首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Conversion of lignocellulose to lactic acid requires strains capable of fermenting sugar mixtures of glucose and xylose. Recombinant Escherichia coli strains were engineered to selectively produce L-lactic acid and then used to ferment sugar mixtures. Three of these strains were catabolite repression mutants (ptsG ) that have the ability to simultaneously ferment glucose and xylose. The best results were obtained for ptsG strain FBR19. FBR19 cultures had a yield of 0.77 (g lactic acid/g added sugar) when used to ferment a 100 g/l total equal mixture of glucose and xylose. The strain also consumed 75% of the xylose. In comparison, the ptsG + strains had yields of 0.47–0.48 g/g and consumed 18–22% of the xylose. FBR19 was subsequently used to ferment a variety of glucose (0–40 g/l) and xylose (40 g/l) mixtures. The lactic acid yields ranged from 0.74 to 1.00 g/g. Further experiments were conducted to discover the mechanism leading to the poor yields for ptsG + strains. Xylose isomerase (XI) activity, a marker for induction of xylose metabolism, was monitored for FBR19 and a ptsG + control during fermentations of a sugar mixture. Crude protein extracts prepared from FBR19 had 10–12 times the specific XI activity of comparable samples from ptsG + strains. Therefore, higher expression of xylose metabolic genes in the ptsG strain may be responsible for superior conversion of xylose to product compared to the ptsG + fermentations. Received 14 December 2000/ Accepted in revised form 28 June 2002  相似文献   

2.
Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose using Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuous stirred tank reactor‐CSTR) productivities of 0.84 gL?1 h?1 and 1.77 gL?1 h?1 were achieved, respectively. A cell recycle membrane reactor resulted in the highest productivity of 55.56 gL?1 h?1, which is an increase of 66‐fold (e.g., 6614%) over the batch reactor. Calcium alginate gel CSTR resulted in a productivity of 2.04 gL?1 h?1 whereas adsorbed cell packed bed reactor resulted in a productivity of 4.39 gL?1 h?1. In the five reactor systems, ethanol concentrations ranged from 18.9 to 40.30 gL?1 with metabolic yields from 0.44 to 0.51. Published 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

3.
Continuous production of ethanol from alkaline peroxide pretreated and enzymatically saccharified wheat straw hydrolysate by ethanologenic recombinant Escherichia coli strain FBR5 was investigated under various conditions at controlled pH 6.5 and 35°C. The strain FBR5 was chosen because of its ability to ferment both hexose and pentose sugars under semi-anaerobic conditions without using antibiotics. The average ethanol produced from the available sugars (21.9–47.8 g/L) ranged from 8.8 to 17.3 g/L (0.28–0.45 g/g available sugars, 0.31–0.48 g/g sugar consumed) with ethanol productivity of 0.27–0.78 g l−1 h−1 in a set of 14 continuous culture (CC) runs (16–105 days). During these CC runs, no loss of ethanol productivity was observed. This is the first report on the continuous production of ethanol by the recombinant bacterium from a lignocellulosic hydrolysate.  相似文献   

4.
An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).  相似文献   

5.
Fermentations with new recombinant organisms.   总被引:7,自引:0,他引:7  
United States fuel ethanol production in 1998 exceeded the record production of 1.4 billion gallons set in 1995. Most of this ethanol was produced from over 550 million bushels of corn. Expanding fuel ethanol production will require developing lower-cost feedstocks, and only lignocellulosic feedstocks are available in sufficient quantities to substitute for corn starch. Major technical hurdles to converting lignocellulose to ethanol include the lack of low-cost efficient enzymes for saccharification of biomass to fermentable sugars and the development of microorganisms for the fermentation of these mixed sugars. To date, the most successful research approaches to develop novel biocatalysts that will efficiently ferment mixed sugar syrups include isolation of novel yeasts that ferment xylose, genetic engineering of Escherichia coli and other gram negative bacteria for ethanol production, and genetic engineering of Saccharoymces cerevisiae and Zymomonas mobilis for pentose utilization. We have evaluated the fermentation of corn fiber hydrolyzates by the various strains developed. E. coli K011, E. coli SL40, E. coli FBR3, Zymomonas CP4 (pZB5), and Saccharomyces 1400 (pLNH32) fermented corn fiber hydrolyzates to ethanol in the range of 21-34 g/L with yields ranging from 0.41 to 0.50 g of ethanol per gram of sugar consumed. Progress with new recombinant microorganisms has been rapid and will continue with the eventual development of organisms suitable for commercial ethanol production. Each research approach holds considerable promise, with the possibility existing that different "industrially hardened" strains may find separate applications in the fermentation of specific feedstocks.  相似文献   

6.
In these studies, liquid hot water (LHW) pretreated and enzymatically hydrolyzed Sweet Sorghum Bagasse (SSB) hydrolyzates were fermented in a fed‐batch reactor. As reported in the preceding paper, the culture was not able to ferment the hydrolyzate I in a batch process due to presence of high level of toxic chemicals, in particular acetic acid released from SSB during the hydrolytic process. To be able to ferment the hydrolyzate I obtained from 250 g L?1 SSB hydrolysis, a fed‐batch reactor with in situ butanol recovery was devised. The process was started with the hydrolyzate II and when good cell growth and vigorous fermentation were observed, the hydrolyzate I was slowly fed to the reactor. In this manner the culture was able to ferment all the sugars present in both the hydrolyzates to acetone butanol ethanol (ABE). In a control batch reactor in which ABE was produced from glucose, ABE productivity and yield of 0.42 g L?1 h?1 and 0.36 were obtained, respectively. In the fed‐batch reactor fed with SSB hydrolyzates, these productivity and yield values were 0.44 g L?1 h?1 and 0.45, respectively. ABE yield in the integrated system was high due to utilization of acetic acid to convert to ABE. In summary we were able to utilize both the hydrolyzates obtained from LHW pretreated and enzymatically hydrolyzed SSB (250 g L?1) and convert them to ABE. Complete fermentation was possible due to simultaneous recovery of ABE by vacuum. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:967–972, 2018  相似文献   

7.

Background

Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose.

Results

The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells)-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells)-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells)-1 h-1 compared with 0.01 g (g cells)-1 h-1 for the xylose reductase/xylitol dehydrogenase strain and the xylose isomerase strain, respectively.

Conclusion

The combination of the xylose reductase/xylitol dehydrogenase pathway and the bacterial arabinose isomerase pathway resulted in both higher pentose sugar uptake and higher overall ethanol production than the combination of the xylose isomerase pathway and the bacterial arabinose isomerase pathway. Moreover, the flux through the bacterial arabinose pathway did not increase when combined with the xylose isomerase pathway. This suggests that the low activity of the bacterial arabinose pathway cannot be ascribed to arabitol formation via the xylose reductase enzyme.  相似文献   

8.
The newly isolated extreme thermophile Thermoanaerobacter pentosaceus was used for ethanol production from alkaline‐peroxide pretreated rapeseed straw (PRS). Both the liquid and solid fractions of PRS were used. T. pentosaceus was able to metabolize the typical process inhibitors present in lignocellulosic hydrolysate, namely 5‐hydroxymethyl furfural (HMF) and furfural, up to concentrations of 1 and 0.5 g L?1, respectively. Above these levels, xylose consumption was inhibited up to 70% (at 3.4 g‐furfural L?1) and 75% (at 3.4 g‐HMF L?1). T. pentosaceus was able to grow and produce ethanol directly from the liquid fraction of PRS, without any dilution or need for additives. However, when the hydrolysate was used undiluted the ethanol yield was only 37% compared to yield of the control, in which pure sugars in synthetic medium were used. The decrease of ethanol yield was attributed to the high amounts of salts resulting from the alkaline‐peroxide pretreatment. Finally, a two‐stage ethanol production process from PRS using Saccharomyces cerevisiae (utilization of hexoses in the first step) and T. pentosaceus (utilization of pentoses in the second step) was developed. Results showed that the two strains together could achieve up to 85% of the theoretical ethanol yield based on the sugar composition of the rapeseed straw, which was 14% and 50% higher compared to the yield with the yeast or the bacteria alone, respectively. Biotechnol. Bioeng. 2013; 110: 1574–1582. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
d ‐lactic acid is of great interest because of increasing demand for biobased poly‐lactic acid (PLA). Blending poly‐l ‐lactic acid with poly‐d ‐lactic acid greatly improves PLA's mechanical and physical properties. Corn stover and sorghum stalks treated with 1% sodium hydroxide were investigated as possible substrates for d ‐lactic acid production by both sequential saccharification and fermentation and simultaneous saccharification and cofermentation (SSCF). A commercial cellulase (Cellic CTec2) was used for hydrolysis of lignocellulosic biomass and an l ‐lactate‐deficient mutant strain Lactobacillus plantarum NCIMB 8826 ldhL1 and its derivative harboring a xylose assimilation plasmid (ΔldhL1‐pCU‐PxylAB) were used for fermentation. The SSCF process demonstrated the advantage of avoiding feedback inhibition of released sugars from lignocellulosic biomass, thus significantly improving d ‐lactic acid yield and productivity. d ‐lactic acid (27.3 g L?1) and productivity (0.75 g L?1 h?1) was obtained from corn stover and d ‐lactic acid (22.0 g L?1) and productivity (0.65 g L?1 h?1) was obtained from sorghum stalks using ΔldhL1‐pCU‐PxylAB via the SSCF process. The recombinant strain produced a higher concentration of d ‐lactic acid than the mutant strain by using the xylose present in lignocellulosic biomass. Our findings demonstrate the potential of using renewable lignocellulosic biomass as an alternative to conventional feedstocks with metabolically engineered lactic acid bacteria to produce d ‐lactic acid. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:271–278, 2016  相似文献   

10.
Acetic acid is an important chemical raw material that can be produced directly from sugars in lignocellulosic biomass. Development of kinetic models that capture the bioconversion dynamics of multiple sugar systems will be critical to optimization and process control in future lignocellulosic biorefinery processes. In this work, a kinetic model was developed for the single- and dual-substrate conversion of xylose and glucose to acetic acid using the acetogen Moorella thermoacetica. Batch fermentations were performed experimentally at 20 g L?1 total sugar concentration using synthetic glucose, xylose, and a mixture of glucose and xylose at a 1:1 ratio. The product yield, calculated as total product formed divided by total sugars consumed, was 79.2, 69.9, and 69.7 % for conversion of glucose, xylose, and a mixture of glucose and xylose (1:1 ratio), respectively. During dual-substrate fermentation, M. thermoacetica demonstrated diauxic growth where xylose (the preferred substrate) was almost entirely consumed before consumption of glucose began. Kinetic parameters were similar for the single-substrate fermentations, and a strong linear correlation was determined between the maximum specific growth rate μ max and substrate inhibition constant, K s . Parameters estimated for the dual-substrate system demonstrated changes in the specific growth rate of both xylose and glucose consumption. In particular, the maximum growth rate related to glucose tripled compared to the single-substrate system. Kinetic growth is affected when multiple substrates are present in a fermentation system, and models should be developed to reflect these features.  相似文献   

11.
In this study, a non-sterile (open) continuous fermentation (OCF) process with no-carbon loss was developed to improve lactic acid (LA) productivity and operational stability from the co-utilization of lignocellulose-derived sugars by thermophilic Enterococcus faecium QU 50. The effects of different sugar mixtures on LA production were firstly investigated in conventional OCF at 50°C, pH 6.5 and a dilution rate of 0.20 hr−1. The xylose consumption ratio was greatly lower than that of glucose in fermentations with glucose/xylose mixtures, indicating apparent carbon catabolite repression (CCR). However, CCR could be efficiently eliminated by feeding solutions containing the cellobiose/xylose mixture. In OCF at a dilution rate ca. 0.10 hr−1, strain QU 50 produced 42.6 g L−1 of l -LA with a yield of 0.912 g g−1-consumed sugars, LA yield of 0.655 g g−1 based on mixed sugar-loaded, and a productivity of 4.31 g L−1 hr−1 from simulated energy cane hydrolyzate. In OCF with high cell density by cell recycling, simultaneous and complete co-utilization of sugars was achieved with stable LA production at 60.1 ± 3.25 g L−1 with LA yield of 0.944 g g−1-consumed sugar and LA productivity of 6.49 ± 0.357 g L−1 hr−1. Besides this, a dramatic increase in LA yield of 0.927 g g−1 based on mixed sugar-loaded with prolonged operational stability for at least 500 hr (>20 days) was established. This robust system demonstrates an initial green step with a no-carbon loss under energy-saving toward the feasibility of sustainable LA production from lignocellulosic sugars.  相似文献   

12.
2,3‐Butanediol (2,3‐BDO) is a promising bulk chemical owing to its high potential in industrial applications. Here, we engineered Klebsiella oxytoca for the economic production of 2,3‐BDO using mixed sugars from renewable biomass. First, to improve xylose consumption, the xylose transporter gene (xylE) was integrated into the methylglyoxal synthase A (mgsA)‐coding gene loci, and the engineered CHA004 strain showed much faster consumption of xylose than wild‐type (WT) strain with 1.4‐fold increase of overall sugar consumption rate. To further improve sugar utilization, we performed adaptive laboratory evolution for 90 days. The evolved strain (CHA006) was evaluated by cultivating it in the media containing single‐ or mixed‐sugars, and it was clearly observed that CHA006 has improved sugar consumption and 2,3‐BDO production than those of the parental strain. Finally, we demonstrated the superiority of CHA006 by culturing in two lignocellulosic hydrolysates derived from sunflower or pine tree. Particularly, in the pine tree hydrolysate containing xylose, glucose, galactose, and mannose, the CHA006 strain showed much improved consumption rates for all sugars, and 2,3‐BDO productivity (0.73 g L?1 hr?1) increased by 3.2‐fold compared to WT strain. We believe that the engineered CHA006 strain can be a potential host in the development of economic bioprocess for 2,3‐BDO through efficient utilization of mixed sugars derived from lignocellulosic biomass.  相似文献   

13.
Hemicellulose hydrolysates of agricultural residues often contain mixtures of hexose and pentose sugars. Ethanologenic Escherichia coli that have been previously investigated preferentially ferment hexose sugars. In some cases, xylose fermentation was slow or incomplete. The purpose of this study was to develop improved ethanologenic E. coli strains for the fermentation of pentoses in sugar mixtures. Using fosfomycin as a selective agent, glucose-negative mutants of E. coli KO11 (containing chromosomally integrated genes encoding the ethanol pathway from Zymomonas mobilis) were isolated that were unable to ferment sugars transported by the phosphoenolpyruvate-dependent phosphotransferase system. These strains (SL31 and SL142) retained the ability to ferment sugars with independent transport systems such as arabinose and xylose and were used to ferment pentose sugars to ethanol selectively in the presence of high concentrations of glucose. Additional fosfomycin-resistant mutants were isolated that were superior to strain KO11 for ethanol production from hexose and pentose sugars. These hyperproductive strains (SL28 and SL40) retained the ability to metabolize all sugars tested, completed fermentations more rapidly, and achieved higher ethanol yields than the parent. Both SL28 and SL40 produced 60 gl–1 ethanol from 120 gl–1 xylose in 60 h, 20% more ethanol than KO11 under identical conditions. Further studies illustrated the feasibility of sequential fermentation. A mixture of hexose and pentose sugars was fermented with near theoretical yield by SL40 in the first step followed by a second fermentation in which yeast and glucose were added. Such a two-step approach can combine the attributes of ethanologenic E. coli for pentoses with the high ethanol tolerance of conventional yeasts in a single vessel.  相似文献   

14.
In these studies, butanol (acetone butanol ethanol or ABE) was produced from concentrated lactose/whey permeate containing 211 g L?1 lactose. Fermentation of such a highly concentrated lactose solution was possible due to simultaneous product removal using a pervaporation membrane. In this system, a productivity of 0.43 g L?1 h?1 was obtained which is 307 % of that achieved in a non-product removal batch reactor (0.14 g L?1 h?1) where approximately 60 g L?1 whey permeate lactose was fermented. The productivity obtained in this system is much higher than that achieved in other product removal systems (perstraction 0.21 g L?1 h?1 and gas stripping 0.32 g L?1 h?1). This membrane was also used to concentrate butanol from approximately 2.50 g L?1 in the reactor to 755 g L?1. Using this membrane, ABE selectivities and fluxes of 24.4–44.3 and 0.57–4.05 g m?2 h?1 were obtained, respectively. Pervaporation restricts removal of water from the reaction mixture thus requiring significantly less energy for product recovery when compared to gas stripping.  相似文献   

15.
The herbaceous perennial energy crops miscanthus, giant reed, and switchgrass, along with the annual crop residue corn stover, were evaluated for their bioconversion potential. A co‐hydrolysis process, which applied dilute acid pretreatment, directly followed by enzymatic saccharification without detoxification and liquid–solid separation between these two steps was implemented to convert lignocellulose into monomeric sugars (glucose and xylose). A factorial experiment in a randomized block design was employed to optimize the co‐hydrolysis process. Under the optimal reaction conditions, corn stover exhibited the greatest total sugar yield (glucose + xylose) at 0.545 g g?1 dry biomass at 83.3% of the theoretical yield, followed by switch grass (0.44 g g?1 dry biomass, 65.8% of theoretical yield), giant reed (0.355 g g?1 dry biomass, 64.7% of theoretical yield), and miscanthus (0.349 g g?1 dry biomass, 58.1% of theoretical yield). The influence of combined severity factor on the susceptibility of pretreated substrates to enzymatic hydrolysis was clearly discernible, showing that co‐hydrolysis is a technically feasible approach to release sugars from lignocellulosic biomass. The oleaginous fungus Mortierella isabellina was selected and applied to the co‐hydrolysate mediums to accumulate fungal lipids due to its capability of utilizing both C5 and C6 sugars. Fungal cultivations grown on the co‐hydrolysates exhibited comparable cell mass and lipid production to the synthetic medium with pure glucose and xylose. These results elucidated that combining fungal fermentation and co‐hydrolysis to accumulate lipids could have the potential to enhance the utilization efficiency of lignocellulosic biomass for advanced biofuels production. Biotechnol. Bioeng. 2013; 110: 1039–1049. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
During second‐generation bioethanol production from lignocellulosic biomass, the desired traits for fermenting microorganisms, such as Saccharomyces cerevisiae, are high xylose utilization and high robustness to inhibitors in lignocellulosic hydrolysates. However, as observed previously, these two traits easily showed the antagonism, one rising and the other falling, in the C6/C5 co‐fermenting S. cerevisiae strain. In this study, LF1 obtained in our previous study is an engineered budding yeast strain with a superior co‐fermentation capacity of glucose and xylose, and was then mutated by atmospheric and room temperature plasma (ARTP) mutagenesis to improve its robustness. The ARTP‐treated cells were grown in 50% (v/v) leachate from lignocellulose pretreatment with high inhibitors content for adaptive evolution. After 30 days, the generated mutant LF1‐6 showed significantly enhanced tolerance, with a six‐fold increase in cell density in the above leachate. Unfortunately, its xylose utilization dropped markedly, indicating the recurrence of the negative correlation between xylose utilization and robustness. To alleviate this antagonism, LF1‐6 cells were iteratively mutated with ARTP mutagenesis and then anaerobically grown using xylose as the sole carbon source, and xylose utilization was restored in the resulting strain 6M‐15. 6M‐15 also exhibited increased co‐fermentation performance of xylose and glucose with the highest ethanol productivity reported to date (0.525 g g?1 h?1) in high‐level mixed sugars (80 g L?1 glucose and 40 g L?1 xylose) with no inhibitors. Meanwhile, its fermentation time was shortened by 8 h compared to that of LF1. During the fermentation of non‐detoxified lignocellulosic hydrolysate with high inhibitor concentrations at pH ~3.5, 6M‐15 can efficiently convert glucose and xylose with an ethanol yield of 0.43 g g?1. 6M‐15 is also regarded as a potential chassis cell for further design of a customized strain suitable for production of second‐generation bioethanol or other high value‐added products from lignocellulosic biomass.  相似文献   

17.

Background

Corn stover, as one important lignocellulosic material, has characteristics of low price, abundant output and easy availability. Using corn stover as carbon source in the fermentation of valuable organic chemicals contributes to reducing the negative environmental problems and the cost of production. In ethanol fermentation based on the hydrolysate of corn stover, the conversion rate of fermentable sugars is at a low level because the native S. cerevisiae does not utilize xylose. In order to increase the conversion rate of fermentable sugars deriving from corn stover, an effective and energy saving biochemical process was developed in this study and the residual xylose after ethanol fermentation was further converted to l-lactic acid.

Results

In the hybrid process based on the hydrolysate of corn stover, the ethanol concentration and productivity reached 50.50 g L?1 and 1.84 g L?1 h?1, respectively, and the yield of ethanol was 0.46 g g?1. The following fermentation of l-lactic acid provided a product titer of 21.50 g L?1 with a productivity of 2.08 g L?1 h?1, and the yield of l-lactic acid was 0.76 g g?1. By adopting a blank aeration before the inoculation of B. coagulans LA1507 and reducing the final cell density, the l-lactic acid titer and yield reached 24.25 g L?1 and 0.86 g g?1, respectively, with a productivity of 1.96 g L?1 h?1.

Conclusions

In this work, the air pumped into the fermentor was used as both the carrier gas for single-pass gas stripping of ethanol and the oxygen provider for the aerobic growth of B. coagulans LA1507. Ethanol was effectively separated from the fermentation broth, while the residual medium containing xylose was reused for l-lactic acid production. As an energy-saving and environmental-friendly process, it introduced a potential way to produce bioproducts under the concept of biorefinery, while making full use of the hydrolysate of corn stover.
  相似文献   

18.
Until recently, the methylotrophic yeast has not been considered as a potential producer of biofuels, particularly, ethanol from lignocellulosic hydrolysates. The first work published 10 years ago revealed the ability of the thermotolerant methylotrophic yeast Hansenula polymorpha to ferment xylose—one of the main sugars of lignocellulosic hydrolysates—which has made the yeast a promising organism for high-temperature alcoholic fermentation. Such a feature of H. polymorpha could be used in the implementation of a potentially effective process of simultaneous saccharification and fermentation (SSF) of raw materials. SSF makes it possible to combine enzymatic hydrolysis of raw materials with the conversion of the sugars produced into ethanol: enzymes hydrolyze polysaccharides to monomers, which are immediately consumed by microorganisms (producers of ethanol). However, the efficiency of alcoholic fermentation of major sugars produced via hydrolysis of lignocellulosic raw materials and, especially, xylose by wild strains of H. polymorpha requires significant improvements. In this review, the main results of metabolic engineering of H. polymorpha for the construction of improved producers of ethanol from xylose, starch, xylan, and glycerol, as well as that of strains with increased tolerance to high temperatures and ethanol, are represented.  相似文献   

19.
Studies were performed on the effect of CaCO3 and CaCl2 supplementation to fermentation medium for ethanol production from xylose, glucose, or their mixtures using Scheffersomyces (Pichia) stipitis. Both of these chemicals were found to improve maximum ethanol concentration and ethanol productivity. Use of xylose alone resulted in the production of 20.68 ± 0.44 g L?1 ethanol with a productivity of 0.17 ± 0.00 g L?1 h?1, while xylose plus 3 g L?1 CaCO3 resulted in the production of 24.68 ± 0.75 g L?1 ethanol with a productivity of 0.21 ± 0.01 g L?1 h?1. Use of xylose plus glucose in combination with 3 g L?1 CaCO3 resulted in the production of 47.37 ± 0.55 g L?1 ethanol (aerobic culture), thus resulting in an ethanol productivity of 0.39 ± 0.00 g L?1 h?1. These values are 229 % of that achieved in xylose medium. Supplementation of xylose and glucose medium with 0.40 g L?1 CaCl2 resulted in the production of 44.84 ± 0.28 g L?1 ethanol with a productivity of 0.37 ± 0.02 g L?1 h?1. Use of glucose plus 3 g L?1 CaCO3 resulted in the production of 57.39 ± 1.41 g L?1 ethanol under micro-aerophilic conditions. These results indicate that supplementation of cellulosic sugars in the fermentation medium with CaCO3 and CaCl2 would improve economics of ethanol production from agricultural residues.  相似文献   

20.
In these studies, we pretreated sweet sorghum bagasse (SSB) using liquid hot water (LHW) or dilute H2SO4 (2 g L?1) at 190°C for zero min (as soon as temperature reached 190°C, cooling was started) to reduce generation of sugar degradation fermentation inhibiting products such as furfural and hydroxymethyl furfural (HMF). The solids loading were 250–300 g L?1. This was followed by enzymatic hydrolysis. After hydrolysis, 89.0 g L?1 sugars, 7.60 g L?1 acetic acid, 0.33 g L?1 furfural, and 0.07 g L?1 HMF were released. This pretreatment and hydrolysis resulted in the release of 57.9% sugars. This was followed by second hydrolysis of the fibrous biomass which resulted in the release of 43.64 g L?1 additional sugars, 2.40 g L?1 acetic acid, zero g L?1 furfural, and zero g L?1 HMF. In both the hydrolyzates, 86.3% sugars present in SSB were released. Fermentation of the hydrolyzate I resulted in poor acetone‐butanol‐ethanol (ABE) fermentation. However, fermentation of the hydrolyzate II was successful and produced 13.43 g L?1 ABE of which butanol was the main product. Use of 2 g L?1 H2SO4 as a pretreatment medium followed by enzymatic hydrolysis resulted in the release of 100.6–93.8% (w/w) sugars from 250 to 300 g L?1 SSB, respectively. LHW or dilute H2SO4 were used to economize production of cellulosic sugars from SSB. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:960–966, 2018  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号