative, and then coated successfully on the surface of silica gel to a prepared NCC‐coated chiral stationary phase (CSP) as a new kind of chiral separation material. Similarly, MCC derivative‐coated CSP was also prepared as contrast. The chiral separation performance of NCC‐based CSP was evaluated and compared with MCC‐based CSP by high‐performance liquid chromatography. Moreover, the effects of the alcohol modifiers, mobile phase additives, and flow rates on chiral separations were investigated in detail. The results showed that 10 chiral compounds were separated on NCC‐based CSP with better peak shape and higher column efficiency than MCC‐based CSP, which confirmed that NCC‐based CSP was a promising packing material for the resolution of chiral compounds.Chirality 28:376–381, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

5.
Stereoselective high‐performance liquid chromatographic separations of eight sterically constrained cyclic β‐amino acid enantiomer pairs were carried out using the newly developed Cinchona alkaloid‐based zwitterionic chiral stationary phases Chiralpak ZWIX(+) and ZWIX(?). The effects of the mobile phase composition, the nature and concentrations of the acid and base additives, the counterions and temperature on the separations were investigated. The changes in standard enthalpy, Δ(ΔH°), entropy, Δ(ΔS°), and free energy, Δ(ΔG°), were calculated from the linear van't Hoff plots derived from the ln α vs. 1/T curves in the studied temperature range (10–50°C). The values of the thermodynamic parameters depended on the nature of the selectors and the structures of the analytes. Unusual temperature behavior was observed on the ZWIX(?) column: decreased retention times were accompanied by increased separation factors with increasing temperature. On the ZWIX(+) column only enthalpically, whereas on the ZWIX(?) column both enthalpically and entropically driven separations were observed. The elution sequence was determined in all cases and was observed to be the opposite on ZWIX(+) and on ZWIX(?). Chirality 27:563570, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
As an important intermediate of prostaglandins and entecavir, optically pure Corey lactone diol (CLD) has great value in the pharmaceutical industry. In this work, the enantioseparation of (±)‐CLD was evaluated using high‐performance liquid (HPLC) and supercritical fluid chromatography (SFC). In HPLC, the separations of CLD enantiomers on polysaccharide‐based chiral stationary phases with both normal phase and polar organic phase were screened. And the conditions for the enantioseparation were optimized in HPLC and SFC, including the selection of mobile phase, temperature, back‐pressure, and other conditions. More important, it was found that the chiral resolutions were greatly enhanced by the increase of the coating amount of ADMPC (amylose tris‐(3,5‐dimethylphenylcarbamate)) under both HPLC and SFC conditions, which can lead to the increase of the productivity and the decrease of the solvent consumption. The preparations of optically pure CLD were evaluated on a semi‐preparative (2 × 25 cm) column packed with 30% ADMPC‐coated CSP under HPLC and SFC conditions. Preparative performances in terms of kkd are 1.536 kg racemate/kg CSP/day and 1.248 kg racemate/kg CSP/day in HPLC and SFC, respectively.  相似文献   

7.
Four groups of organophosphonate derivatives enantiomers were separated on N‐(3,5‐dinitrobenzoyl)‐S‐leucine chiral stationary phase. The three‐dimensional structures of the complexes between the single enantiotopic chiral compounds and chiral stationary phase have been studied using molecular model and molecular dynamics simulation. Detailed results regarding the conformation, auto‐docking, and thermodynamic estimation are presented. The elution order of the enantiomer could be determined from the energy. The predicted chiral discrimination was obtained by computational results. Chirality 25:101–106, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
9.
Up to now, some chiral metal‐organic frameworks (MOFs) have been reported for enantioseparation in liquid chromatography. Here we report a homochiral MOF, [Cd2(d‐cam)3]·2Hdma·4dma, used as a new chiral stationary phase for high‐performance liquid chromatographic enantioseparation. Nine racemates of alcohol, naphthol, ketone, and base compounds were used as analytes for evaluating the separation properties of the chiral MOF packed column. Moreover, some effects such as mobile phase composition, column temperature, and analytes mass for separations on this chiral column also were investigated. The relative standard deviations for the resolution values of run‐to‐run and column‐to‐column were less than 2.1% and 3.2%, respectively. The experimental results indicate that the homochiral MOF offered good recognition ability, which promotes the application of chiral MOFs use as stationary phase for enantioseparation. Chirality 28:340–346, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
The enantiomers of four unusual isoxazoline‐fused 2‐aminocyclopentanecarboxylic acids were directly separated on chiral stationary phases containing (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid as chiral selector. The nature of the alcoholic modifier (MeOH, EtOH, IPA) exerted a great effect on the retention, whereas the selectivity and resolution did not change substantially. Two types of dependence of retention on alcohol content were detected: k1 increased continuously with increasing alcohol content or a U‐shaped retention curve was observed. A comparison of the chromatographic data obtained with HCOOH, AcOH, TFA, HClO4, H2SO4, or H3PO4 as acidic modifier at a constant concentration demonstrated that in most cases, larger k values were obtained on the application of AcOH or HCOOH, and an increase of the acid content resulted in a decrease of retention. Some mechanistic aspects of the chiral recognition process are discussed with respect to the structures of the analytes and selector. The sequence of elution of the enantiomers was determined in all cases. Chirality 24:817‐824, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
Cellulose‐tris(3,5‐dimethylphenylcarbamate) was prepared after a reported method and was coated onto an aminopropylated mesopore spherical silica gel. The final product was used as a chiral stationary phase of high performance liquid chromatography for the enantioseparation of a series of glycerin sulfides and glycerin selenides. Mixtures of hexane and 2‐propanol were used as mobile phases. The effects of 2‐propanol concentration in the mobile phase on the retention and resolution were investigated. Some enantiomers of the glycerin monosulfides and monoselenides could be separated satisfactorily, but none of the disulfides could be separated. The structural features of the solutes that influence chiral separation were discussed. Chirality 11:598–601, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

12.
Enantiomeric separations of N‐phthaloyl (N‐PHT), N‐tetrachlorophthaloyl (N‐TCPHT), and N‐naphthaloyl (N‐NPHT) α‐amino acids and their esters were examined on several kinds of polysaccharide‐derived chiral stationary phases (CSPs). Resolution capability of CSPs was greater Chiralcel OF than the others for N‐PHT and N‐NPHT α‐amino acids and their esters. In N‐TCPHT α‐amino acids and their esters, good enantioselectivities showed Chiralcel OG for N‐TCPHT α‐amino acids, Chiralpak AD for N‐TCPHT α‐amino acid methyl esters, and Chiralcel OD for N‐TCPHT α‐amino acid ethyl esters, respectively. From the results of liquid chromatography and computational chemistry, it is concluded that l ‐form is preferred and more retained with electrostatic interaction in case of interaction between N‐PHT α‐amino acid derivatives and Chiralcel OF, N‐TCPHT α‐amino acid derivatives and Chiralcel OD, and N‐NPHT α‐amino acid derivatives and Chiracel OF. On the other hand, d ‐form is preferred and more retained with van der Waals interaction in case of interaction between N‐TCPHT α‐amino acid ester derivatives and Chiralcel OG and Chiralpak AD. Chirality 24:1037–1046, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
An effective high‐performance liquid chromatography method was developed for the stereoselective determination of a new sulfoximines insecticide, sulfoxaflor, in brown rice, cucumber and apple. Target compounds were extracted with acetonitrile and an aliquot cleaned with Cleanert PestiCarb/PSA (primary and secondary amine) cartridge. Five polysaccharide‐based columns were investigated on the separation of sulfoxaflor stereoisomers and the best was achieved on a ChromegaChiral CCA column with n‐hexane/ethanol/methanol (90:2:8, v/v/v) as mobile phase by UV detection at 220 nm at 20ºC. The resolutions of the four stereoisomers were 1.85, 1.54 and 3.08, and the elution order was identified by optical rotation and stereoisomers ratio. The mean recoveries of sulfoxaflor stereoisomers ranged from 77.1% to 99.3%, with relative standard deviations less than 8.9% at three concentration levels in all matrices. The limits of detection for all stereoisomers varied from 0.05 mg/kg to 0.07 mg/kg, while the limit of quantification did not exceed 0.22 mg/kg. The method was then successfully applied to determine the sulfoxaflor stereoisomers in authentic samples, confirming that it is convenient and reliable for stereoselective determination of sulfoxaflor stereoisomers in food. Chirality 26:114–120, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
《Chirality》2017,29(1):38-47
High‐performance liquid chromatography (HPLC) is a powerful method in the area of chiral separation. In this study, a method of HPLC using carboxymethyl‐β‐cyclodextrin (CM‐β‐CD) as chiral selector was developed for enantioseparation of nine indanone and tetralone derivatives. The separation was performed on a conventional C18 column. The optimal mobile phase was a mixture of methanol and 0.05 mol/L phosphate buffer at pH 1.8 (55:45, v /v) containing 22.9 mmol/L CM‐β‐CD. Under such conditions, the resolutions of all analytes were over 1.8 except for Compound F. The results of the study indicate the presence of a complex with 1:1 stoichiometry of the inclusion complex. In addition, it can be inferred from thermodynamic analysis that the behavior of formation of the inclusion complex and enantioseparation occurred simultaneously, while they were driven by different forces. The effect of analyte structure is also discussed.  相似文献   

15.
Flecainide, an antiarrythmic agent, and its analogs were resolved on a high performance liquid chromatographic chiral stationary phase (CSP) based on (+)‐(18‐crown‐6)‐2,3,11,12‐tetracarboxylic acid with the use of a mobile phase consisting of methanol‐acetonitrile‐trifluoroacetic acid‐triethylamine (80/20/0.1/0.3, v/v/v/v). The chiral resolution was quite successful, the separation factors (α) and the resolutions (RS) for 20 analytes including flecainide being in the range of 1.19–1.82 and 1.73–6.80, respectively. The ortho‐substituent of the benzoyl group of analytes was found to cause decrease in the retention times of analytes probably because of the conformational deformation of analytes originated from the steric hindrance exerted by the ortho‐substituent. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
The chiral fungicide furametpyr is widely used in the rice field to control rice sheath blight; however, furametpyr enantiomers are treated as just one compound in traditional achiral analysis, which gives only partial information. An effective chiral analytical method was developed for the resolution and determination of the fungicide furametpyr enantiomers in rice, soil, and water samples. Furametpyr enantiomers were excellently separated and determined on a Chiralpak AD‐H column with n‐hexane/ethanol (90:10, v/v) as mobile phase at a flow rate of 0.8 mL min‐1 with UV detection at 220 nm. The resolution was up to 8.85. The first eluted enantiomer was (+)‐furametpyr and the second eluted one was (?)‐furametpyr. The effects of mobile‐phase composition and column temperature on the enantioseparation were evaluated. The method was validated for linearity, repeatability, accuracy, limit of detection (LOD), and limit of quantification LOQ. LOD was 2.0 µg kg‐1 in water, 0.02 mg kg‐1 in soil, and 0.07 mg kg‐1 in rice with an LOQ of 6.7 µg kg‐1 in water, 0.07 mg kg‐1 in soil, and 0.23 mg kg‐1 in rice. The average recoveries of the pesticide in all matrices ranged from 73.1 to 101.8% for all fortification levels. The precision values associated with the analytical method, expressed as relative standard deviation (RSD) values, were below 14.0% in all matrices. The methodology was successfully applied for the enantioselective analysis of furametpyr enantiomers in real samples. Chirality 25:904–909, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
Clobazam, a 1,5‐benzodiazepin‐2,4‐dione, is a chiral molecule because its ground state conformation features a nonplanar seven‐membered ring lacking reflection symmetry elements. The two conformational enantiomers of clobazam interconvert at room temperature by a simple ring‐flipping process. Variable temperature HPLC on the Pirkle type (R)‐N‐(3,5‐dinitronenzoyl)phenylglycine and (R,R)‐Whelk‐O1 chiral stationary phases (CSPs) allowed us to separate for the first time the conformational enantiomers of clobazam and to observe peak coalescence‐decoalescence phenomena due to concomitant separation and interconversion processes occurring on the same time scale. Clobazam showed temperature dependent dynamic high‐performance liquid chromatography (HPLC) profiles with interconversion plateaus on the two CSPs indicative of on‐column enantiomer interconversion. (enantiomerization) in the column temperature range between Tcol = 10°C and Tcol = 30°C, whereas on‐column interconversion was absent at temperature close to or lower than Tcol = 5°C. Computer simulation of exchange‐deformed HPLC profiles using a program based on the stochastic model yielded the apparent rate constants for the on‐column enantiomerization and the corresponding free energy activation barriers. At Tcol = 20°C the averaged enantiomerization barriers, ΔG?, for clobazam were found in the range 21.08–21.53 kcal mol?1 on the two CSPs. The experimental dynamic chromatograms and the corresponding interconversion barriers reported in this article are consistent with the literature data measured by DNMR at higher temperatures and in different solvents. Chirality 28:17–21, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

18.
In our recent work, a series of dendritic chiral stationary phases (CSPs) were synthesized, in which the chiral selector was L‐2‐(p‐toluenesulfonamido)‐3‐phenylpropionyl chloride (selector I), and the CSP derived from three‐generation dendrimer showed the best separation ability. To further investigate the influence of the structures of dendrimer and chiral selector on enantioseparation ability, in this work, another series CSPs ( CSPs 1‐4 ) were prepared by immobilizing (1S,2R)‐1,2‐diphenyl‐2‐(3‐phenylureido)ethyl 4‐isocyanatophenylcarbamate (selector II) on one‐ to four‐generation dendrimers that were prepared in previous work. CSPs 1 and 4 demonstrated the equivalent enantioseparation ability. CSPs 2 and 3 showed the best and poorest enantioseparation ability respectively. Basically, these two series of CSPs exhibited the equivalent enantioseparation ability although the chiral selectors were different. Considering the enantioseparation ability of the CSP derived from aminated silica gel and selector II is much better than that of the one derived from aminated silica gel and selector I, it is believed that the dendrimer conformation essentially impacts enantioseparation. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Pyriproxyfen is a chiral insecticide, and over 10 metabolites have been identified in the environment. In this work the separations of the enantiomers of pyriproxyfen and its six chiral metabolites were studied by high‐performance liquid chromatography (HPLC). Both normal phase and reverse phase were applied using the chiral columns Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralcel OD‐RH, Chiralpak AY‐H, Chiralpak AD‐H, Chiracel OJ‐H, (R,R)‐Whelk‐O 1, and Lux Cellulose‐3. The effects of the chromatographic parameters such as mobile phase composition and temperature on the separations were investigated and the enantiomers were identified with an optical rotation detector. The enantiomers of these targets could obtain complete separations (resolution factor Rs > 1.5) on Chiralpak IA, Chiralpak IB, Chiralcel OD, Chiralpak AY‐H, or Chiracel OJ‐H under normal conditions. Chiralcel OJ‐H showed the best chiral separation results with n‐hexane as mobile phase and isopropanol (IPA) as modifier. The simultaneous enantiomeric separation of pyriproxyfen and four chiral metabolites was achieved on Chiralcel OJ‐H under optimized condition: n‐hexane/isopropanol = 80/20, 15°C, flow rate of 0.8 ml/min, and UV detection at 230 nm. The enantiomers of pyriproxyfen and the metabolites A , C , and D obtained complete separations on Chiralpak IA, Chiralpak IC, and Lux Cellulose‐3 under reverse phase using acetonitrile/water as the mobile phase. The retention factors (k) and selectivity factors (α) decreased with increasing temperature, and the separations were better under low temperature in most cases. The work is of significance for the investigation of the environmental behaviors of pyriproxyfen on an enantiomeric level. Chirality 28:245–252, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

20.
The determination of the enantiomeric impurity, i.e., the percentage of (+) N?0437 (= N?0924) in several batches of (??) N-0437 (= N-0923) by chiral HPLC is described. Enantiomeric impurities were calculated based on the peak areas of the two baseline separated enantiomers in the chromatogram. The enantiomeric impurities found in different batches ranged from 0.02% to 0.11%. Calibration curves of the two isomers of N-0437 (Fig. 1,) were made twice to study the reproducibility and linearity of the method. The absorbance ratio, N-0923/N-0924, was found to be 1.02 with a relative standard deviation (RSD) of 9% over the whole concentration range used for the calibration curves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号