首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Zheng Z  Li H  Li L  Shao W 《Biotechnology letters》2012,34(3):541-547
The recombinant laccase from Thermus thermophilus was applied to the biobleaching of wheat straw pulp. The best bleaching effect was when the pulp was treated with 3 U laccase g−1 dry pulp at 90°C, pH 4.5, 8% consistency for 1.5 h. Under these conditions, the pulp brightness was increased by 3.3% ISO, and the pulp kappa number was decreased by 5.6 U. Enzymatic treatment improved the bleachability of wheat straw pulp but caused no damage to the pulp fibers. The use of enzyme-treated pulp saved 25% H2O2 consumption in subsequent peroxide bleaching without decreasing the final brightness. Pulp biobleaching in the presence of 5 mM ABTS further increased the pulp brightness by 1.5% ISO. This is the first report on the application of laccase from T. thermophilus in the pulp and paper sector.  相似文献   

2.
Xylanase production from B. megaterium was enhanced using solid state fermentation with respect to the use of solid substrate, moistening solution, moisture content, inoculum, sugars, soyabean meal, amino acids, and extraction with surfactant. An increase of ≈423-fold in xylanase production and complete suppression of CMCase production was achieved over submerged liquid fermentation. Biobleaching using this cellulase-free xylanase, 8 U/g of oven dried pulp of 10% consistency, showed 8.12% and 1.16% increase in brightness and viscosity, 13.67% decrease in kappa number, and 31% decrease in chlorine consumption at the CD stage.  相似文献   

3.
Summary Bleaching of hardwood kraft pulp by Trametes versicolor was accompanied by release and accumulation of methanol, which was produced by demethylation of the pulp. A partial demethylation of the pulp was observed with isolated laccase I from T. versicolor. The extent of demethylation by laccase was increased to the level released by the fungus by addition of 2,2-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS). Methanol release by the laccase/ABTS combination was followed by slower kappa reduction. Both methanol release and kappa reduction were dependent on laccase and ABTS concentrations. The fungus did not produce a stable equivalent of ABTS during bleaching, because extracellular culture fluid from bleaching cultures gave only the same methanol release from pulp as laccase I. Pulp viscosity, an indicator of cellulose chain length, was decreased only slightly by laccase. Thus the enzyme in the presence of ABTS, unlike the fungus, specifically attacks lignin.Offprint requests to: R. Bourbonnais  相似文献   

4.
A new laccase (EC 1.10.3.2) produced by Streptomyces cyaneus CECT 3335 in liquid media containing soya flour (20 g per liter) was purified to homogeneity. The physicochemical, catalytic, and spectral characteristics of this enzyme, as well as its suitability for biobleaching of eucalyptus kraft pulps, were assessed. The purified laccase had a molecular mass of 75 kDa and an isoelectric point of 5.6, and its optimal pH and temperature were 4.5 and 70°C, respectively. The activity was strongly enhanced in the presence of Cu2+, Mn2+, and Mg2+ and was completely inhibited by EDTA and sodium azide. The purified laccase exhibited high levels of activity against 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS) and 2,6-dimethoxyphenol and no activity against tyrosine. The UV-visible spectrum of the purified laccase was the typical spectrum of the blue laccases, with an absorption peak at 600 nm and a shoulder around 330 to 340 nm. The ability of the purified laccase to oxidize a nonphenolic compound, such as veratryl alcohol, in the presence of ABTS opens up new possibilities for the use of bacterial laccases in the pulp and paper industry. We demonstrated that application of the laccase from S. cyaneus in the presence of ABTS to biobleaching of eucalyptus kraft pulps resulted in a significant decrease in the kappa number (2.3 U) and an important increase in the brightness (2.2%, as determined by the International Standard Organization test) of pulps, showing the suitability of laccases produced by streptomycetes for industrial purposes.  相似文献   

5.
Laccases have low redox potentials limiting their environmental and industrial applications. The use of laccase mediators has proven to be an effective approach for overcoming the low redox potentials. However, knowledge about the role played by the mediator cocktails in such a laccase-mediator system (LMS) is scarce. Here, we assembled different dual-agent mediator cocktails containing 2,2′-azino-bis-(3-ethylbenzothiazoline-6-sulfonate) (ABTS), vanillin, and/or acetovanillone, and compared their mediating capabilities with those of each individual mediator alone in oxidation of pentachlorophenol (PCP) by Ganoderma lucidum laccase. Cocktails containing ABTS and either vanillin or acetovanillone strongly promoted PCP removal compared to the use of each mediator alone. The removal enhancement was correlated with mediator molar ratios of the cocktails and incubation times. Analysis of the kinetic constants for each mediator compound showed that G. lucidum laccase was very prone to react with ABTS rather than vanillin and acetovanillone in the cocktails. Moreover, the presence of the ABTS radical (ABTS+•) and vanillin or acetovanillone significantly enhanced PCP removal concomitant with electron transfer from vanillin or acetovanillone to ABTS+•. These results strongly suggest that vanillin and acetovanillone mediate the reaction between ABTS and PCP via multiple sequential electron transfers among laccase and its mediators.  相似文献   

6.
An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.  相似文献   

7.
An environmentally sound biobleaching to get high quality paper pulp from mixed wood pulp was attempted employing laccase from Aspergillus fumigatus VkJ2.4.5 for lignin removal. Laccase treatment was performed in the presence of a mediator N-hydroxybenzotriazole (HBT, 1.5% w/w), resulting into notably higher level of delignification of the pulp. Enzyme at 10 Ug−1 of pulp at 50°C, pH 6.0, for 2 h with a pulp consistency of 10% was found suitable for enabling maximum decrease in the kappa number. The kappa number and yellowness decreased by 14 and 4% whereas ISO brightness improved by 7%. The presence of a characteristic peak at 280 nm indicated the presence of lignin in the effluent during biobleaching. Analysis of FTIR spectra of residual lignin revealed characteristic modifications following enzymatic bleaching by laccase mediator system (LMS). Variations in morphology and crystallinity of pulp were evaluated by scanning electron microscopy and X-ray diffraction analysis.  相似文献   

8.
An extracellular laccase was isolated and purified from Pleurotus sajor-caju grown in submerged culture in a bioreactor, and used to investigate its ability to decolorize three azo dyes. The extracellular laccase production was enhanced up to 2.5-fold in the medium amended with xylidine (1 mM). Purification was carried out using ammonium sulfate (70% w/v), DEAE-cellulose, and Sephadex G-100 column chromatography. The enzyme was purified up to 10.3-fold from the initial protein preparation with an overall yield of 53%. The purified laccase was monomeric with an apparent molecular mass of 61.0 kDa. The purified enzyme exerted its optimal activity with 2,2-azino–bis(3-ethylbenzo-thiazoline-6-sulfonate (ABTS) and oxidized various lignin-related phenols. The catalytic efficiencies k cat/K m determined for ABTS and syringaldazine were 9.2×105 and 8.7×105, respectively. The optimum pH and temperature for the purified enzyme was 5.0 and 40 °C, respectively. Sodium azide completely inhibited the laccase activity. The absorption spectrum revealed type 1 and type 3 copper signals. The purified enzyme decolorized azo dyes such as acid red 18, acid Black 1, and direct blue 71 up to 90, 87, and 72%, respectively. Decolorization ability of P. sajor-caju laccase suggests that this enzyme could be used for decolorization of industrial effluents.  相似文献   

9.
《Process Biochemistry》2004,39(11):1415-1419
The white-rot fungus Pleurotus ostreatus strain 32 is an excellent producer of the industrially important enzyme laccase. Laccase was the only ligninolytic activity detected in the supernatant when the fungus was grown in liquid culture with or without shaking. Growth and laccase production in static cultivation were superior to that in agitated cultivation, and N-limited culture is of benefit to laccase production. When using cellobiose and peptone as carbon and nitrogen source, a higher activity level was obtained. 2,2′-Azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) (1 mM) was shown to be the best inducer of laccase production, reaching maximum values of about 400 U/ml. Cu2+ (1 mM) also had a positive effect on laccase production, activity being enhanced to 360 U/ml. In addition, anthraquinone dye SN4R can be effectively decolorized by crude laccase (30 U/ml), the rate of which was 66%. The decolorization rate was increased by 90% with ABTS (0.16%) addition as a mediator of laccase.  相似文献   

10.
In this study, we have attempted to determine the optimum concentration of inducers responsible for efficient laccase production by the white-rot fungus,Trametes sp. Variations in laccase activity were investigated with changing concentrations of 2,5-xylidine, syringaldazine, ABTS, and guaiacol. Enhancement of peak laccase activity was achieved via the combination of 2,5-xylidine with ABTS, syringaldazine, or guaiacol, resulting in increases of up to 359, 313, and 340%, respectively, as compared to control values. Among the tested inducers, the addition of 0.1 mM of ABTS coupled with 1.0 mM of 2,5-xylidine in the medium after 24 h of cultivation proved optimal with regard to laccase enzyme production.  相似文献   

11.
Biomass recalcitrance is still a main challenge for the production of biofuels and high-value products. Here, an alternative Miscanthus pretreatment method by using lignin-degrading bacteria was developed. Six efficient Miscanthus-degrading bacteria were first cultured to produce laccase by using 0.5% Miscanthus biomass as carbon source. After 1–5 days of incubation, the maximum laccase activities induced by Miscanthus in the six strains were ranged from 103 to 8091 U l−1. Then, the crude enzymes were directly diluted by equal volumes of citrate buffer and added Miscanthus biomass to a solid concentration at 4% (w/v). The results showed that all bacterial pretreatments significantly decreased the lignin content, especially in the presence of two laccase mediators (ABTS and HBT). The lignin removal directly correlated with increases in total sugar and glucose yields after enzymatic hydrolysis. When ABTS was used as a mediator, the best lignin-degrading bacteria (Pseudomonas sp. AS1) can remove up to 50.1% lignin of Miscanthus by obtaining 2.2-fold glucose yield, compared with that of untreated biomass. Therefore, this study provided an effective Miscanthus pretreatment method by using lignin-degrading bacteria, which may be potentially used in improving enzymatic hydrolysability of biomass.  相似文献   

12.
A thermostable laccase was isolated from a tropical white-rot fungus Polyporus sp. which produced as high as 69,738 units of laccase l−1 in an optimized medium containing 20 g of malt extract l−1, 2 g of yeast extract l−1, 1.5 mM CuSO4. The laccase was purified to electrophoretic purity with a final purification of 44.70-fold and a recovery yield of 21.04%. The purified laccase was shown to be a monomeric enzyme with a molecular mass of 60 kDa. The optimum temperature and pH value of the laccase were 75°C and pH 4.0, respectively, for 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonate) (ABTS). The Michaelis–Menten constant (K m ) of the laccase was 18 μM for ABTS substrate. The laccase was stable at pH values between 5.5 and 7.5. About 80% of the initial enzyme activity was retained after incubation of the laccase at 70°C for 2 h, indicating that the laccase was intrinsically highly thermostable and with valuable potential applications. The laccase activity was promoted by 4.0 mM of Mg2+, Mn2+, Zn2+ and Ca2+, while inhibited by 4.0 mM of Co2+, Al3+, Cu2+, and Fe2+, showing different profiles of metal ion effects.  相似文献   

13.
A laccase (Lcc1) from the white-rot fungus Meripilus giganteus was purified with superior yields of 34% and 90% by conventional chromatography or by foam separation, respectively. Size exclusion chromatography (SEC) and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) yielded a molecular mass of 55 kDa. The enzyme possessed an isoelectric point of 3.1 and was able to oxidize the common laccase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at a pH of 2.0, whereas the enzyme was still able to oxidize ABTS and 2,6-dimethoxyphenol (DMP) at pH 6.0. Lcc1 exhibited low K m values of 8 μM (ABTS) and 80 μM (DMP) and remarkable catalytic efficiency towards the non-phenolic substrate ABTS of 37,437 k cat/k m (s−1 mM−1). The laccase showed a high stability towards high concentrations of various metal ions, EDTA and surfactants indicating a considerable biotechnological potential. Furthermore, Lcc1 exhibited an increased activity as well as a striking boost of stability in the presence of surfactants. Degenerated primers were deduced from peptide fragments. The complete coding sequence of lcc1 was determined to 1,551 bp and confirmed via amplification of the 2,214 bp genomic sequence which included 12 introns. The deduced 516 amino acid (aa) sequence of the lcc1 gene shared 82% identity and 90% similarity with a laccase from Rigidoporus microporus. The sequence data may aid theoretical studies and enzyme engineering efforts to create laccases with an improved stability towards metal ions and bipolar compounds.  相似文献   

14.
Pleurotus ferulae is a mushroom typically found in arid steppe that is distributed widely in the Junggar Basin of Xinjiang, China. In this work, laccase production by P. ferulae JM30X was optimized in terms of medium composition and culture conditions. After optimization, the highest laccase activity obtained was 6,832.86 U/L. A single isozyme with a molecular weight of 66 kDa was observed by SDS-PAGE and native-PAGE. Optimum pH and temperature were 3.0 and 50–70 °C, respectively. The best laccase substrate was ABTS, for which the Michaelis-Menten constant (K m) and catalytic efficiency (K cat/K m) value for P. ferulae laccase were 0.193 mM and 2.73?×?106 (mM s)?1, respectively. The activity of purified laccase was increased by more than four-fold by Cu2+, Mn2+ and Mg2+, while it was completely inhibited by Fe2+ and Fe3+. The production of laccase was influenced by the initial pH and K+ concentration, and the activity of purified laccase was enhanced by Cu2+, Mn2+ and Mg2+. This Pleurotus genus laccase from P. ferulae JM30X was analyzed by MS spectrum and the results are conducive to furthering our understanding of Pleurotus genus laccases.  相似文献   

15.
We studied the metabolism of polycyclic aromatic hydrocarbons (PAHs) by using white rot fungi previously identified as organisms that metabolize polychlorinated biphenyls. Bran flakes medium, which has been shown to support production of high levels of laccase and manganese peroxidase, was used as the growth medium. Ten fungi grown for 5 days in this medium in the presence of anthracene, pyrene, or phenanthrene, each at a concentration of 5 μg/ml could metabolize these PAHs. We studied the oxidation of 10 PAHs by using laccase purified from Coriolopsis gallica. The reaction mixtures contained 20 μM PAH, 15% acetonitrile in 60 mM phosphate buffer (pH 6), 1 mM 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulfonate) (ABTS), and 5 U of laccase. Laccase exhibited 91% of its maximum activity in the absence of acetonitrile. The following seven PAHs were oxidized by laccase: benzo[a]pyrene, 9-methylanthracene, 2-methylanthracene, anthracene, biphenylene, acenaphthene, and phenanthrene. There was no clear relationship between the ionization potential of the substrate and the first-order rate constant (k) for substrate loss in vitro in the presence of ABTS. The effects of mediating substrates were examined further by using anthracene as the substrate. Hydroxybenzotriazole (HBT) (1 mM) supported approximately one-half the anthracene oxidation rate (k = 2.4 h−1) that ABTS (1 mM) supported (k = 5.2 h−1), but 1 mM HBT plus 1 mM ABTS increased the oxidation rate ninefold compared with the oxidation rate in the presence of ABTS, to 45 h−1. Laccase purified from Pleurotus ostreatus had an activity similar to that of C. gallica laccase with HBT alone, with ABTS alone, and with 1 mM HBT plus 1 mM ABTS. Mass spectra of products obtained from oxidation of anthracene and acenaphthene revealed that the dione derivatives of these compounds were present.  相似文献   

16.
The laccase gene lacD, cloned from a novel laccase-producing basidiomycete Trametes sp. 420, contained 2,052 base pairs (bp) interrupted by 8 introns. lacD displayed a relatively high homology with laccase genes from other white rot fungi, whereas the homology between lacD and laccase genes from plants, insects, or bacteria was less than 25%. A 498–amino acid peptide encoded by the lacD cDNA was heterologously expressed in the Pichia pastoris strain GS115, resulting in the highest yield of laccase (8.3 × 104 U/l) as determined with ABTS (2,2′-azinobis [3-ethylbenzothia-zoline-6-sulfonic acid]) as the substrate. Additionally, the enzyme activity of recombinant laccase on decolorization of some industrial dyes was assessed.  相似文献   

17.
Bao W  Peng R  Zhang Z  Tian Y  Zhao W  Xue Y  Gao J  Yao Q 《Molecular biology reports》2012,39(4):3871-3877
A novel laccase gene from Monilinia fructigena was synthesized chemically according to the yeast bias codon and integrated into the genome of Pichia pastoris GS115 by electroporation. The expressed enzyme was recovered from the culture supernatant and purified. The result of enzyme activity assay and SDS-PAGE demonstrated that the recombinant laccase was induced and extracellularly expressed in P. pastoris. Main biochemical properties of this laccase, such as thermodependence and thermostability, optimal pH and pH stability, and the effect of metal ions and inhibitors, were characterized. With 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonate (ABTS) as the substrate, MfLcc had its optimal pH at 3.5 and optimal temperature at 45°C. The Km values of the ABTS, guaiacol were 0.012 and 0.016 Mm, respectively, and the corresponding V max values are 243.9 and 10.55 Um min−1 mg−1, respectively. The recombinant laccase degraded 80% 2,4,6-trichlorophenol after 8 h under the optimal conditions. The recombinant strain and its laccase can be considered as candidate for treating waste water polluted with trichlorophenols.  相似文献   

18.
Aims: To isolate and characterize the laccase isoforms from S. ochraceum 1833 – a new active producer of high extracellular laccase activity. Methods and Results: Three laccase isoforms (laccases I, II and III) with 57·5, 59·5 and 63 kDa molecular masses respectively were purified from S. ochraceum 1833 and in contrast to the known laccases had strongly pronounced absorption at 611 nm with molar extinction coefficients ranging from 7170 to 7830 mol?1 l cm?1. All isoforms showed maximal activity with ABTS at low pH (≤2) and temperatures in the range 70–80°C, were stable for long time of incubation at high temperature (60–80°C) and at pH values ranging from 2 to 6. Laccase II showed a higher activity and wider substrate specificity. N‐terminal amino acid sequence analysis of the purified laccase II (VQIGPVTDLH) showed 80% identity with the N‐terminal amino acid sequence of laccase from Lentinula edodes [Appl Microbiol Biotechnol 60 (2002) 327]. Conclusions: Elevated temperature optima, high thermo‐ and pH‐stabilities, the broad substrate specificity of the isoforms make the laccases from S. ochraceum 1833 a suitable model for biotechnological processes proceeding at high temperatures. Significance and Impact of the Study: For the first time, new basidiomycete strain S. ochraceum was reported as a producer of novel thermostable, pH stable, acidophilic laccases with unusual spectral properties.  相似文献   

19.
A number of hydroxamic acids have been synthesized and investigated as laccase-mediators for pulp bleaching. As compared with N-hydroxyacetanilide (NHA), one of the most effective laccase-mediators reported so far, N-(4-cyanophenyl)acetohydroxamic acid (NCPA), resulted in the highest brightness and lowest kappa number of hardwood kraft pulp of all the laccase-mediators studied. The bleaching efficacy of a laccase/7-cyano-4-hydroxy-2H-1,4-benzoxazin-3-one system was also comparable with that of a laccase/NHA system. A laccase/NCPA system was further studied for the bleaching of unbleached softwood kraft pulp. The effects of pulp consistency, laccase dosage, NCPA dosage, incubation time, and oxygen pressure on the bleaching efficacy of a laccase/NCPA system were studied.  相似文献   

20.
栓孔菌属漆酶高产菌株的初步筛选及其产酶条件的优化   总被引:4,自引:1,他引:3  
利用显色反应对栓孔菌属(Trametes)进行了漆酶高产菌株的筛选,并对目标菌株的产酶条件进行了优化,在添加愈创木酚的固体培养基中,通过显色反应初步筛选出漆酶高产菌株东方栓孔菌Trametes orientalis Cui 6300;进一步通过单因子分析、正交试验和ABTS法确定了菌株Cui 6300的最适产酶条件:麦芽糖15 g/L,蛋白胨3 g/L,pH 4.8,Cu2+2.0 mmol/L,培养温度28°C,接种饼直径1.5 cm,此时酶活最高可达19.923 U/mL;同时探索了Cu2+浓度及添加时间对其菌丝生物量和漆酶活力的影响。研究表明,Cu2+最适添加浓度为2.0 mmol/L,添加时间为接种后第3天。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号