首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims: To collect comparative data on thermal stability of structurally different viruses with proven or potential relevance to food safety. Methods and Results: Suspensions with poliovirus Sabin1, adenovirus type5, parechovirus1, human norovirus (NoV) GII.4, murine NoV (MNV1) and human influenza A (H1N1) viruses were heated at 56 and 73°C. Infectivity was tested by culture assay for all but human NoV GII.4 that cannot be cultivated in vitro. Time to first log10 reduction (TFL‐value) was calculated based on best fit using the monophasic, biphasic or Weibull models. The Weibull model provided the best fit at 56°C for all viruses except influenza virus. The TFL at 56°C varied between a high of 27 min (parechovirus) to a low of 10 s (adenovirus) and ranked parechovirus > influenza > MNV1 > poliovirus > adenovirus. The monophasic model best described the behaviour of the viruses at 73°C, in which case the TFL was MNV1(62s) > influenza > adenovirus > parechovirus > poliovirus(14s). Conclusions: Viruses do not follow log‐linear thermal inactivation kinetics and the thermostability of parechovirus and influenza virus is similar to that of proven foodborne viruses. Significance and Impact of the Study: Resistant fractions of viruses may remain infectious in thermal inactivation processes and inactivation of newly discovered or enveloped viruses in thermal food preparation processes should not be assumed without further testing.  相似文献   

2.
The objective of the present study was to describe histological development of the European long‐snouted seahorse Hippocampus guttulatus, to increase understanding of the biology and physiology of the species. Most vital organs were present in juveniles by the time of their release from the male's pouch. Digestive tract specialization occurred at 89 effective day‐degrees (D°eff), corresponding to 15 days post partum (dpp), with development of the first intestinal loop and mucosal folding. At 118 D°eff (20 dpp), lipids were being mobilized from the liver and oocytes attained the perinuclear stage. The fovea emerged at 177 D°eff (30 dpp), contemporaneous with the shift from pelagic to benthic behaviour in juveniles. At this stage, the most interesting feature was the formation of the second intestinal loop. Male gonads were never observed during the study (from 0 to 354 D°eff; 0–60 dpp), but the first oogonia were present at 30 D°eff (5 dpp). In 354 D°eff (60 dpp) juveniles, oocytes were observed in a cortical alveoli stage, indicating maturity. Low digestive efficiency was observed at early stages, which was due to a poorly developed gastrointestinal tract and an immature digestive tract prior to 89 D°eff. The present study demonstrates that approximately 89 and 177 D°eff represent two important transitional stages in the early development of H. guttulatus. At a temperature of approximately 19 ± 1°C and an age of 1 month (177 D°eff), main organs were fully functional, suggesting that the adult phenotype was largely established by that age, with females becoming mature at the age of 2 months (354 D°eff).  相似文献   

3.
High‐pressure, high‐temperature (HPHT) processing is effective for microbial spore inactivation using mild preheating, followed by rapid volumetric compression heating and cooling on pressure release, enabling much shorter processing times than conventional thermal processing for many food products. A computational thermal fluid dynamic (CTFD) model has been developed to model all processing steps, including the vertical pressure vessel, an internal polymeric carrier, and food packages in an axis‐symmetric geometry. Heat transfer and fluid dynamic equations were coupled to four selected kinetic models for the inactivation of C. botulinum; the traditional first‐order kinetic model, the Weibull model, an nth‐order model, and a combined discrete log‐linear nth‐order model. The models were solved to compare the resulting microbial inactivation distributions. The initial temperature of the system was set to 90°C and pressure was selected at 600 MPa, holding for 220 s, with a target temperature of 121°C. A representation of the extent of microbial inactivation throughout all processing steps was obtained for each microbial model. Comparison of the models showed that the conventional thermal processing kinetics (not accounting for pressure) required shorter holding times to achieve a 12D reduction of C. botulinum spores than the other models. The temperature distribution inside the vessel resulted in a more uniform inactivation distribution when using a Weibull or an nth‐order kinetics model than when using log‐linear kinetics. The CTFD platform could illustrate the inactivation extent and uniformity provided by the microbial models. The platform is expected to be useful to evaluate models fitted into new C. botulinum inactivation data at varying conditions of pressure and temperature, as an aid for regulatory filing of the technology as well as in process and equipment design. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
The synthetic peptide Z‐Gly‐Aib‐Gly‐Aib‐OtBu was dissolved in methanol and crystallized in a mixture of ethyl acetate and petroleum ether. The crystals belong to the centrosymmetric space group P4/n that is observed less than 0.3% in the Cambridge Structural Database. The first Gly residue assumes a semi‐extended conformation (φ ±62°, ψ ?131°). The right‐handed peptide folds in two consecutive β‐turns of type II' and type I or an incipient 310‐helix, and the left‐handed counterpart folds accordingly in the opposite configuration. In the crystal lattice, one molecule is linked to four neighbors in the ab‐plane via hydrogen bonds. These bonds form a continuous network of left‐ and right‐handed molecules. The successive ab‐planes stack via apolar contacts in the c‐direction. An ethyl acetate molecule is situated on and close to the fourfold axis. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Thermal soil disinfestation techniques are effective reducers of weed seedbank and weed emergence. Two experiments (Expt 1 and Expt 2) were conducted to test the effect of brief exposure to varying temperatures on the seed germination of Amaranthus retroflexus, Echinochloa crus‐galli, Galinsoga quadriradiata, Portulaca oleracea, Setaria viridis and Solanum nigrum. To this end, species seeds were moistened with loamy‐sand soil and placed into test tubes. The tubes were heated rapidly and then cooled by dipping them into a hot water bath until target temperatures were achieved. Expt 1 temperatures ranged between 55°C and 85°C at 5°C intervals and Expt 2 ranged between 48°C and 86°C at 2°C intervals. Thereafter, the tubes were dipped into a cooling (1°C) water bath. Exposure to target temperatures ranged between 2 s and 5 s. Soil temperatures were monitored using embedded thermocouples. A log‐logistic dose–response model described the effect of heating on seed germinability; temperatures required for 99% reductions were calculated. On the basis of the predictive model equation used, weed species' germination sensitivity to high temperature exposure can be ranked as follows: E. crus‐galli (79.6°C), S. viridis (75.8°C), S. nigrum (74.6°C), P. oleracea (72.2°C), A. retroflexus (70.9°C) and G. quadriradiata (68.1°C). The interval between no effects to complete seed devitalisation occurred at temperatures varying from 6.5°C to 15.7°C. Seed size and weight varied directly with heat tolerance. Study results not only inform the timing and optimal adjustment for effective thermal soil treatment, but also demonstrate a relatively simple and generalizable methodology for use in other studies.  相似文献   

6.
Aims: To determine thermal resistance, the effect of pasteurization temperature variations (c. 2°C) in a continuous system in the number of decimal reductions (n) of a Byssochlamys strain in clarified apple juice (CAJ). Methods and Results: Thermal destruction kinetics of Byssochlamys fulva IOC 4518 in thermal death tubes were determined at 85°, 90°, 92° and 95°C by using Weibull distribution frequency model. Three processes with different heating and holding temperatures (A: 94°, 92°C; B: 95°, 93°C; C: 96°, 94°C, respectively) were performed in a continuous system. Process time was 30 s. δ (time of first decimal reduction) values were: 42·98, 8·10, 3·62 and 1·81 min. Variable n ranged from 0·16 to >4·78 for process B (equivalent to industrial). Variable n (0·95–2·66 log CFU ml?1) were obtained in CAJ bottles processed under condition B, while process A resulted in total heat‐resistant mould (HRM) survival and process C in total HRM destruction. Conclusions: This study demonstrates that small variations in temperature during the CAJ pasteurization could result in elimination or survival of HRM due to its nonlogarithmic behaviour. Significance and Impact of the Study: This was the first study to use Weibull frequency method to model inactivation of HRM in fruit juices. Temperature variations could culminate in the presence of HRM in pasteurized juices even when low counts (<10 spores per 100 ml) were present in the raw materials.  相似文献   

7.
Thermostable β‐galactosidase from Bacillus coagulans RCS3 was purified by successive column chromatography using DEAE‐cellulose and Sephadex G‐50. Immobilization of the purified enzyme was studied with DEAE‐cellulose and calcium alginate. The efficiency of β‐galactosidase retention was 87 % with DEAE‐cellulose (17 mg protein/mL of matrix) and 80 % with calcium alginate (2.2 mg protein/g bead). Comparative studies of immobilization displayed a shift in the optimum temperature from 65 °C to 70 °C provoked by DEAE‐cellulose, although no effect was observed with calcium alginate. The heat inactivation curve revealed an improvement in the stability (t1/2 of 14.5 h for the immobilized enzyme as compared to 2 h for the free enzyme at 65 °C) in a calcium alginate system. This immobilized enzyme has a wide pH stability range (6.5–11). β‐Galactosidase immobilized by DEAE‐cellulose and calcium alginate allowed a 57 and 70 % lactose hydrolysis, respectively, to be achieved within 48 h after repeated use for twenty times.  相似文献   

8.
Short‐term temperature effects on photosynthesis were investigated by measuring O2 production, PSII‐fluorescence kinetics, and 14C‐incorporation rates in monocultures of the marine phytoplankton species Prorocentrum minimum (Pavill.) J. Schiller (Dinophyceae), Prymnesium parvum f. patelliferum (J. C. Green, D. J. Hibberd et Pienaar) A. Larsen (Coccolithophyceae), and Phaeodactylum tricornutum Bohlin (Bacillariophyceae), grown at 15°C and 80 μmol photons · m?2 · s?1. Photosynthesis versus irradiance curves were measured at seven temperatures (0°C–30°C) by all three approaches. The maximum photosynthetic rate (PCmax) was strongly stimulated by temperature, reached an optimum for Pro. minimum only (20°C–25°C), and showed a similar relative temperature response for the three applied methods, with Q10 ranging from 1.7 to 3.5. The maximum light utilization coefficient (αC) was insensitive or decreased slightly with increasing temperature. Absolute rates of O2 production were calculated from pulse‐amplitude‐modulated (PAM) fluorometry measurements in combination with biooptical determination of absorbed quanta in PSII. The relationship between PAM‐based O2 production and measured O2 production and 14C assimilation showed a species‐specific correlation, with 1.2–3.3 times higher absolute values of PCmax and αC when calculated from PAM data for Pry. parvum and Ph. tricornutum but equivalent for Pro. minimum. The offset seemed to be temperature insensitive and could be explained by a lower quantum yield for O2 production than the theoretical maximum (due to Mehler‐type reactions). Conclusively, the PAM technique can be used to study temperature responses of photosynthesis in microalgae when paying attention to the absorption properties in PSII.  相似文献   

9.
The infrared (IR), vibrational circular dichroism (VCD), and electronic circular dichroism (ECD) spectra of short cationic sequential peptides (L ‐Lys‐L ‐Ala‐L ‐Ala)n (n = 1, 2, and 3) were measured over a range of temperatures (20–90 °C) in aqueous solution at near‐neutral pH values in order to investigate their solution conformations and thermally induced conformational changes. VCD spectra of all three oligopeptides measured in the amide I′ region indicate the presence of extended helical polyproline II (PPII)‐like conformation at room temperature. UV‐ECD spectra confirmed this conclusion. Thus, the oligopeptides adopt a PPII‐like conformation, independent of the length of the peptide chain. However, the optimized dihedral angles ? and ψ are within the range ?82 to ?107° and 143–154°, respectively, and differ from the canonical PPII values. At elevated temperatures, the observed intensity and bandshape variations in the VCD and ECD spectra show that the PPII‐like conformation of the Lys‐Ala‐Ala sequence is still preferred, being in equilibrium with an unordered conformer at near‐neutral pH values within the range of temperatures from 20 to 90 °C. This finding was obtained from analysis of the temperature‐dependent spectra using the singular value decomposition method. The study presents KAA‐containing oligopeptides as conformationally stable models of biologically important cationic peptides and proteins. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
Aims: The purpose of this study was to investigate the inactivation kinetics of Staphylococcus aureus in a ham model system by high hydrostatic pressure at ambient (25°C) and selected temperatures (45, 55°C). Selective [Baird Parker (BP) agar] and nonselective [brain heart infusion (BHI) agar] growth media were used for enumeration in order to count viable and sublethally injured cells. Methods and Results: The micro‐organism was exposed to a range of pressures (450, 500, 550, 600 MPa) at ambient temperature (25°C) for up to 45 min. Additionally, the behaviour of the micro‐organism was evaluated at mild temperatures in combination with high pressure treatment, namely: (i) 350, 400 and 450 MPa at 45°C; and (ii) 350 and 400 MPa at 55°C, for up to 12 min. Inactivation kinetics were calculated in terms of Dp and zp values. Survival curves of S. aureus at ambient temperature were mostly linear, whereas when temperature was applied, tailing was observed in most survival curves. The estimated Dp values and therefore the number of surviving cells, were substantially higher on the selective BP agar in the whole range of pressures applied, indicating that S. aureus showed greater recovery in the selective BP agar than the nonselective BHI agar. Samples pressurized at ambient temperature needed higher pressures (over 500 MPa) to achieve a reduction of the population of the pathogen more than 5 log CFU ml?1. The same level of inactivation was achieved at lower pressure levels when mild heating was simultaneously applied. Indeed, more than 6 log CFU ml?1 reductions were obtained at 400 MPa and 55°C within the first 7 min of the process in BHI medium. Conclusion: Elevated temperatures allowed lower pressure levels and shorter processing times of pathogen inactivation than at room temperature. Greater recovery of the pathogen was observed in the selective (BP agar) medium, regardless of pressure and temperature applied. Significance and Impact of the Study: The obtained kinetics could be employed by the industry in selecting optimum pressure/temperature processing conditions. Attention must be given to the selection of the enumeration medium, as the use of an inappropriate medium would lead to underestimation of the surviving cells, thus imposing a risk in the microbiological safety of the product.  相似文献   

11.
Aims: To investigate the kinetics of thermal inactivation of the bacteriocin‐like substance P34 at different pH and sodium chloride concentration. Methods and Results: Samples of bacteriocin were treated at different time–temperature combinations in the range of 0–300 min and 90–120°C and the kinetic parameters for bacteriocin inactivation were calculated. For all treatments, the thermal inactivation reaction fitted adequately to first‐order model. D‐ and k‐values were smaller and higher, respectively, for pH 4·5 than for 6·0 or 7·0, indicating that bacteriocin P34 was less thermostable at lower pH. At 120, 115 and 100°C, the addition of sodium chloride decreased thermal stability. For other temperatures, addition of NaCl increased stability of the peptide. The presence of greater amount of the salt (50 g l?1) resulted in a higher thermal stability of bacteriocin P34, suggesting that the reduction in water activity of the solution interfered on the stability of the peptide. Conclusions: Based on an isothermal experiment in the temperature range of 90–120°C, and by thermal death time models, bacteriocin P34 is less heat stable at low pH and has increased thermal stability in the presence of NaCl. Addition of NaCl improved the stability of the peptide P34 at high temperatures. Significance and Impact of the Study: Studies on kinetics of thermal inactivation of bacteriocins are essential to allow their proper utilization in the food industry.  相似文献   

12.
From a screening on agar plates with bis(benzoyloxyethyl) terephthalate (3PET), a Bacillus subtilis p‐nitrobenzylesterase (BsEstB) was isolated and demonstrated to hydrolyze polyethyleneterephthalate (PET). PET‐hydrolase active strains produced clearing zones and led to the release of the 3PET hydrolysis products terephthalic acid (TA), benzoic acid (BA), 2‐hydroxyethyl benzoate (HEB), and mono‐(2‐hydroxyethyl) terephthalate (MHET) in 3PET supplemented liquid cultures. The 3PET‐hydrolase was isolated from non‐denaturating polyacrylamide gels using fluorescein diacetate (FDA) and identified as BsEstB by LC‐MS/MS analysis. BsEstB was expressed in Escherichia coli with C‐terminally fused StrepTag II for purification. The tagged enzyme had a molecular mass of 55.2 kDa and a specific activity of 77 U/mg on p‐nitrophenyl acetate and 108 U/mg on p‐nitrophenyl butyrate. BsEstB was most active at 40°C and pH 7.0 and stable for several days at pH 7.0 and 37°C while the half‐life times decreased to 3 days at 40°C and only 6 h at 45°C. From 3PET, BsEstB released TA, MHET, and BA, but neither bis(2‐hydroxyethyl) terephthalate (BHET) nor hydroxyethylbenzoate (HEB). The kcat values decreased with increasing complexity of the substrate from 6 and 8 (s?1) for p‐nitrophenyl‐acetate (4NPA) and p‐nitrophenyl‐butyrate (4NPB), respectively, to 0.14 (s?1) for bis(2‐hydroxyethyl) terephthalate (BHET). The enzyme hydrolyzed PET films releasing TA and MHET with a concomitant decrease of the water‐contact angle (WCA) from 68.2° ± 1.7° to 62.6° ± 1.1° due to formation of novel hydroxyl and carboxyl groups. These data correlated with a fluorescence emission intensity increase seen for the enzyme treated sample after derivatization with 2‐(bromomethyl)naphthalene. © 2011 American Institute of Chemical Engineers Biotechnol. Prog., 2011  相似文献   

13.
This study provides the first measurements of the standard respiration rate (RS) and growth dynamics of European sardine Sardina pilchardus larvae reared in the laboratory. At 15° C, the relationship between RS (µl O2 individual?1 h?1) and larval dry mass (MD, µg) was equal to: RS = 0·0057(±0·0007, ± s.e.)·MD0·8835(±0·0268), (8–11% MD day?1). Interindividual differences in RS were not related to interindividual differences in growth rate or somatic (Fulton's condition factor) or biochemical‐based condition (RNA:DNA).  相似文献   

14.
Adaptive metabolic behavior of photoautotrophic microorganisms toward genetic and environmental perturbations can be interpreted in a quantitative depiction of carbon flow through a biochemical reaction network using isotopic non‐stationary 13C‐metabolic flux analysis (INST 13C‐MFA). To evaluate 13C‐metabolic flux maps for Chlamydomonas reinhardtii, an original experimental framework was designed allowing rapid, reliable collection of high‐quality isotopomer data against time. It involved (i) a short‐time 13C labeling injection device based on mixing control in a torus‐shaped photobioreactor with plug‐flow hydrodynamics allowing a sudden step‐change in the 13C proportion in the substrate feed and (ii) a rapid sampling procedure using an automatic fast filtration method coupled to a manual rapid liquid nitrogen quenching step. 13C‐substrate labeling enrichment was controlled through the total dissolved inorganic carbon concentration in the pulsed solution. First results were obtained from steady‐state continuous culture measurements allowing the characterization of the kinetics of label incorporation into light‐limited growing cells cultivated in a photobioreactor operating at the maximal biomass productivity for an incident photon flux density of 200 µmol m?2 s?1. 13C label incorporation was measured for 21 intracellular metabolites using IC‐MS/MS in 58 samples collected across a labeling experiment duration of 7 min. The fastest labeling rate was observed for 2/3‐phosphoglycerate with an apparent isotopic stationary state reached after 300 s. The labeling rate was consistent with the optimized mixing time of about 4.9 s inside the reactor and the shortest reliable sampling period assessed at 5 s. Biotechnol. Bioeng. 2012; 109: 3030–3040. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
The collagen triple helix has a larger accessible surface area per molecular mass than globular proteins, and therefore potentially more water interaction sites. The effect of deuterium oxide on the stability of collagen model peptides and Type I collagen molecules was analyzed by circular dichroism and differential scanning calorimetry. The transition temperatures (Tm) of the protonated peptide (Pro‐Pro‐Gly)10 were 25.4 and 28.7°C in H2O and D2O, respectively. The increase of the Tm of (Pro‐Pro‐Gly)10 measured calorimetrically at 1.0°C min?1 in a low pH solution from the protonated to the deuterated solvent was 5.1°C. The increases of the Tm for (Gly‐Pro‐4(R)Hyp)9 and pepsin‐extracted Type I collagen were measured as 4.2 and 2.2°C, respectively. These results indicated that the increase in the Tm in the presence of D2O is comparable to that of globular proteins, and much less than reported previously for collagen model peptides [Gough and Bhatnagar, J Biomol Struct Dyn 1999, 17, 481–491]. These experimental results suggest that the interaction of water molecules with collagen is similar to the interaction of water with globular proteins, when the ratio of collagen to water is very small and collagen is monomerically dispersed in the solvent. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 93–101, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

16.
Aims: The objective was to study the response of Cronobacter sakazakii ATCC 29544 cells to heat, pulsed electric fields (PEF), ultrasound under pressure (Manosonication, MS) and ultraviolet light (UV‐C) treatments after exposure to different sublethal stresses that may be encountered in food‐processing environments. Methods and Results: Cronobacter sakazakii stationary growth‐phase cells (30°C, 24 h) were exposed to acid (pH 4·5, 1 h), alkaline (pH 9·0, 1 h), osmotic (5% NaCl, 1 h), oxidative (0·5 mmol l?1 H2O2, 1 h), heat (47·5°C, 1 h) and cold (4°C, 4 h) stress conditions and subjected to the subsequent challenges: heat (60°C), PEF (25 kV cm?1, 35°C), MS (117 μm, 200 kPa, 35°C) and UV‐C light (88·55 mW cm?2, 25°C) treatments. The inactivation kinetics of Csakazakii by the different technologies did not change after exposure to any of the stresses. The combinations of sublethal stress and lethal treatment that were protective were: heat shock–heat, heat shock–PEF and acid pH–PEF. Conversely, the alkaline shock sensitized the cells to heat and UV‐C treatments, the osmotic shock to heat treatments and the oxidative shock to UV‐C treatments. The maximum adaptive response was observed when heat‐shocked cells were subjected to a heat treatment, increasing the time to inactivate 99·9% of the population by 1·6 times. Conclusions: Cronobacter sakazakii resistance to thermal and nonthermal preservation technologies can increase or decrease as a consequence of previous exposure to stressing conditions. Significance and Impact of the Study: The results help in understanding the physiology of the resistance of this emerging pathogen to traditional and novel preservation technologies.  相似文献   

17.
18.
Culex quinquefasciatus plays a major role in the transmission of important parasites and viruses throughout the world. Because temperature is an important limiting factor on growth and longevity of all mosquito species, estimating the reaction norms provides very important basic information for understanding both plasticity and individual variations of the population. In the present study, Cx. quinquefasciatus were maintained at five different constant temperatures (15°, 20°, 23°, 27°, and 30°C) for two subsequent generations. Reproductive population parameters in blood‐fed mated females and longevities of virgin and blood‐fed mated adults reared at different temperatures were compared for the two generations. Longevity increased as temperature decreased within a range of 15° to 30°C for the unmated adults, and 15° to 27°C for the mated and blood‐fed adults. Generation times were as long as 124.07 and 106.76 days for two subsequent generations reared at 15°C, and the highest intrinsic rate of increase (rm) values were estimated at 0.22 and 0.18, respectively, from the cohorts reared at 27°C. For survival rates, reproductive rates (R0), and rm values, 30°C was found to be a critical temperature for this species. These cohorts produced the smallest amount of eggs (R0= 5.06), rm values decreasing across generations (from 0.11 to 0.06), and the survival rates from egg to adult were found to be insufficient (16.1 and 10.8%). Additionally, the rate of exponential increase with age and age specific mortalities (b) were calculated for the virgin cohorts. Age specific mortality rates increased as temperature decreased. The increase in mortality rates started to accelerate at 27°C and was more pronounced at 30°C, for both females and males. We estimated the coefficients of variation for the b values in which females have smaller coefficients than those of the males at all temperatures.  相似文献   

19.
Marine photosynthesis is largely driven by cyanobacteria, namely Synechococcus and Prochlorococcus. Genes encoding for photosystem (PS) I and II reaction centre proteins are found in cyanophages and are believed to increase their fitness. Two viral PSI gene arrangements are known, psaJF→C→A→B→K→E→D and psaD→C→A→B. The shared genes between these gene cassettes and their encoded proteins are distinguished by %G + C and protein sequence respectively. The data on the psaD→C→A→B gene organization were reported from only two partial gene cassettes coming from Global Ocean Sampling stations in the Pacific and Indian oceans. Now we have extended our search to 370 marine stations from six metagenomic projects. Genes corresponding to both PSI gene arrangements were detected in the Pacific, Indian and Atlantic oceans, confined to a strip along the equator (30°N and 30°S). In addition, we found that the predicted structure of the viral PsaA protein from the psaD→C→A→B organization contains a lumenal loop conserved in PsaA proteins from Synechococcus, but is completely absent in viral PsaA proteins from the psaJF→C→A→B→K→E→D gene organization and most Prochlorococcus strains. This may indicate a co‐evolutionary scenario where cyanophages containing either of these gene organizations infect cyanobacterial ecotypes biogeographically restricted to the 30°N and 30°S equatorial strip.  相似文献   

20.
In coho salmon Oncorhynchus kisutch, no significant differences in critical thermal maximum (c. 26·9° C, CTmax) were observed among size‐matched wild‐type, domesticated, growth hormone (GH)‐transgenic fish fed to satiation, and GH‐transgenic fish on a ration‐restricted diet. Instead, GH‐transgenic fish fed to satiation had significantly higher maximum heart rate and Arrhenius breakpoint temperature (mean ± s.e. = 17·3 ± 0·1° C, TAB). These results provide insight into effects of modified growth rate on temperature tolerance in salmonids, and can be used to assess the potential ecological consequences of GH‐transgenic fishes should they enter natural environments with temperatures near their thermal tolerance limits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号